organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[(E)-(4-chloro­phen­yl)imino­meth­yl]phenol

aIslamic Azad University, Ardakan Branch, Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, rkia@srbiau.ac.ir, dmntahir_uos@yahoo.com

(Received 1 February 2011; accepted 6 February 2011; online 12 February 2011)

In the title compound, C13H9BrClNO, the dihedral angle between the substituted benzene rings is 43.90 (11)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The crystal structure features short intemolecular Br⋯Br [3.554 (2) Å] and Cl⋯Cl [3.412 (2) Å] contacts. The crystal packing is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrClNO

  • Mr = 310.57

  • Monoclinic, P 21 /c

  • a = 27.652 (11) Å

  • b = 7.011 (3) Å

  • c = 6.219 (3) Å

  • β = 96.38 (2)°

  • V = 1198.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.363, Tmax = 0.502

  • 5719 measured reflections

  • 2170 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.02

  • 2170 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.594 (3) 147
C9—H9⋯O1i 0.93 2.60 3.459 (4) 154
C10—H10⋯Cg1ii 0.93 2.77 3.474 (3) 134
C13—H13⋯Cg1iii 0.03 2.80 3.501 (3) 133
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of Schiff bases, we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the substituted benzene rings is 43.90 (11)Å. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The remarkable features of the crystal structure is the intemolecular Br···Br [3.554 (2)Å] and Cl···Cl [3.412 (2)Å] contacts which are shorter than the sum of the van der Waals radii of these atoms (Bondi 1964). The crystal packing is further stabilized by the intermolecular C—H···O hydrogen bond (Table 1) and C—H···π interaction [C10—H10···Cg1ii = 3.474 (3)Å, (ii) X, 3/2 - Y, -1/2 + Z; C13—H13···Cg1iii = 3.501 (3)Å, (iii) X, 1/2 - Y, 1/2 + Z, Cg1 is the centroid of the C1–C6 benzene ring].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi et al. (1964).

Experimental top

The title compound was synthesized by adding 5-bromo-salicylaldehyde (2 mmol) to a solution of p-chloroaniline (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resulting light-yellow solution was filtered. Light-yellow single crystals suitable for X-ray diffraction were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups were located by a rotating model and constrained to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b-axis forming sheets through the intermolecular Br···Br and C—H···O interactions. The intermolecular interactions are shown as dashed lines.
4-Bromo-2-[(E)-(4-chlorophenyl)iminomethyl]phenol top
Crystal data top
C13H9BrClNOF(000) = 616
Mr = 310.57Dx = 1.722 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2520 reflections
a = 27.652 (11) Åθ = 2.5–27.5°
b = 7.011 (3) ŵ = 3.63 mm1
c = 6.219 (3) ÅT = 296 K
β = 96.38 (2)°Prism, light-yellow
V = 1198.2 (8) Å30.35 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2170 independent reflections
Radiation source: fine-focus sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2833
Tmin = 0.363, Tmax = 0.502k = 85
5719 measured reflectionsl = 76
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.3051P]
where P = (Fo2 + 2Fc2)/3
2170 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H9BrClNOV = 1198.2 (8) Å3
Mr = 310.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 27.652 (11) ŵ = 3.63 mm1
b = 7.011 (3) ÅT = 296 K
c = 6.219 (3) Å0.35 × 0.25 × 0.22 mm
β = 96.38 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1718 reflections with I > 2σ(I)
Tmin = 0.363, Tmax = 0.502Rint = 0.026
5719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2170 reflectionsΔρmin = 0.35 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.456428 (11)0.43271 (5)0.67549 (5)0.05153 (14)
Cl10.03796 (3)0.54095 (14)0.23081 (16)0.0684 (3)
O10.27742 (7)0.5674 (3)1.1170 (3)0.0444 (5)
H10.25290.54231.03540.067*
N10.22712 (8)0.4746 (3)0.7551 (3)0.0313 (5)
C10.31315 (10)0.4668 (3)0.7991 (4)0.0289 (6)
C20.31691 (10)0.5350 (3)1.0152 (4)0.0309 (6)
C30.36211 (11)0.5707 (3)1.1235 (4)0.0361 (6)
H30.36470.61661.26460.043*
C40.40322 (11)0.5392 (3)1.0256 (4)0.0363 (6)
H40.43360.56421.10000.044*
C50.39973 (10)0.4695 (3)0.8134 (4)0.0331 (6)
C60.35529 (10)0.4331 (3)0.7031 (4)0.0304 (6)
H60.35320.38550.56280.036*
C70.26674 (10)0.4453 (3)0.6737 (4)0.0311 (6)
H70.26550.40910.52940.037*
C80.18255 (10)0.4827 (3)0.6229 (4)0.0298 (6)
C90.17902 (10)0.5621 (3)0.4151 (4)0.0332 (6)
H90.20690.60330.35780.040*
C100.13425 (11)0.5790 (3)0.2961 (4)0.0365 (6)
H100.13150.63150.15790.044*
C110.09378 (11)0.5175 (4)0.3836 (5)0.0390 (7)
C120.09647 (11)0.4396 (3)0.5890 (5)0.0405 (7)
H120.06850.39870.64550.049*
C130.14112 (10)0.4237 (3)0.7077 (4)0.0334 (6)
H130.14340.37270.84650.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0284 (2)0.0679 (2)0.0599 (2)0.00058 (15)0.01204 (13)0.00234 (15)
Cl10.0355 (5)0.0899 (7)0.0749 (6)0.0049 (5)0.0157 (4)0.0006 (5)
O10.0349 (12)0.0649 (13)0.0343 (10)0.0008 (10)0.0085 (8)0.0095 (9)
N10.0270 (13)0.0334 (11)0.0336 (11)0.0016 (10)0.0041 (9)0.0012 (9)
C10.0319 (16)0.0250 (12)0.0299 (13)0.0014 (11)0.0035 (10)0.0002 (10)
C20.0323 (16)0.0308 (13)0.0305 (13)0.0023 (12)0.0080 (11)0.0014 (11)
C30.0433 (18)0.0353 (14)0.0284 (13)0.0017 (13)0.0015 (11)0.0030 (11)
C40.0323 (17)0.0362 (14)0.0386 (14)0.0030 (12)0.0045 (12)0.0012 (11)
C50.0273 (16)0.0307 (13)0.0417 (14)0.0010 (11)0.0055 (11)0.0044 (11)
C60.0331 (16)0.0297 (13)0.0285 (12)0.0022 (12)0.0034 (10)0.0002 (10)
C70.0343 (16)0.0293 (13)0.0300 (12)0.0008 (11)0.0043 (11)0.0025 (10)
C80.0314 (16)0.0249 (12)0.0336 (13)0.0012 (11)0.0057 (11)0.0015 (10)
C90.0321 (16)0.0346 (14)0.0338 (13)0.0017 (12)0.0083 (11)0.0022 (11)
C100.0381 (18)0.0351 (14)0.0358 (14)0.0041 (12)0.0014 (12)0.0011 (11)
C110.0291 (17)0.0362 (14)0.0502 (16)0.0038 (13)0.0029 (13)0.0057 (13)
C120.0298 (17)0.0396 (15)0.0531 (17)0.0042 (13)0.0095 (13)0.0017 (13)
C130.0308 (16)0.0348 (14)0.0358 (13)0.0013 (12)0.0087 (11)0.0036 (11)
Geometric parameters (Å, º) top
Br1—C51.886 (3)C5—C61.363 (4)
Cl1—C111.728 (3)C6—H60.9300
O1—C21.341 (3)C7—H70.9300
O1—H10.8200C8—C131.377 (4)
N1—C71.273 (3)C8—C91.400 (3)
N1—C81.405 (3)C9—C101.375 (4)
C1—C61.387 (4)C9—H90.9300
C1—C21.420 (3)C10—C111.367 (4)
C1—C71.434 (4)C10—H100.9300
C2—C31.375 (4)C11—C121.384 (4)
C3—C41.366 (4)C12—C131.371 (4)
C3—H30.9300C12—H120.9300
C4—C51.401 (4)C13—H130.9300
C4—H40.9300
C2—O1—H1109.5N1—C7—H7119.2
C7—N1—C8120.8 (2)C1—C7—H7119.2
C6—C1—C2119.2 (2)C13—C8—C9119.8 (3)
C6—C1—C7119.5 (2)C13—C8—N1118.5 (2)
C2—C1—C7121.1 (2)C9—C8—N1121.5 (2)
O1—C2—C3118.8 (2)C10—C9—C8119.8 (3)
O1—C2—C1121.7 (2)C10—C9—H9120.1
C3—C2—C1119.5 (3)C8—C9—H9120.1
C4—C3—C2120.6 (2)C11—C10—C9119.1 (3)
C4—C3—H3119.7C11—C10—H10120.4
C2—C3—H3119.7C9—C10—H10120.4
C3—C4—C5120.2 (3)C10—C11—C12122.0 (3)
C3—C4—H4119.9C10—C11—Cl1118.1 (2)
C5—C4—H4119.9C12—C11—Cl1119.9 (2)
C6—C5—C4120.2 (3)C13—C12—C11118.8 (3)
C6—C5—Br1119.6 (2)C13—C12—H12120.6
C4—C5—Br1120.2 (2)C11—C12—H12120.6
C5—C6—C1120.3 (2)C12—C13—C8120.5 (2)
C5—C6—H6119.8C12—C13—H13119.8
C1—C6—H6119.8C8—C13—H13119.8
N1—C7—C1121.7 (2)
C6—C1—C2—O1179.0 (2)C6—C1—C7—N1180.0 (2)
C7—C1—C2—O15.5 (4)C2—C1—C7—N14.6 (4)
C6—C1—C2—C31.5 (3)C7—N1—C8—C13149.2 (2)
C7—C1—C2—C3173.9 (2)C7—N1—C8—C935.6 (3)
O1—C2—C3—C4179.9 (2)C13—C8—C9—C100.6 (4)
C1—C2—C3—C40.7 (4)N1—C8—C9—C10175.7 (2)
C2—C3—C4—C50.2 (4)C8—C9—C10—C110.0 (4)
C3—C4—C5—C60.2 (4)C9—C10—C11—C120.3 (4)
C3—C4—C5—Br1178.26 (19)C9—C10—C11—Cl1179.82 (19)
C4—C5—C6—C10.7 (4)C10—C11—C12—C130.0 (4)
Br1—C5—C6—C1177.37 (17)Cl1—C11—C12—C13179.53 (19)
C2—C1—C6—C51.6 (4)C11—C12—C13—C80.6 (4)
C7—C1—C6—C5174.0 (2)C9—C8—C13—C120.9 (4)
C8—N1—C7—C1169.8 (2)N1—C8—C13—C12176.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.594 (3)147
C9—H9···O1i0.932.603.459 (4)154
C10—H10···Cg1ii0.932.773.474 (3)134
C13—H13···Cg1iii0.032.803.501 (3)133
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9BrClNO
Mr310.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)27.652 (11), 7.011 (3), 6.219 (3)
β (°) 96.38 (2)
V3)1198.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.63
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.363, 0.502
No. of measured, independent and
observed [I > 2σ(I)] reflections
5719, 2170, 1718
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.02
No. of reflections2170
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.594 (3)147
C9—H9···O1i0.932.603.459 (4)153.8
C10—H10···Cg1ii0.932.773.474 (3)134
C13—H13···Cg1iii0.032.803.501 (3)133
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

AAA thanks the Islamic Azad University, Ardakan Branch, for the research facilities (this paper was extracted from a research project). HK thanks the PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds