organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-4-phenyl­sulfanyl-1H-pyrazol-5-ol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 February 2011; accepted 9 February 2011; online 16 February 2011)

In the title compound, C11H12N2OS, the pyrazole ring makes a dihedral angle of 85.40 (8)° with the phenyl ring. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into a two-dimensional network parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For related structures, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.], 2010a[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142-o143.],b[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357-o1358.],c[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482-o1483.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2OS

  • Mr = 220.30

  • Orthorhombic, P b c a

  • a = 10.9479 (2) Å

  • b = 11.3470 (3) Å

  • c = 17.7392 (4) Å

  • V = 2203.67 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.33 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.971

  • 12209 measured reflections

  • 3027 independent reflections

  • 2406 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.04

  • 3027 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.94 (2) 1.71 (2) 2.6446 (16) 173 (2)
C3—H3A⋯O1ii 0.93 2.53 3.2549 (19) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strain had led to the development of new antimicrobial compounds. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling, and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010). The structure of the title compound is presented here.

In the title compound, (Fig. 1), the 1H-pyrazol ring (C7–C9/N1/N2) [maximum deviation of 0.00117 (14) Å] makes a dihedral angle of 85.40 (8)° with the phenyl ring (C1–C6). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···O1 and C3—H3A···O1 hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the bc plane.

Related literature top

For pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a,b,c). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound has been synthesized using the method available in the literature (Ragavan et al., 2009) and recrystallized using the ethanol-chloroform 1:1 mixture (yield 60%, m.p. 444 K).

Refinement top

The H atoms bound to C atoms were positioned geometrically (C—H = 0.93–0.96 Å) with Uiso(H) =1.2 or 1.5Ueq(C). The H atoms attached to the N atom was located from the difference map and refined freely, [N—H = 0.94 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed approximately along the b axis. Intermolecular interactions are shown in dashed lines. Hydrogen bond not involved in intermolecular interactions are omitted for clarity.
1,3-Dimethyl-4-phenylsulfanyl-1H-pyrazol-5-ol top
Crystal data top
C11H12N2OSF(000) = 928
Mr = 220.30Dx = 1.328 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2873 reflections
a = 10.9479 (2) Åθ = 2.8–29.1°
b = 11.3470 (3) ŵ = 0.27 mm1
c = 17.7392 (4) ÅT = 100 K
V = 2203.67 (9) Å3Block, colourless
Z = 80.33 × 0.13 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3027 independent reflections
Radiation source: fine-focus sealed tube2406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1115
Tmin = 0.917, Tmax = 0.971k = 1515
12209 measured reflectionsl = 1624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8061P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H12N2OSV = 2203.67 (9) Å3
Mr = 220.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.9479 (2) ŵ = 0.27 mm1
b = 11.3470 (3) ÅT = 100 K
c = 17.7392 (4) Å0.33 × 0.13 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3027 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2406 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.971Rint = 0.041
12209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
3027 reflectionsΔρmin = 0.31 e Å3
142 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09449 (3)0.31932 (3)0.09298 (2)0.01802 (11)
O10.32686 (10)0.34450 (8)0.02532 (6)0.0207 (2)
N10.20240 (12)0.61926 (10)0.00845 (8)0.0202 (3)
N20.28173 (12)0.54374 (10)0.02791 (7)0.0192 (3)
C10.28747 (15)0.36136 (13)0.19278 (9)0.0225 (3)
H1A0.30570.42850.16490.027*
C20.35663 (15)0.33304 (13)0.25590 (9)0.0254 (3)
H2A0.42110.38160.27000.031*
C30.33066 (15)0.23327 (14)0.29808 (9)0.0236 (3)
H3A0.37660.21540.34070.028*
C40.23531 (15)0.16043 (13)0.27606 (9)0.0243 (3)
H4A0.21800.09290.30370.029*
C50.16551 (14)0.18758 (13)0.21304 (9)0.0212 (3)
H5A0.10190.13820.19860.025*
C60.19092 (13)0.28904 (12)0.17148 (8)0.0173 (3)
C70.16428 (13)0.43840 (11)0.04922 (8)0.0166 (3)
C80.26321 (13)0.43076 (11)0.00304 (8)0.0164 (3)
C90.13144 (14)0.55679 (12)0.05474 (8)0.0178 (3)
C100.38173 (15)0.58669 (13)0.07387 (10)0.0239 (3)
H10A0.41710.52220.10130.036*
H10B0.44270.62170.04200.036*
H10C0.35170.64460.10870.036*
C110.03683 (15)0.61354 (14)0.10271 (9)0.0248 (3)
H11A0.01980.69120.08390.037*
H11B0.06610.61890.15360.037*
H11C0.03650.56720.10160.037*
H1N10.1983 (19)0.700 (2)0.0036 (13)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01876 (19)0.01847 (18)0.0168 (2)0.00372 (13)0.00109 (13)0.00267 (13)
O10.0267 (6)0.0139 (4)0.0215 (6)0.0008 (4)0.0046 (4)0.0000 (4)
N10.0264 (7)0.0129 (5)0.0212 (7)0.0017 (5)0.0005 (5)0.0006 (5)
N20.0240 (6)0.0131 (5)0.0206 (7)0.0002 (5)0.0034 (5)0.0007 (5)
C10.0273 (8)0.0198 (7)0.0204 (8)0.0046 (6)0.0027 (6)0.0034 (6)
C20.0285 (8)0.0257 (7)0.0221 (9)0.0037 (6)0.0065 (7)0.0002 (6)
C30.0255 (8)0.0298 (8)0.0155 (8)0.0053 (6)0.0012 (6)0.0006 (6)
C40.0247 (8)0.0260 (7)0.0222 (8)0.0015 (6)0.0032 (6)0.0082 (6)
C50.0197 (7)0.0213 (7)0.0225 (8)0.0015 (6)0.0013 (6)0.0043 (6)
C60.0196 (7)0.0188 (6)0.0134 (7)0.0007 (5)0.0019 (5)0.0003 (5)
C70.0193 (7)0.0148 (6)0.0156 (7)0.0014 (5)0.0003 (5)0.0005 (5)
C80.0224 (7)0.0127 (6)0.0141 (7)0.0017 (5)0.0018 (6)0.0001 (5)
C90.0207 (7)0.0179 (6)0.0149 (7)0.0009 (5)0.0035 (6)0.0002 (5)
C100.0283 (8)0.0184 (7)0.0250 (8)0.0043 (6)0.0050 (7)0.0032 (6)
C110.0248 (8)0.0250 (7)0.0245 (9)0.0071 (6)0.0008 (6)0.0021 (6)
Geometric parameters (Å, º) top
S1—C71.7356 (14)C3—H3A0.9300
S1—C61.7809 (15)C4—C51.389 (2)
O1—C81.2648 (17)C4—H4A0.9300
N1—C91.3343 (19)C5—C61.395 (2)
N1—N21.3801 (17)C5—H5A0.9300
N1—H1N10.94 (2)C7—C91.3942 (19)
N2—C81.3708 (17)C7—C81.428 (2)
N2—C101.4494 (19)C9—C111.487 (2)
C1—C21.389 (2)C10—H10A0.9600
C1—C61.391 (2)C10—H10B0.9600
C1—H1A0.9300C10—H10C0.9600
C2—C31.387 (2)C11—H11A0.9600
C2—H2A0.9300C11—H11B0.9600
C3—C41.388 (2)C11—H11C0.9600
C7—S1—C6103.83 (7)C1—C6—S1123.32 (11)
C9—N1—N2108.92 (11)C5—C6—S1117.02 (11)
C9—N1—H1N1129.0 (13)C9—C7—C8107.44 (12)
N2—N1—H1N1121.9 (13)C9—C7—S1127.24 (12)
C8—N2—N1109.70 (12)C8—C7—S1125.24 (10)
C8—N2—C10127.39 (13)O1—C8—N2122.79 (13)
N1—N2—C10121.97 (11)O1—C8—C7131.88 (13)
C2—C1—C6119.79 (14)N2—C8—C7105.33 (12)
C2—C1—H1A120.1N1—C9—C7108.57 (13)
C6—C1—H1A120.1N1—C9—C11121.85 (13)
C3—C2—C1120.80 (15)C7—C9—C11129.57 (14)
C3—C2—H2A119.6N2—C10—H10A109.5
C1—C2—H2A119.6N2—C10—H10B109.5
C2—C3—C4119.26 (15)H10A—C10—H10B109.5
C2—C3—H3A120.4N2—C10—H10C109.5
C4—C3—H3A120.4H10A—C10—H10C109.5
C3—C4—C5120.56 (14)H10B—C10—H10C109.5
C3—C4—H4A119.7C9—C11—H11A109.5
C5—C4—H4A119.7C9—C11—H11B109.5
C4—C5—C6119.92 (14)H11A—C11—H11B109.5
C4—C5—H5A120.0C9—C11—H11C109.5
C6—C5—H5A120.0H11A—C11—H11C109.5
C1—C6—C5119.66 (14)H11B—C11—H11C109.5
C9—N1—N2—C81.48 (17)N1—N2—C8—O1177.46 (13)
C9—N1—N2—C10171.15 (14)C10—N2—C8—O18.5 (2)
C6—C1—C2—C30.0 (2)N1—N2—C8—C72.10 (16)
C1—C2—C3—C40.9 (2)C10—N2—C8—C7171.06 (14)
C2—C3—C4—C50.8 (2)C9—C7—C8—O1177.55 (16)
C3—C4—C5—C60.2 (2)S1—C7—C8—O15.6 (2)
C2—C1—C6—C51.0 (2)C9—C7—C8—N21.96 (16)
C2—C1—C6—S1178.43 (12)S1—C7—C8—N2174.91 (11)
C4—C5—C6—C11.1 (2)N2—N1—C9—C70.18 (17)
C4—C5—C6—S1178.38 (12)N2—N1—C9—C11179.36 (13)
C7—S1—C6—C17.87 (15)C8—C7—C9—N11.12 (17)
C7—S1—C6—C5172.70 (12)S1—C7—C9—N1175.67 (11)
C6—S1—C7—C9100.38 (14)C8—C7—C9—C11177.97 (15)
C6—S1—C7—C883.36 (14)S1—C7—C9—C115.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.94 (2)1.71 (2)2.6446 (16)173 (2)
C3—H3A···O1ii0.932.533.2549 (19)135
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2OS
Mr220.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.9479 (2), 11.3470 (3), 17.7392 (4)
V3)2203.67 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.33 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.917, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
12209, 3027, 2406
Rint0.041
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.04
No. of reflections3027
No. of parameters142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.94 (2)1.71 (2)2.6446 (16)173 (2)
C3—H3A···O1ii0.932.533.2549 (19)135
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds