organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3-methyl­anilinium perchlorate 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 22 January 2011; accepted 27 January 2011; online 5 February 2011)

The reaction of 4-bromo-3-methyl­anilinium perchlorate and 18-crown-6 in methanol solution yielded the title compound, C7H9BrN+·ClO4·C12H24O6. The protonated 4-bromo-3-methyl­amine unit contains one –NH3+ substituent, resulting in a 1:1 supra­molecular rotator–stator structure, (C7H9Br—NH3+)(18-crown-6), through three bifurcated N—H⋯(O,O) hydrogen bonds between the ammonium group of the cation and the O atoms of the crown ether mol­ecule.

Related literature

For the structures of similar crown ether clathrates, see: Akutagawa et al. (2002[Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175-186.]); Ge & Zhao (2010a[Ge, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739.],b[Ge, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478.];); Guo & Zhao (2010[Guo, M. & Zhao, M. M. (2010). Acta Cryst. E66, o2836.]); Zhao (2010[Zhao, M. M. (2010). Acta Cryst. E66, o1618.]); Zhao & Qu (2010a[Zhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188-m190.],b[Zhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215-m217.]). The title compound was prepared as part of a study of ferroelectric materials. For their properties, see: Fu et al. (2007[Fu, D. W., Song, Y. M., Wang, G. X., Ye, Q., Xiong, R. G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9BrN+·ClO4·C12H24O6

  • Mr = 550.81

  • Monoclinic, P 21 /c

  • a = 11.967 (2) Å

  • b = 13.446 (3) Å

  • c = 15.677 (3) Å

  • β = 94.05 (3)°

  • V = 2516.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.530, Tmax = 0.699

  • 25007 measured reflections

  • 5665 independent reflections

  • 4005 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.157

  • S = 1.09

  • 5665 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.89 2.22 2.905 (4) 134
N1—H1A⋯O9 0.89 2.19 2.966 (4) 145
N1—H1B⋯O5 0.89 2.19 2.955 (4) 144
N1—H1B⋯O10 0.89 2.22 2.912 (4) 134
N1—H1E⋯O6 0.89 2.29 2.970 (4) 133
N1—H1E⋯O7 0.89 2.12 2.893 (4) 145

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is currently a great deal of interest in crown ethers because of their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Akutagawa et al., 2002; Ge et al., 2010a,b; Guo et al., 2010; Zhao et al., 2010a,b). Not only the size of the crown ether, but also the nature of the ammonium cation (–NH4+, RNH3+, R2NH2+, etc) can influence on the stoichiometry and stability of these host–guest complexes. The host molecules combine with the guest species by intermolecular interaction, and if the host molecule possess some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 have the highest affinity for ammonium cation RNH3+, while most studies of 18-crown-6 and its derivatives invariably showed a 1:1 stoichiometry with RNH3+ cations.

Dielectric permittivity of the title compound is tested to systematically investigate the ferroelectric phase transitions materials (Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomaly with the value of 5 and 8 under 1M Hz in the temperature from 80 to 433 K (the compound m.p.> 453 K), suggesting that the compound should be no distinct phase transition occurred within the measured temperature range.

The title compound is composed of cationic [C7H9NBr(18-Crown-6)]+ and one single anionic [ClO4]- anions (Fig. 1). Supramolecular rotators was assembled between protonated 4-bromo-3-methylanilinium [C7H6Br—NH3]+ and 18-crown-6 by hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the oxygen atom of crown ethers through six simple N—H···O hydrogen bonding, forming 1:1 supramolecular rotator-stator structures.

The macrocycle adopts a conformation with approximate D3 d symmetry, with all O—C—C—O torsion angles being gauche and alternating in sign, and all C—O—C—C torsion angles being trans. The C—N bonds of [C7H6Br—NH3]+ were almost perpendicular to the mean oxygen planes of crown ethers.

Supramolecular cation structure, [C7H9NBr(18-Crown-6)]+, were introduced as counter cations to [ClO4]- anions. Cl has a flattened tetrahedral coordination by four O2- ions [range of cis-bond angles = 108.4 (2)–110.3 (2) °; dav(Cl—O) = 1.426 (3)–1.457 (3) Å].

The title compound was stabilized by intramolecular N—H···O hydrogen bonds, but no intermolecular hydrogen bond was observed. The intramolecular N—H···O hydrogen bonding length are within the usual range: 2.893 (4) and 2.970 (4) Å.

Related literature top

For the structures of similar crown ether clathrates, see: Akutagawa et al. (2002); Ge & Zhao (2010a,b;); Guo & Zhao (2010); Zhao (2010); Zhao & Qu (2010a,b). The title compound was prepared as part of a study of ferroelectric materials. For their properties, see: Fu et al. (2007); Zhang et al. (2009); Ye et al. (2009).

Experimental top

C7H8NBr. HClO4 (2 mmol, 0.57 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in 40 ml me thanol solution. The precipitate was filtered out. Two days later, single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol solution at 0°C.

Refinement top

All the C—H hydrogen atoms were calculated geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

All the N—H hydrogen atoms were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecules with the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
4-Bromo-3-methylanilinium perchlorate–18-crown-6 (1/1) top
Crystal data top
C7H9BrN+·ClO4·C12H24O6F(000) = 1144
Mr = 550.81Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20001 reflections
a = 11.967 (2) Åθ = 3.0–27.3°
b = 13.446 (3) ŵ = 1.79 mm1
c = 15.677 (3) ÅT = 296 K
β = 94.05 (3)°Prism, colorless
V = 2516.3 (9) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
5665 independent reflections
Radiation source: fine-focus sealed tube4005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 28.5714 pixels mm-1θmax = 27.3°, θmin = 3.0°
CCD_Profile_fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.530, Tmax = 0.699l = 2020
25007 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.8528P]
where P = (Fo2 + 2Fc2)/3
5665 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
C7H9BrN+·ClO4·C12H24O6V = 2516.3 (9) Å3
Mr = 550.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.967 (2) ŵ = 1.79 mm1
b = 13.446 (3) ÅT = 296 K
c = 15.677 (3) Å0.40 × 0.30 × 0.20 mm
β = 94.05 (3)°
Data collection top
Rigaku SCXmini
diffractometer
5665 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4005 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 0.699Rint = 0.066
25007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.09Δρmax = 0.41 e Å3
5665 reflectionsΔρmin = 0.98 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19928 (4)1.01458 (3)0.00712 (3)0.06334 (18)
O80.0452 (2)0.60635 (19)0.30049 (15)0.0495 (6)
N10.2459 (2)0.72782 (19)0.29922 (16)0.0367 (6)
H1A0.17960.71950.32060.055*
H1B0.29370.75450.33890.055*
H1E0.27190.66920.28330.055*
O90.0542 (2)0.78578 (18)0.39854 (15)0.0499 (6)
C150.3203 (3)0.8828 (2)0.1107 (2)0.0370 (7)
C160.2147 (3)0.9217 (2)0.08602 (19)0.0398 (7)
O60.4462 (2)0.59829 (19)0.29366 (17)0.0551 (7)
O50.4715 (2)0.78411 (19)0.37212 (16)0.0518 (6)
O70.2319 (2)0.53548 (19)0.21645 (17)0.0554 (7)
O100.2751 (2)0.84908 (18)0.45312 (16)0.0506 (6)
C130.2336 (3)0.7946 (2)0.22444 (19)0.0332 (7)
C170.1196 (3)0.8976 (3)0.1282 (2)0.0453 (8)
H17A0.05030.92420.10980.054*
C180.1292 (3)0.8336 (2)0.1982 (2)0.0415 (8)
H18A0.06640.81710.22700.050*
C140.3275 (3)0.8187 (2)0.1809 (2)0.0398 (7)
H14A0.39660.79140.19900.048*
C110.5624 (3)0.7135 (3)0.3751 (3)0.0545 (10)
H11A0.56010.67210.42560.065*
H11B0.63350.74840.37810.065*
C60.0296 (3)0.7105 (3)0.4065 (2)0.0537 (9)
H6A0.09760.74050.42500.064*
H6B0.00330.66190.44900.064*
C100.4740 (3)0.8459 (3)0.4471 (3)0.0600 (10)
H10A0.54060.88720.44990.072*
H10B0.47660.80450.49790.072*
C70.0804 (3)0.8360 (3)0.4778 (2)0.0562 (10)
H7A0.10130.78810.52240.067*
H7B0.01550.87260.49440.067*
C190.4241 (3)0.9087 (3)0.0644 (3)0.0580 (10)
H19A0.48780.87470.09110.087*
H19B0.43660.97920.06730.087*
H19C0.41320.88870.00560.087*
C80.1762 (3)0.9065 (3)0.4666 (3)0.0579 (10)
H8A0.15850.94960.41800.070*
H8B0.18910.94760.51720.070*
C30.1271 (4)0.4814 (3)0.2176 (3)0.0600 (10)
H3A0.12860.43860.26750.072*
H3B0.11640.44010.16700.072*
C50.0538 (3)0.6604 (3)0.3215 (2)0.0517 (9)
H5A0.11640.61490.32440.062*
H5B0.07330.70960.27780.062*
C40.0330 (3)0.5545 (3)0.2200 (2)0.0539 (9)
H4A0.03560.60140.17310.065*
H4B0.03830.52010.21440.065*
C90.3713 (3)0.9105 (3)0.4438 (3)0.0583 (10)
H9A0.37800.95920.48950.070*
H9B0.36330.94570.38970.070*
C120.5517 (3)0.6502 (3)0.2967 (3)0.0573 (10)
H12A0.55540.69140.24620.069*
H12B0.61280.60270.29780.069*
C10.4329 (4)0.5300 (4)0.2234 (4)0.0794 (15)
H1C0.49690.48560.22430.095*
H1D0.42900.56640.16980.095*
C20.3278 (4)0.4705 (3)0.2295 (4)0.0794 (15)
H2A0.32390.41850.18660.095*
H2B0.32800.43950.28540.095*
Cl20.75937 (7)0.70425 (7)0.09959 (6)0.0485 (2)
O20.7570 (3)0.6235 (2)0.15986 (19)0.0709 (8)
O10.6613 (3)0.7637 (3)0.1044 (3)0.0979 (12)
O40.7607 (3)0.6624 (3)0.01394 (19)0.0784 (9)
O30.8582 (3)0.7636 (3)0.1177 (2)0.0849 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0687 (3)0.0700 (3)0.0526 (3)0.0157 (2)0.0132 (2)0.02676 (19)
O80.0416 (13)0.0607 (16)0.0458 (13)0.0055 (11)0.0003 (11)0.0053 (11)
N10.0388 (14)0.0358 (14)0.0359 (14)0.0015 (11)0.0058 (11)0.0020 (11)
O90.0502 (14)0.0543 (15)0.0469 (14)0.0092 (11)0.0152 (11)0.0020 (11)
C150.0384 (17)0.0343 (16)0.0393 (17)0.0015 (13)0.0110 (14)0.0005 (13)
C160.052 (2)0.0352 (17)0.0332 (16)0.0051 (14)0.0053 (14)0.0025 (13)
O60.0451 (14)0.0589 (16)0.0627 (16)0.0068 (12)0.0125 (12)0.0091 (13)
O50.0417 (14)0.0535 (15)0.0588 (16)0.0012 (11)0.0066 (12)0.0054 (12)
O70.0568 (16)0.0443 (14)0.0657 (17)0.0002 (12)0.0081 (13)0.0090 (12)
O100.0548 (15)0.0390 (13)0.0585 (16)0.0048 (11)0.0074 (12)0.0054 (11)
C130.0372 (16)0.0302 (15)0.0326 (15)0.0003 (12)0.0049 (13)0.0004 (12)
C170.0337 (17)0.053 (2)0.050 (2)0.0103 (15)0.0032 (15)0.0062 (16)
C180.0326 (17)0.0468 (19)0.0459 (18)0.0020 (14)0.0089 (14)0.0067 (15)
C140.0338 (17)0.0399 (18)0.0461 (18)0.0050 (14)0.0054 (14)0.0034 (14)
C110.0356 (19)0.056 (2)0.072 (3)0.0006 (16)0.0029 (18)0.019 (2)
C60.044 (2)0.064 (2)0.056 (2)0.0041 (17)0.0191 (17)0.0041 (18)
C100.053 (2)0.050 (2)0.073 (3)0.0102 (18)0.016 (2)0.007 (2)
C70.065 (3)0.059 (2)0.047 (2)0.0005 (19)0.0175 (18)0.0075 (17)
C190.047 (2)0.061 (2)0.068 (3)0.0070 (18)0.0247 (19)0.015 (2)
C80.066 (3)0.051 (2)0.058 (2)0.0028 (19)0.0092 (19)0.0115 (18)
C30.072 (3)0.046 (2)0.062 (3)0.0129 (19)0.003 (2)0.0103 (18)
C50.0389 (19)0.057 (2)0.059 (2)0.0073 (17)0.0030 (17)0.0075 (18)
C40.059 (2)0.058 (2)0.045 (2)0.0166 (19)0.0031 (17)0.0041 (17)
C90.056 (2)0.045 (2)0.073 (3)0.0110 (18)0.004 (2)0.0066 (18)
C120.0360 (19)0.073 (3)0.064 (2)0.0088 (18)0.0142 (17)0.013 (2)
C10.065 (3)0.084 (3)0.091 (4)0.021 (2)0.015 (3)0.035 (3)
C20.080 (3)0.051 (3)0.107 (4)0.008 (2)0.003 (3)0.032 (3)
Cl20.0381 (4)0.0543 (5)0.0526 (5)0.0011 (4)0.0005 (4)0.0077 (4)
O20.075 (2)0.0661 (19)0.0713 (19)0.0057 (15)0.0047 (15)0.0206 (15)
O10.074 (2)0.105 (3)0.114 (3)0.043 (2)0.002 (2)0.002 (2)
O40.080 (2)0.101 (3)0.0551 (18)0.0078 (19)0.0068 (15)0.0074 (16)
O30.074 (2)0.097 (2)0.081 (2)0.0366 (19)0.0162 (17)0.0177 (18)
Geometric parameters (Å, º) top
Br1—C161.921 (3)C6—H6B0.9700
O8—C41.440 (4)C10—C91.503 (5)
O8—C51.448 (4)C10—H10A0.9700
N1—C131.476 (4)C10—H10B0.9700
N1—H1A0.8900C7—C81.507 (5)
N1—H1B0.8900C7—H7A0.9700
N1—H1E0.8900C7—H7B0.9700
O9—C71.430 (4)C19—H19A0.9600
O9—C61.437 (4)C19—H19B0.9600
C15—C141.396 (4)C19—H19C0.9600
C15—C161.397 (4)C8—H8A0.9700
C15—C191.523 (4)C8—H8B0.9700
C16—C171.393 (5)C3—C41.497 (6)
O6—C11.435 (5)C3—H3A0.9700
O6—C121.440 (4)C3—H3B0.9700
O5—C101.437 (5)C5—H5A0.9700
O5—C111.442 (4)C5—H5B0.9700
O7—C21.445 (5)C4—H4A0.9700
O7—C31.451 (5)C4—H4B0.9700
O10—C91.432 (4)C9—H9A0.9700
O10—C81.440 (4)C9—H9B0.9700
C13—C181.390 (4)C12—H12A0.9700
C13—C141.394 (4)C12—H12B0.9700
C17—C181.393 (4)C1—C21.498 (7)
C17—H17A0.9300C1—H1C0.9700
C18—H18A0.9300C1—H1D0.9700
C14—H14A0.9300C2—H2A0.9700
C11—C121.493 (6)C2—H2B0.9700
C11—H11A0.9700Cl2—O11.426 (3)
C11—H11B0.9700Cl2—O31.439 (3)
C6—C51.503 (5)Cl2—O21.441 (3)
C6—H6A0.9700Cl2—O41.457 (3)
C4—O8—C5114.1 (3)C15—C19—H19C109.5
C13—N1—H1A109.5H19A—C19—H19C109.5
C13—N1—H1B109.5H19B—C19—H19C109.5
H1A—N1—H1B109.5O10—C8—C7108.7 (3)
C13—N1—H1E109.5O10—C8—H8A110.0
H1A—N1—H1E109.5C7—C8—H8A110.0
H1B—N1—H1E109.5O10—C8—H8B110.0
C7—O9—C6111.6 (3)C7—C8—H8B110.0
C14—C15—C16117.0 (3)H8A—C8—H8B108.3
C14—C15—C19120.6 (3)O7—C3—C4108.9 (3)
C16—C15—C19122.3 (3)O7—C3—H3A109.9
C17—C16—C15122.3 (3)C4—C3—H3A109.9
C17—C16—Br1118.3 (2)O7—C3—H3B109.9
C15—C16—Br1119.4 (2)C4—C3—H3B109.9
C1—O6—C12112.7 (3)H3A—C3—H3B108.3
C10—O5—C11112.5 (3)O8—C5—C6108.5 (3)
C2—O7—C3112.0 (3)O8—C5—H5A110.0
C9—O10—C8112.4 (3)C6—C5—H5A110.0
C18—C13—C14120.5 (3)O8—C5—H5B110.0
C18—C13—N1120.1 (3)C6—C5—H5B110.0
C14—C13—N1119.4 (3)H5A—C5—H5B108.4
C18—C17—C16119.5 (3)O8—C4—C3108.0 (3)
C18—C17—H17A120.2O8—C4—H4A110.1
C16—C17—H17A120.2C3—C4—H4A110.1
C13—C18—C17119.2 (3)O8—C4—H4B110.1
C13—C18—H18A120.4C3—C4—H4B110.1
C17—C18—H18A120.4H4A—C4—H4B108.4
C13—C14—C15121.4 (3)O10—C9—C10108.9 (3)
C13—C14—H14A119.3O10—C9—H9A109.9
C15—C14—H14A119.3C10—C9—H9A109.9
O5—C11—C12109.2 (3)O10—C9—H9B109.9
O5—C11—H11A109.8C10—C9—H9B109.9
C12—C11—H11A109.8H9A—C9—H9B108.3
O5—C11—H11B109.8O6—C12—C11109.1 (3)
C12—C11—H11B109.8O6—C12—H12A109.9
H11A—C11—H11B108.3C11—C12—H12A109.9
O9—C6—C5109.3 (3)O6—C12—H12B109.9
O9—C6—H6A109.8C11—C12—H12B109.9
C5—C6—H6A109.8H12A—C12—H12B108.3
O9—C6—H6B109.8O6—C1—C2109.9 (4)
C5—C6—H6B109.8O6—C1—H1C109.7
H6A—C6—H6B108.3C2—C1—H1C109.7
O5—C10—C9109.7 (3)O6—C1—H1D109.7
O5—C10—H10A109.7C2—C1—H1D109.7
C9—C10—H10A109.7H1C—C1—H1D108.2
O5—C10—H10B109.7O7—C2—C1109.3 (4)
C9—C10—H10B109.7O7—C2—H2A109.8
H10A—C10—H10B108.2C1—C2—H2A109.8
O9—C7—C8108.5 (3)O7—C2—H2B109.8
O9—C7—H7A110.0C1—C2—H2B109.8
C8—C7—H7A110.0H2A—C2—H2B108.3
O9—C7—H7B110.0O1—Cl2—O3110.3 (2)
C8—C7—H7B110.0O1—Cl2—O2109.5 (2)
H7A—C7—H7B108.4O3—Cl2—O2110.04 (19)
C15—C19—H19A109.5O1—Cl2—O4109.1 (2)
C15—C19—H19B109.5O3—Cl2—O4109.5 (2)
H19A—C19—H19B109.5O2—Cl2—O4108.4 (2)
C14—C15—C16—C170.6 (5)C6—O9—C7—C8174.6 (3)
C19—C15—C16—C17179.8 (3)C9—O10—C8—C7178.6 (3)
C14—C15—C16—Br1177.5 (2)O9—C7—C8—O1067.0 (4)
C19—C15—C16—Br12.1 (4)C2—O7—C3—C4169.7 (4)
C15—C16—C17—C180.7 (5)C4—O8—C5—C6180.0 (3)
Br1—C16—C17—C18177.4 (3)O9—C6—C5—O866.3 (4)
C14—C13—C18—C170.5 (5)C5—O8—C4—C3164.9 (3)
N1—C13—C18—C17179.1 (3)O7—C3—C4—O866.0 (4)
C16—C17—C18—C130.2 (5)C8—O10—C9—C10169.2 (3)
C18—C13—C14—C150.6 (5)O5—C10—C9—O1068.3 (4)
N1—C13—C14—C15178.9 (3)C1—O6—C12—C11175.7 (4)
C16—C15—C14—C130.1 (5)O5—C11—C12—O660.0 (4)
C19—C15—C14—C13179.6 (3)C12—O6—C1—C2173.7 (4)
C10—O5—C11—C12178.1 (3)C3—O7—C2—C1177.2 (4)
C7—O9—C6—C5180.0 (3)O6—C1—C2—O767.1 (5)
C11—O5—C10—C9174.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.892.192.955 (4)144
N1—H1E···O60.892.292.970 (4)133
N1—H1E···O70.892.122.893 (4)145
N1—H1A···O80.892.222.905 (4)134
N1—H1A···O90.892.192.966 (4)145
N1—H1B···O100.892.222.912 (4)134

Experimental details

Crystal data
Chemical formulaC7H9BrN+·ClO4·C12H24O6
Mr550.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.967 (2), 13.446 (3), 15.677 (3)
β (°) 94.05 (3)
V3)2516.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.530, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
25007, 5665, 4005
Rint0.066
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.157, 1.09
No. of reflections5665
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.98

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.892.192.955 (4)144
N1—H1E···O60.892.292.970 (4)133
N1—H1E···O70.892.122.893 (4)145
N1—H1A···O80.892.222.905 (4)134
N1—H1A···O90.892.192.966 (4)145
N1—H1B···O100.892.222.912 (4)134
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationAkutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175–186.  CSD CrossRef CAS Google Scholar
First citationFu, D. W., Song, Y. M., Wang, G. X., Ye, Q., Xiong, R. G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGe, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGe, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, M. & Zhao, M. M. (2010). Acta Cryst. E66, o2836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, M. M. (2010). Acta Cryst. E66, o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188–m190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215–m217.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds