organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monocrotophos: di­methyl (E)-1-methyl-2-(methyl­carbamo­yl)ethenyl phosphate

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: jekim@gnu.ac.kr, thkim@gnu.ac.kr

(Received 26 January 2011; accepted 31 January 2011; online 9 February 2011)

In the title compound, C7H14NO5P, the phosphate group displays rotational disorder of three O atoms with an occupancy ratio of 0.832 (6):0.167 (6). The dihedral angle between the acryl­amide group and PO2 plane of the phosphate group is 75.69 (7)°. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the molecules.

Related literature

For the toxicity and insecticidal properties of the title compound, see: Dureja (1989[Dureja, P. (1989). Bull. Environ. Contam. Toxicol. 43, 239-245.]); Chakravarthi et al. (2007[Chakravarthi, B. K., Naravaneni, R., Philip, G. H. & Redddy, C. S. (2007). Afr. J. Biotechnol. 8, 2042-2046.]). For related structures, see: Osman & El-Samahy (2007[Osman, F. H. & El-Samahy, F. A. (2007). Monatsh. Chem. 138, 973-978.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14NO5P

  • Mr = 223.16

  • Monoclinic, P 21 /n

  • a = 10.0498 (2) Å

  • b = 11.3501 (2) Å

  • c = 10.4587 (2) Å

  • β = 115.377 (1)°

  • V = 1077.87 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.35 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.940

  • 17626 measured reflections

  • 2673 independent reflections

  • 2411 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.08

  • 2673 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 2.03 2.902 (2) 169
C4—H4B⋯O2ii 0.98 2.43 3.319 (2) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Monocrotophos (systematic name: dimethyl (E)-1-methyl-2- (methylcarbamoyl)vinyl phosphate), is a kind of insecticide with a wide range of insects and mites (Dureja, 1989; Chakravarthi et al., 2007). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the phosphate group displays rotational disorder with occupancies of 0.832 (6):0.167 (6). The dihedral angle between the acrylamide group and PO2 planes (P1/O1/O2) of the phosphate group is 75.69 (7)°. All bond lengths and bond angles are normal and comparable to those observed in similar structures (Osman & El-Samahy, 2007).

In the crystal structure, as shown in Fig. 2, weak intermolecular N—H···O and C—H···O hydrogen bonds are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing.

Related literature top

For the toxicity and insecticidal property properties of the title compound, see: Dureja (1989); Chakravarthi et al. (2007). For related structures, see: Osman & El-Samahy (2007).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

During refinement, atoms O1, O2 and O3 of the phosphate group are disordered and were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.832 (6) and 0.167 (6)]. All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(N) for NH, d(C—H) = 0.98 Å, Uiso = 1.2Ueq(C) for CH and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008 and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme: the major part is drawn with solid lines, the minor one with open lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular N—H···O and C—H···O interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) x - 1/2, -y + 1/2, z - 1/2; (iii) x + 1, y, z + 1; (iv) -x + 1.5, y + 1/2, -z + 1/2; (v) -x + 1, -y + 1, -z; (vi) -x + 2, -y + 1, -z + 1; (vii) -x + 2.5, y + 1/2, -z + 1.5.)
(2E)-3-[(dimethoxyphosphoryl)oxy]-N-methylbut-2-enamide top
Crystal data top
C7H14NO5PF(000) = 472
Mr = 223.16Dx = 1.375 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9925 reflections
a = 10.0498 (2) Åθ = 2.4–28.3°
b = 11.3501 (2) ŵ = 0.25 mm1
c = 10.4587 (2) ÅT = 173 K
β = 115.377 (1)°Block, colourless
V = 1077.87 (4) Å30.35 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2673 independent reflections
Radiation source: fine-focus sealed tube2411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.917, Tmax = 0.940k = 1515
17626 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.3928P]
where P = (Fo2 + 2Fc2)/3
2673 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H14NO5PV = 1077.87 (4) Å3
Mr = 223.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0498 (2) ŵ = 0.25 mm1
b = 11.3501 (2) ÅT = 173 K
c = 10.4587 (2) Å0.35 × 0.35 × 0.25 mm
β = 115.377 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2411 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.940Rint = 0.032
17626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
2673 reflectionsΔρmin = 0.38 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.72597 (4)0.12670 (3)0.30753 (4)0.02990 (14)
O10.87089 (17)0.17794 (17)0.35222 (16)0.0442 (4)0.833 (2)
O20.60357 (16)0.22189 (12)0.25429 (17)0.0421 (4)0.833 (2)
O30.69477 (16)0.05711 (13)0.41970 (14)0.0404 (4)0.833 (2)
O1'0.8042 (9)0.2366 (7)0.2975 (8)0.0385 (17)0.167 (2)
O2'0.5877 (7)0.1471 (7)0.3323 (7)0.0414 (18)0.167 (2)
O3'0.8319 (8)0.0599 (7)0.4465 (7)0.0446 (19)0.167 (2)
O40.68546 (12)0.03323 (9)0.18490 (11)0.0319 (2)
O50.75176 (15)0.08602 (13)0.19560 (13)0.0486 (3)
N10.55391 (16)0.20368 (14)0.26018 (15)0.0423 (3)
H1N0.48830.23570.23600.051*
C10.44938 (19)0.19657 (18)0.2069 (2)0.0494 (4)
H1A0.39290.27000.17870.074*0.833 (2)
H1B0.43350.15970.28400.074*0.833 (2)
H1C0.41680.14280.12590.074*0.833 (2)
H1D0.36920.20540.23590.074*0.167 (2)
H1E0.41890.14210.12670.074*0.167 (2)
H1F0.47260.27350.17900.074*0.167 (2)
C20.7899 (3)0.0384 (2)0.4980 (2)0.0655 (6)
H2A0.75420.07150.56410.098*0.833 (2)
H2B0.89040.00870.55100.098*0.833 (2)
H2C0.78980.09980.43210.098*0.833 (2)
H2D0.87300.06600.58400.098*0.167 (2)
H2E0.75970.10090.42650.098*0.167 (2)
H2F0.70730.01810.52010.098*0.167 (2)
C30.72637 (16)0.04930 (12)0.07257 (14)0.0284 (3)
C40.86253 (19)0.01539 (16)0.09550 (19)0.0442 (4)
H4A0.88630.00200.01510.066*
H4B0.84770.09980.10410.066*
H4C0.94380.01280.18250.066*
C50.63716 (16)0.11200 (13)0.03706 (15)0.0298 (3)
H5A0.55460.14780.03100.036*
C60.65555 (17)0.13105 (13)0.16923 (16)0.0324 (3)
C70.5494 (3)0.2307 (3)0.3968 (2)0.0675 (7)
H7A0.46820.28540.44720.101*
H7B0.53410.15800.45180.101*
H7C0.64270.26700.38410.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0279 (2)0.0352 (2)0.0273 (2)0.00341 (13)0.01246 (16)0.00360 (13)
O10.0347 (8)0.0594 (11)0.0381 (8)0.0165 (8)0.0151 (6)0.0108 (7)
O20.0392 (8)0.0322 (7)0.0528 (8)0.0013 (5)0.0176 (6)0.0072 (6)
O30.0375 (8)0.0562 (9)0.0320 (7)0.0005 (6)0.0194 (6)0.0036 (6)
O1'0.045 (4)0.034 (4)0.044 (4)0.014 (3)0.027 (4)0.011 (3)
O2'0.027 (3)0.062 (4)0.039 (4)0.006 (3)0.019 (3)0.006 (3)
O3'0.038 (4)0.053 (4)0.031 (3)0.004 (3)0.004 (3)0.005 (3)
O40.0373 (6)0.0325 (5)0.0290 (5)0.0056 (4)0.0172 (4)0.0023 (4)
O50.0465 (7)0.0676 (8)0.0418 (7)0.0217 (6)0.0284 (6)0.0121 (6)
N10.0413 (7)0.0568 (8)0.0342 (7)0.0167 (6)0.0214 (6)0.0118 (6)
C10.0347 (8)0.0538 (10)0.0550 (11)0.0079 (7)0.0149 (7)0.0083 (8)
C20.0593 (13)0.0810 (15)0.0554 (12)0.0133 (11)0.0237 (10)0.0319 (11)
C30.0318 (7)0.0271 (6)0.0287 (6)0.0031 (5)0.0152 (5)0.0037 (5)
C40.0429 (9)0.0498 (9)0.0429 (9)0.0172 (7)0.0214 (7)0.0102 (7)
C50.0287 (7)0.0333 (7)0.0305 (7)0.0020 (5)0.0156 (6)0.0014 (5)
C60.0318 (7)0.0369 (7)0.0298 (7)0.0020 (5)0.0147 (6)0.0005 (5)
C70.0618 (13)0.1063 (19)0.0439 (10)0.0368 (13)0.0317 (10)0.0331 (11)
Geometric parameters (Å, º) top
P1—O11.4472 (14)C1—H1D0.9800
P1—O1'1.501 (7)C1—H1E0.9800
P1—O2'1.536 (6)C1—H1F0.9800
P1—O21.5503 (14)C2—H2A0.9800
P1—O31.5536 (13)C2—H2B0.9800
P1—O41.5775 (11)C2—H2C0.9800
P1—O3'1.580 (7)C2—H2D0.9800
O2—C11.439 (2)C2—H2E0.9800
O3—C21.446 (2)C2—H2F0.9800
O2'—C11.551 (7)C3—C51.321 (2)
O3'—C21.382 (8)C3—C41.479 (2)
O4—C31.4130 (16)C4—H4A0.9800
O5—C61.2250 (19)C4—H4B0.9800
N1—C61.340 (2)C4—H4C0.9800
N1—C71.442 (2)C5—C61.487 (2)
N1—H1N0.8800C5—H5A0.9500
C1—H1A0.9800C7—H7A0.9800
C1—H1B0.9800C7—H7B0.9800
C1—H1C0.9800C7—H7C0.9800
O1—P1—O1'37.3 (3)H1B—C1—H1F140.3
O1—P1—O2'138.0 (3)H1C—C1—H1F109.3
O1'—P1—O2'115.2 (4)H1D—C1—H1F109.5
O1—P1—O2111.70 (10)H1E—C1—H1F109.5
O1'—P1—O275.8 (3)O3'—C2—O354.0 (3)
O2'—P1—O247.1 (3)O3'—C2—H2A148.2
O1—P1—O3117.47 (9)O3—C2—H2A109.5
O1'—P1—O3139.1 (3)O3'—C2—H2B61.9
O2'—P1—O357.3 (3)O3—C2—H2B109.5
O2—P1—O3103.86 (8)H2A—C2—H2B109.5
O1—P1—O4113.96 (8)O3'—C2—H2C102.0
O1'—P1—O4117.5 (3)O3—C2—H2C109.5
O2'—P1—O4107.5 (3)H2A—C2—H2C109.5
O2—P1—O4106.74 (7)H2B—C2—H2C109.5
O3—P1—O4101.93 (7)O3'—C2—H2D109.5
O1—P1—O3'73.0 (3)O3—C2—H2D148.9
O1'—P1—O3'107.2 (4)H2A—C2—H2D69.9
O2'—P1—O3'102.6 (4)H2B—C2—H2D47.5
O2—P1—O3'141.6 (3)H2C—C2—H2D99.4
O3—P1—O3'48.4 (3)O3'—C2—H2E109.5
O4—P1—O3'105.2 (3)O3—C2—H2E101.3
C1—O2—P1123.79 (13)H2A—C2—H2E100.0
C2—O3—P1120.71 (13)H2B—C2—H2E126.0
P1—O2'—C1117.4 (5)H2C—C2—H2E16.6
C2—O3'—P1123.3 (5)H2D—C2—H2E109.5
C3—O4—P1121.57 (9)O3'—C2—H2F109.5
C6—N1—C7121.65 (15)O3—C2—H2F62.3
C6—N1—H1N119.2H2A—C2—H2F47.2
C7—N1—H1N119.2H2B—C2—H2F123.9
O2—C1—O2'48.6 (3)H2C—C2—H2F126.0
O2—C1—H1A109.5H2D—C2—H2F109.5
O2'—C1—H1A139.2H2E—C2—H2F109.5
O2—C1—H1B109.5C5—C3—O4117.41 (13)
O2'—C1—H1B63.5C5—C3—C4130.16 (14)
H1A—C1—H1B109.5O4—C3—C4112.32 (12)
O2—C1—H1C109.5C3—C4—H4A109.5
O2'—C1—H1C110.6C3—C4—H4B109.5
H1A—C1—H1C109.5H4A—C4—H4B109.5
H1B—C1—H1C109.5C3—C4—H4C109.5
O2—C1—H1D141.2H4A—C4—H4C109.5
O2'—C1—H1D109.5H4B—C4—H4C109.5
H1A—C1—H1D63.8C3—C5—C6125.23 (13)
H1B—C1—H1D49.0C3—C5—H5A117.4
H1C—C1—H1D108.5C6—C5—H5A117.4
O2—C1—H1E108.4O5—C6—N1122.15 (15)
O2'—C1—H1E109.5O5—C6—C5124.98 (14)
H1A—C1—H1E110.5N1—C6—C5112.87 (13)
H1B—C1—H1E109.5N1—C7—H7A109.5
H1C—C1—H1E1.2N1—C7—H7B109.5
H1D—C1—H1E109.5H7A—C7—H7B109.5
O2—C1—H1F64.3N1—C7—H7C109.5
O2'—C1—H1F109.5H7A—C7—H7C109.5
H1A—C1—H1F48.2H7B—C7—H7C109.5
O1—P1—O2—C1178.29 (15)O2—P1—O3'—C284.0 (7)
O1'—P1—O2—C1171.5 (3)O3—P1—O3'—C231.1 (4)
O2'—P1—O2—C142.1 (4)O4—P1—O3'—C261.4 (6)
O3—P1—O2—C150.73 (17)O1—P1—O4—C338.76 (15)
O4—P1—O2—C156.53 (16)O1'—P1—O4—C32.6 (4)
O3'—P1—O2—C188.6 (5)O2'—P1—O4—C3134.5 (3)
O1—P1—O3—C254.1 (2)O2—P1—O4—C385.04 (12)
O1'—P1—O3—C293.8 (5)O3—P1—O4—C3166.34 (11)
O2'—P1—O3—C2174.5 (4)O3'—P1—O4—C3116.6 (3)
O2—P1—O3—C2178.02 (16)P1—O2—C1—O2'40.5 (4)
O4—P1—O3—C271.16 (17)P1—O2'—C1—O237.8 (3)
O3'—P1—O3—C228.7 (4)P1—O3'—C2—O330.9 (4)
O1—P1—O2'—C1109.6 (5)P1—O3—C2—O3'30.5 (4)
O1'—P1—O2'—C171.9 (6)P1—O4—C3—C585.84 (15)
O2—P1—O2'—C135.6 (3)P1—O4—C3—C497.63 (14)
O3—P1—O2'—C1154.4 (7)O4—C3—C5—C6175.23 (13)
O4—P1—O2'—C161.2 (6)C4—C3—C5—C60.6 (3)
O3'—P1—O2'—C1171.9 (5)C7—N1—C6—O51.7 (3)
O1—P1—O3'—C2172.4 (7)C7—N1—C6—C5177.96 (19)
O1'—P1—O3'—C2172.7 (6)C3—C5—C6—O53.9 (3)
O2'—P1—O3'—C251.0 (7)C3—C5—C6—N1176.46 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.032.902 (2)169
C4—H4B···O2ii0.982.433.319 (2)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H14NO5P
Mr223.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.0498 (2), 11.3501 (2), 10.4587 (2)
β (°) 115.377 (1)
V3)1077.87 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.35 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.917, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
17626, 2673, 2411
Rint0.032
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.08
No. of reflections2673
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.032.902 (2)169
C4—H4B···O2ii0.982.433.319 (2)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0009089).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravarthi, B. K., Naravaneni, R., Philip, G. H. & Redddy, C. S. (2007). Afr. J. Biotechnol. 8, 2042–2046.  Google Scholar
First citationDureja, P. (1989). Bull. Environ. Contam. Toxicol. 43, 239–245.  CrossRef CAS PubMed Google Scholar
First citationOsman, F. H. & El-Samahy, F. A. (2007). Monatsh. Chem. 138, 973–978.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds