organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5,3′-Trihy­dr­oxy-4′-meth­­oxy-7-(3-methyl­but-2-en­yl­oxy)flavone

aGuangdong Food and Drug Vocational College, Guangzhou 510520, People's Republic of China, and bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: zhusanmao2@163.com

(Received 18 January 2011; accepted 14 February 2011; online 19 February 2011)

The title compound pteleifolosin C, C21H20O7, was isolated from the petroleum ether-soluble fraction of an indigenous Chinese tree Melicope pteleifolia (Rutaceae). The dihedral angle between the benzene rings is 2.7 (2)°. Intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by inter­molecular O—H—O hydrogen bonds.

Related literature

For the medicinal usage of M. pteleifolia in China, see: Chinese Pharmacopoeia (1977[Chinese Pharmacopoeia (1977). Beijing: People's Medical Publishing House.]) and for folk use of M. pteleifolia in South East Asia, see: Gunawardana et al. (1987[Gunawardana, Y. A. G. P., Cordell, G. A., Ruangrungsi, N., Chomya, S. & Tantivatana, P. (1987). J. Sci. Sco. Thail. 13, 107-112.]); Shaari et al. (2006[Shaari, K., Safri, S., Abas, F., Lajis, N. H. & Israf, D. A. (2006). Natural Product Research 20(5), 415-419.]). For related structures and background to pteleifolosin C, see: Smith et al. (2001[Smith, G., Bartley, J. P., Wang, E. & Bott, R. C. (2001). Acta Cryst. C57, 1336-1337.]); Sultana et al. (1999[Sultana, N., Hartley, T. G. & Waterman, P. G. (1999). Phytochemistry, 50, 1249-1253.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20O7

  • Mr = 384.37

  • Triclinic, [P \overline 1]

  • a = 8.4073 (18) Å

  • b = 9.0343 (19) Å

  • c = 12.489 (3) Å

  • α = 79.371 (2)°

  • β = 83.519 (3)°

  • γ = 78.806 (3)°

  • V = 911.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.60 × 0.50 × 0.45 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.954

  • 8186 measured reflections

  • 4103 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 0.98

  • 4103 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.82 2.21 2.6682 (17) 115
O5—H5⋯O6i 0.82 2.04 2.7914 (16) 153
O6—H6⋯O7 0.82 2.19 2.6440 (16) 115
O2—H2⋯O4 0.82 1.88 2.6155 (17) 148
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title substance is a new compound named pteleifolosin C, which is from petroleum ether soluble fraction of an indigenous Chinese tree Melicope pteleifolia, Rutaceae. In the southern area of China and in the neighboring district of South East Asia, Melicope pteleifolia is a medical herb and an edible plant as well (Gunawardana et al., 1987; Shaari et al., 2006). As a staple material of Guang Dong herbal tea, it also serves as a medical herb for the treatment of injury, wounds, fester and eczema (Chinese Pharmacopoeia, 1977). Nowadays it is used as a constituent in many Chinese patent medicines. In order to find its bioactive ingredients we studied the chemical composition of its leaves and found pteleifolosin C among other flavones.

Related literature top

For the medicinal usage of M. pteleifolia in China, see: Chinese Pharmacopoeia (1977) and for folk use of M. pteleifolia in South East Asia, see: Gunawardana et al. (1987); Shaari et al. (2006). For related structures and background to pteleifolosin C, see: Smith et al. (2001); Sultana et al. (1999).

Experimental top

The dried leaves powder (5 K g) of M. pteleifolia was percolated with 80% EtOH to yield crude extract which was fractionated in a Soxhlet to give petroleum ether, ethyl acetate, acetone and methanol soluble fraction successively. The petroleum ether fraction was subjected to column chromatography over silica gel using solvents of increasing polarity. The fraction obtained with 25% ethyl acetate in petroleum ether was subsequently subjected to gel filtration (Sephadex LH-20) eluting with CHCl3 and CH3OH (1:1) mixtures to give yellow powder, which was purified by prep. HPLC and yielded pteleifolosin C (25 mg). It is similar to the flavones found in the same genus with the O-prenylated side chain (Sultana et al., 1999; Smith et al., 2001). 1HNMR (500 MHz, DMSO-d6): δ 9.55 (1H, s, –OH), 12.43 (1H, s, –OH), 6.33 (1H, d, J=2.0 Hz), 6.72 (1H, d, J=2.0 Hz), 7.72 (1H, d, J=1.6 Hz), 9.31 (1H, s, –OH), 7.09 (1H, d, J=8.5 Hz), 7.68 (1H, d, J=1.6, 8.5 Hz), 4.64 (2H, d, J=6.5 Hz), 5.46 (1H, t, J=6.5 Hz), 1.76 (3H, s), 1.73 (3H, s), 3.85 (3H, s);

The dihedral angle between the benzene ring C6—C11 and the benzene ring C15—C20 is 2.7 (2)°. and the dihedral angle between the ring C8, C9, C12, C13, C14, O3 and the benzene ring C15—C20 is 2.2 (2) °. The C2—C4 (1.319 (2) Å) and C13—C14 (1.359 (2) Å) are double bands and are significantly shorter than the other C—C bond (e.g.The distance between the single band C1—C2 is 1.495 (3) Å)

Refinement top

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H)= 1.2Ueq (aromatic) or Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
3,5-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(3-methylbut-2-en-1- yl)oxy]chromen-4-one top
Crystal data top
C21H20O7Z = 2
Mr = 384.37F(000) = 404
Triclinic, P1Dx = 1.400 Mg m3
a = 8.4073 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0343 (19) ÅCell parameters from 3191 reflections
c = 12.489 (3) Åθ = 0.0–0.0°
α = 79.371 (2)°µ = 0.11 mm1
β = 83.519 (3)°T = 296 K
γ = 78.806 (3)°Block, colourless
V = 911.7 (3) Å30.60 × 0.50 × 0.45 mm
Data collection top
Bruker APEXII CCD
diffractometer
4103 independent reflections
Radiation source: fine-focus sealed tube3126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.939, Tmax = 0.954k = 1111
8186 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.4019P]
where P = (Fo2 + 2Fc2)/3
4103 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H20O7γ = 78.806 (3)°
Mr = 384.37V = 911.7 (3) Å3
Triclinic, P1Z = 2
a = 8.4073 (18) ÅMo Kα radiation
b = 9.0343 (19) ŵ = 0.11 mm1
c = 12.489 (3) ÅT = 296 K
α = 79.371 (2)°0.60 × 0.50 × 0.45 mm
β = 83.519 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4103 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3126 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.954Rint = 0.019
8186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.98Δρmax = 0.21 e Å3
4103 reflectionsΔρmin = 0.22 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.0698 (2)0.01370 (19)0.72012 (14)0.0408 (4)
H5A0.16900.01150.67440.049*
H5B0.01050.08100.67510.049*
C20.0595 (2)0.21729 (19)0.72655 (15)0.0416 (4)
C40.0075 (2)0.12862 (19)0.77422 (14)0.0428 (4)
H40.01700.15740.84900.051*
C30.1194 (3)0.3565 (2)0.79063 (18)0.0584 (5)
H3A0.09620.36840.86560.088*
H3B0.06560.44540.76060.088*
H3C0.23470.34450.78660.088*
C10.0815 (3)0.1880 (2)0.60687 (17)0.0596 (5)
H1A0.04030.09730.57290.089*
H1B0.19510.17450.59620.089*
H1C0.02340.27360.57470.089*
O10.10023 (15)0.08534 (13)0.80716 (9)0.0457 (3)
C90.30637 (18)0.47465 (17)0.75333 (12)0.0334 (3)
C70.18620 (19)0.29532 (17)0.67786 (13)0.0351 (3)
H70.15400.26390.61810.042*
C80.25584 (17)0.42543 (17)0.66575 (12)0.0308 (3)
C110.2147 (2)0.2601 (2)0.87334 (13)0.0433 (4)
H110.19900.20420.94290.052*
C60.16667 (19)0.21424 (18)0.78258 (13)0.0368 (4)
C100.2850 (2)0.38769 (19)0.85908 (13)0.0404 (4)
O20.3353 (2)0.43126 (16)0.94546 (10)0.0612 (4)
H20.37720.50740.92450.092*
C140.33864 (17)0.63647 (16)0.54058 (12)0.0296 (3)
C120.37894 (18)0.60914 (17)0.73464 (12)0.0337 (3)
C130.39232 (18)0.68726 (17)0.62346 (12)0.0327 (3)
O30.27254 (13)0.50474 (12)0.56215 (8)0.0341 (3)
O40.42931 (16)0.66001 (14)0.80866 (9)0.0477 (3)
C190.2782 (2)0.69577 (18)0.24055 (13)0.0383 (4)
H190.23810.64700.19270.046*
C150.33922 (17)0.70364 (17)0.42430 (12)0.0304 (3)
C180.33616 (19)0.83015 (18)0.20187 (12)0.0348 (3)
C160.39856 (19)0.83993 (17)0.38400 (12)0.0343 (3)
H160.43960.88880.43130.041*
C170.39621 (19)0.90123 (17)0.27506 (13)0.0348 (3)
C200.27958 (19)0.63340 (18)0.35041 (13)0.0356 (3)
H200.24000.54290.37550.043*
O70.34083 (16)0.90551 (14)0.09652 (9)0.0479 (3)
O60.45551 (17)1.03420 (14)0.23818 (10)0.0501 (3)
H60.43991.06310.17340.075*
C210.2862 (3)0.8369 (2)0.01710 (15)0.0635 (6)
H21A0.35240.73810.01410.095*
H21B0.29440.90060.05320.095*
H21C0.17490.82550.03670.095*
O50.46006 (16)0.81540 (14)0.60612 (9)0.0478 (3)
H50.48360.83110.66450.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0505 (9)0.0343 (9)0.0406 (9)0.0176 (7)0.0023 (7)0.0040 (7)
C20.0397 (9)0.0351 (9)0.0512 (10)0.0108 (7)0.0002 (7)0.0085 (8)
C40.0513 (10)0.0358 (9)0.0427 (9)0.0165 (7)0.0038 (7)0.0007 (7)
C30.0605 (12)0.0405 (11)0.0785 (14)0.0238 (9)0.0020 (10)0.0096 (10)
C10.0662 (13)0.0615 (13)0.0584 (12)0.0201 (10)0.0063 (10)0.0191 (10)
O10.0668 (8)0.0371 (7)0.0382 (6)0.0282 (6)0.0063 (5)0.0019 (5)
C90.0385 (8)0.0312 (8)0.0319 (8)0.0106 (6)0.0025 (6)0.0043 (6)
C70.0423 (8)0.0333 (8)0.0335 (8)0.0147 (7)0.0058 (6)0.0048 (6)
C80.0346 (7)0.0284 (8)0.0297 (7)0.0097 (6)0.0020 (6)0.0015 (6)
C110.0612 (11)0.0411 (10)0.0297 (8)0.0210 (8)0.0037 (7)0.0015 (7)
C60.0427 (9)0.0304 (8)0.0386 (9)0.0149 (7)0.0032 (7)0.0006 (7)
C100.0543 (10)0.0397 (9)0.0311 (8)0.0171 (8)0.0049 (7)0.0054 (7)
O20.1038 (11)0.0607 (9)0.0313 (6)0.0451 (8)0.0121 (7)0.0029 (6)
C140.0325 (7)0.0243 (7)0.0332 (8)0.0095 (6)0.0021 (6)0.0034 (6)
C120.0394 (8)0.0322 (8)0.0326 (8)0.0116 (6)0.0038 (6)0.0070 (6)
C130.0376 (8)0.0279 (8)0.0350 (8)0.0132 (6)0.0029 (6)0.0040 (6)
O30.0468 (6)0.0302 (6)0.0292 (5)0.0178 (5)0.0057 (4)0.0016 (4)
O40.0714 (8)0.0457 (7)0.0350 (6)0.0294 (6)0.0104 (6)0.0065 (5)
C190.0528 (10)0.0331 (8)0.0344 (8)0.0169 (7)0.0096 (7)0.0060 (7)
C150.0322 (7)0.0280 (8)0.0316 (7)0.0068 (6)0.0032 (6)0.0045 (6)
C180.0436 (8)0.0326 (8)0.0283 (8)0.0092 (7)0.0039 (6)0.0025 (6)
C160.0432 (8)0.0319 (8)0.0320 (8)0.0147 (6)0.0046 (6)0.0065 (6)
C170.0418 (8)0.0279 (8)0.0367 (8)0.0137 (6)0.0026 (6)0.0031 (6)
C200.0451 (9)0.0290 (8)0.0357 (8)0.0151 (7)0.0054 (7)0.0029 (6)
O70.0756 (9)0.0419 (7)0.0299 (6)0.0223 (6)0.0089 (6)0.0000 (5)
O60.0808 (9)0.0405 (7)0.0363 (6)0.0356 (6)0.0079 (6)0.0029 (5)
C210.1061 (17)0.0570 (13)0.0328 (9)0.0242 (12)0.0198 (10)0.0021 (9)
O50.0753 (8)0.0424 (7)0.0364 (6)0.0362 (6)0.0113 (6)0.0028 (5)
Geometric parameters (Å, º) top
C5—O11.4328 (19)C10—O21.3501 (19)
C5—C41.498 (2)O2—H20.8200
C5—H5A0.9700C14—C131.359 (2)
C5—H5B0.9700C14—O31.3793 (16)
C2—C41.319 (2)C14—C151.467 (2)
C2—C11.495 (3)C12—O41.2513 (17)
C2—C31.503 (2)C12—C131.440 (2)
C4—H40.9300C13—O51.3590 (17)
C3—H3A0.9600C19—C181.380 (2)
C3—H3B0.9600C19—C201.384 (2)
C3—H3C0.9600C19—H190.9300
C1—H1A0.9600C15—C201.396 (2)
C1—H1B0.9600C15—C161.404 (2)
C1—H1C0.9600C18—O71.3655 (19)
O1—C61.3581 (18)C18—C171.396 (2)
C9—C81.390 (2)C16—C171.372 (2)
C9—C101.419 (2)C16—H160.9300
C9—C121.433 (2)C17—O61.3713 (18)
C7—C61.385 (2)C20—H200.9300
C7—C81.389 (2)O7—C211.421 (2)
C7—H70.9300O6—H60.8200
C8—O31.3650 (18)C21—H21A0.9600
C11—C101.369 (2)C21—H21B0.9600
C11—C61.400 (2)C21—H21C0.9600
C11—H110.9300O5—H50.8200
O1—C5—C4105.77 (13)O2—C10—C9119.45 (14)
O1—C5—H5A110.6C11—C10—C9120.28 (14)
C4—C5—H5A110.6C10—O2—H2109.5
O1—C5—H5B110.6C13—C14—O3119.66 (13)
C4—C5—H5B110.6C13—C14—C15128.81 (13)
H5A—C5—H5B108.7O3—C14—C15111.53 (12)
C4—C2—C1123.26 (17)O4—C12—C9123.70 (14)
C4—C2—C3121.40 (17)O4—C12—C13119.81 (14)
C1—C2—C3115.33 (16)C9—C12—C13116.49 (13)
C2—C4—C5126.59 (16)C14—C13—O5121.85 (14)
C2—C4—H4116.7C14—C13—C12121.80 (13)
C5—C4—H4116.7O5—C13—C12116.35 (13)
C2—C3—H3A109.5C8—O3—C14121.51 (11)
C2—C3—H3B109.5C18—C19—C20120.15 (14)
H3A—C3—H3B109.5C18—C19—H19119.9
C2—C3—H3C109.5C20—C19—H19119.9
H3A—C3—H3C109.5C20—C15—C16118.06 (14)
H3B—C3—H3C109.5C20—C15—C14120.56 (13)
C2—C1—H1A109.5C16—C15—C14121.38 (13)
C2—C1—H1B109.5O7—C18—C19126.65 (13)
H1A—C1—H1B109.5O7—C18—C17114.35 (14)
C2—C1—H1C109.5C19—C18—C17118.99 (14)
H1A—C1—H1C109.5C17—C16—C15120.24 (13)
H1B—C1—H1C109.5C17—C16—H16119.9
C6—O1—C5119.15 (12)C15—C16—H16119.9
C8—C9—C10118.12 (14)C16—C17—O6118.83 (13)
C8—C9—C12119.70 (14)C16—C17—C18121.24 (14)
C10—C9—C12122.18 (14)O6—C17—C18119.93 (14)
C6—C7—C8117.30 (14)C19—C20—C15121.31 (14)
C6—C7—H7121.3C19—C20—H20119.3
C8—C7—H7121.3C15—C20—H20119.3
O3—C8—C7116.47 (13)C18—O7—C21117.28 (13)
O3—C8—C9120.82 (13)C17—O6—H6109.5
C7—C8—C9122.71 (14)O7—C21—H21A109.5
C10—C11—C6119.59 (15)O7—C21—H21B109.5
C10—C11—H11120.2H21A—C21—H21B109.5
C6—C11—H11120.2O7—C21—H21C109.5
O1—C6—C7124.01 (14)H21A—C21—H21C109.5
O1—C6—C11114.00 (14)H21B—C21—H21C109.5
C7—C6—C11121.99 (14)C13—O5—H5109.5
O2—C10—C11120.26 (15)
C1—C2—C4—C50.8 (3)C15—C14—C13—C12178.36 (14)
C3—C2—C4—C5179.14 (17)O4—C12—C13—C14179.72 (15)
O1—C5—C4—C2168.75 (17)C9—C12—C13—C140.2 (2)
C4—C5—O1—C6176.45 (14)O4—C12—C13—O50.4 (2)
C6—C7—C8—O3179.33 (14)C9—C12—C13—O5179.51 (14)
C6—C7—C8—C90.5 (2)C7—C8—O3—C14179.37 (13)
C10—C9—C8—O3179.69 (14)C9—C8—O3—C140.5 (2)
C12—C9—C8—O30.8 (2)C13—C14—O3—C81.6 (2)
C10—C9—C8—C70.2 (2)C15—C14—O3—C8178.21 (12)
C12—C9—C8—C7179.31 (14)C13—C14—C15—C20179.39 (15)
C5—O1—C6—C79.8 (2)O3—C14—C15—C200.8 (2)
C5—O1—C6—C11170.35 (15)C13—C14—C15—C160.9 (2)
C8—C7—C6—O1179.81 (14)O3—C14—C15—C16178.91 (13)
C8—C7—C6—C110.1 (2)C20—C19—C18—O7179.26 (16)
C10—C11—C6—O1179.35 (15)C20—C19—C18—C170.2 (2)
C10—C11—C6—C70.8 (3)C20—C15—C16—C170.4 (2)
C6—C11—C10—O2178.46 (17)C14—C15—C16—C17179.33 (14)
C6—C11—C10—C91.1 (3)C15—C16—C17—O6179.80 (14)
C8—C9—C10—O2178.91 (15)C15—C16—C17—C180.3 (2)
C12—C9—C10—O20.5 (3)O7—C18—C17—C16179.55 (15)
C8—C9—C10—C110.7 (2)C19—C18—C17—C160.0 (2)
C12—C9—C10—C11179.86 (16)O7—C18—C17—O61.0 (2)
C8—C9—C12—O4179.14 (15)C19—C18—C17—O6179.51 (15)
C10—C9—C12—O40.3 (3)C18—C19—C20—C150.1 (3)
C8—C9—C12—C131.0 (2)C16—C15—C20—C190.2 (2)
C10—C9—C12—C13179.57 (15)C14—C15—C20—C19179.55 (15)
O3—C14—C13—O5179.23 (13)C19—C18—O7—C212.5 (3)
C15—C14—C13—O51.0 (3)C17—C18—O7—C21178.09 (16)
O3—C14—C13—C121.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.822.212.6682 (17)115
O5—H5···O6i0.822.042.7914 (16)153
O6—H6···O70.822.192.6440 (16)115
O2—H2···O40.821.882.6155 (17)148
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H20O7
Mr384.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4073 (18), 9.0343 (19), 12.489 (3)
α, β, γ (°)79.371 (2), 83.519 (3), 78.806 (3)
V3)911.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.50 × 0.45
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
8186, 4103, 3126
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 0.98
No. of reflections4103
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.822.212.6682 (17)115
O5—H5···O6i0.822.042.7914 (16)153
O6—H6···O70.822.192.6440 (16)115
O2—H2···O40.821.882.6155 (17)148
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We thank Professor Bing Chen for helpful discussions and assistance with the crystallization

References

First citationBruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinese Pharmacopoeia (1977). Beijing: People's Medical Publishing House.  Google Scholar
First citationGunawardana, Y. A. G. P., Cordell, G. A., Ruangrungsi, N., Chomya, S. & Tantivatana, P. (1987). J. Sci. Sco. Thail. 13, 107–112.  CrossRef CAS Google Scholar
First citationShaari, K., Safri, S., Abas, F., Lajis, N. H. & Israf, D. A. (2006). Natural Product Research 20(5), 415-419.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bartley, J. P., Wang, E. & Bott, R. C. (2001). Acta Cryst. C57, 1336–1337.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSultana, N., Hartley, T. G. & Waterman, P. G. (1999). Phytochemistry, 50, 1249–1253.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds