organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[(E)-(4-fluoro­phen­yl)imino­meth­yl]phenol

aIslamic Azad University, Ardakan Branch, Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, rkia@srbiau.ac.ir, dmntahir_uos@yahoo.com

(Received 2 February 2011; accepted 6 February 2011; online 12 February 2011)

In the title compound, C13H9BrFNO, the dihedral angle between the substituted benzene rings is 9.00 (11)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrFNO

  • Mr = 294.12

  • Monoclinic, P 21 /n

  • a = 4.4820 (2) Å

  • b = 20.8088 (9) Å

  • c = 12.2189 (5) Å

  • β = 94.570 (2)°

  • V = 1135.97 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.61 mm−1

  • T = 296 K

  • 0.35 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.692

  • 10561 measured reflections

  • 2792 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.02

  • 2792 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.612 (2) 146

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of Schiff bases, we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidenate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the substituted benzene rings is 9.00 (11)Å. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 5-bromo-salicylaldehyde (2 mmol) to a solution of p-fluoroaniline (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resulting light-yellow solution was filtered. Pale-yellow single crystals suitable for X-ray diffraction were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups were located by a rotating model and constrained to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bond is drawn as dashed lines.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the c-axis.
4-Bromo-2-[(E)-(4-fluorophenyl)iminomethyl]phenol top
Crystal data top
C13H9BrFNOF(000) = 584
Mr = 294.12Dx = 1.720 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2520 reflections
a = 4.4820 (2) Åθ = 2.5–28.5°
b = 20.8088 (9) ŵ = 3.61 mm1
c = 12.2189 (5) ÅT = 296 K
β = 94.570 (2)°Prism, pale-yellow
V = 1135.97 (8) Å30.35 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2792 independent reflections
Radiation source: fine-focus sealed tube1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.365, Tmax = 0.692k = 2727
10561 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.1115P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9BrFNOV = 1135.97 (8) Å3
Mr = 294.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4820 (2) ŵ = 3.61 mm1
b = 20.8088 (9) ÅT = 296 K
c = 12.2189 (5) Å0.35 × 0.17 × 0.11 mm
β = 94.570 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1958 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.692Rint = 0.034
10561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
2792 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.14491 (6)0.420695 (13)0.55664 (2)0.06007 (13)
F10.3896 (4)0.01392 (7)0.62967 (14)0.0714 (5)
O10.7822 (4)0.23124 (8)0.89264 (12)0.0502 (4)
H10.65820.20570.86610.075*
N10.4202 (4)0.17993 (8)0.73875 (14)0.0357 (4)
C10.7310 (5)0.26970 (10)0.70681 (16)0.0322 (5)
C20.8605 (5)0.27266 (11)0.81485 (16)0.0356 (5)
C31.0742 (5)0.31885 (11)0.84342 (17)0.0415 (5)
H31.16170.32040.91500.050*
C41.1590 (5)0.36250 (11)0.76728 (18)0.0418 (5)
H41.30190.39360.78730.050*
C51.0300 (5)0.35970 (10)0.66087 (18)0.0377 (5)
C60.8198 (5)0.31402 (10)0.63019 (17)0.0369 (5)
H60.73600.31260.55810.044*
C70.5052 (4)0.22206 (10)0.67230 (17)0.0343 (5)
H70.42120.22240.60020.041*
C80.2060 (4)0.13210 (10)0.70442 (17)0.0332 (5)
C90.1021 (5)0.12019 (11)0.59655 (18)0.0418 (5)
H90.16900.14540.54060.050*
C100.0999 (5)0.07125 (11)0.57144 (19)0.0460 (6)
H100.17020.06330.49900.055*
C110.1946 (5)0.03478 (11)0.6549 (2)0.0445 (6)
C120.0996 (5)0.04499 (12)0.7619 (2)0.0483 (6)
H120.16840.01950.81710.058*
C130.1021 (5)0.09426 (12)0.78670 (19)0.0443 (6)
H130.16870.10210.85950.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0733 (2)0.05159 (18)0.05448 (18)0.01654 (13)0.00037 (13)0.01097 (12)
F10.0782 (11)0.0552 (10)0.0788 (11)0.0331 (9)0.0069 (9)0.0023 (8)
O10.0592 (10)0.0587 (11)0.0313 (8)0.0167 (8)0.0051 (7)0.0033 (8)
N10.0310 (10)0.0401 (11)0.0354 (9)0.0009 (8)0.0014 (7)0.0038 (8)
C10.0303 (11)0.0348 (11)0.0312 (10)0.0019 (9)0.0005 (8)0.0036 (9)
C20.0348 (12)0.0405 (12)0.0315 (11)0.0018 (9)0.0023 (9)0.0039 (9)
C30.0422 (13)0.0505 (14)0.0305 (11)0.0031 (11)0.0043 (9)0.0084 (10)
C40.0393 (13)0.0388 (13)0.0467 (13)0.0048 (10)0.0005 (10)0.0125 (10)
C50.0418 (13)0.0314 (11)0.0402 (12)0.0017 (10)0.0045 (10)0.0001 (9)
C60.0382 (12)0.0387 (12)0.0327 (11)0.0021 (10)0.0036 (9)0.0026 (9)
C70.0326 (11)0.0372 (12)0.0322 (10)0.0025 (9)0.0028 (9)0.0055 (9)
C80.0275 (11)0.0361 (12)0.0357 (11)0.0019 (9)0.0004 (9)0.0001 (9)
C90.0495 (14)0.0409 (13)0.0344 (11)0.0059 (11)0.0005 (10)0.0009 (10)
C100.0517 (15)0.0451 (14)0.0397 (12)0.0089 (11)0.0066 (11)0.0024 (10)
C110.0407 (13)0.0364 (13)0.0554 (14)0.0050 (10)0.0027 (11)0.0008 (11)
C120.0501 (15)0.0462 (15)0.0492 (14)0.0058 (12)0.0068 (11)0.0128 (11)
C130.0425 (13)0.0523 (15)0.0370 (12)0.0029 (11)0.0035 (10)0.0038 (10)
Geometric parameters (Å, º) top
Br1—C51.898 (2)C5—C61.370 (3)
F1—C111.358 (3)C6—H60.9300
O1—C21.350 (2)C7—H70.9300
O1—H10.8176C8—C91.385 (3)
N1—C71.274 (3)C8—C131.387 (3)
N1—C81.423 (3)C9—C101.381 (3)
C1—C61.395 (3)C9—H90.9300
C1—C21.400 (3)C10—C111.366 (3)
C1—C71.455 (3)C10—H100.9300
C2—C31.382 (3)C11—C121.359 (3)
C3—C41.375 (3)C12—C131.384 (3)
C3—H30.9300C12—H120.9300
C4—C51.381 (3)C13—H130.9300
C4—H40.9300
C2—O1—H1110.1N1—C7—H7119.3
C7—N1—C8121.51 (18)C1—C7—H7119.3
C6—C1—C2118.99 (19)C9—C8—C13118.8 (2)
C6—C1—C7119.02 (19)C9—C8—N1125.01 (19)
C2—C1—C7121.99 (19)C13—C8—N1116.18 (18)
O1—C2—C3118.68 (18)C10—C9—C8120.5 (2)
O1—C2—C1121.60 (19)C10—C9—H9119.7
C3—C2—C1119.7 (2)C8—C9—H9119.7
C4—C3—C2120.78 (19)C11—C10—C9118.8 (2)
C4—C3—H3119.6C11—C10—H10120.6
C2—C3—H3119.6C9—C10—H10120.6
C3—C4—C5119.4 (2)F1—C11—C12118.8 (2)
C3—C4—H4120.3F1—C11—C10118.5 (2)
C5—C4—H4120.3C12—C11—C10122.7 (2)
C6—C5—C4120.9 (2)C11—C12—C13118.4 (2)
C6—C5—Br1119.87 (16)C11—C12—H12120.8
C4—C5—Br1119.20 (17)C13—C12—H12120.8
C5—C6—C1120.14 (19)C12—C13—C8120.9 (2)
C5—C6—H6119.9C12—C13—H13119.6
C1—C6—H6119.9C8—C13—H13119.6
N1—C7—C1121.38 (19)
C6—C1—C2—O1179.65 (18)C6—C1—C7—N1178.87 (18)
C7—C1—C2—O10.1 (3)C2—C1—C7—N11.6 (3)
C6—C1—C2—C30.4 (3)C7—N1—C8—C99.7 (3)
C7—C1—C2—C3180.0 (2)C7—N1—C8—C13171.9 (2)
O1—C2—C3—C4179.3 (2)C13—C8—C9—C100.4 (3)
C1—C2—C3—C40.8 (3)N1—C8—C9—C10178.1 (2)
C2—C3—C4—C50.5 (3)C8—C9—C10—C110.2 (4)
C3—C4—C5—C60.2 (3)C9—C10—C11—F1179.0 (2)
C3—C4—C5—Br1179.31 (17)C9—C10—C11—C120.5 (4)
C4—C5—C6—C10.5 (3)F1—C11—C12—C13179.2 (2)
Br1—C5—C6—C1179.00 (15)C10—C11—C12—C130.2 (4)
C2—C1—C6—C50.2 (3)C11—C12—C13—C80.3 (4)
C7—C1—C6—C5179.4 (2)C9—C8—C13—C120.6 (4)
C8—N1—C7—C1178.11 (18)N1—C8—C13—C12177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.612 (2)146

Experimental details

Crystal data
Chemical formulaC13H9BrFNO
Mr294.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.4820 (2), 20.8088 (9), 12.2189 (5)
β (°) 94.570 (2)
V3)1135.97 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.61
Crystal size (mm)0.35 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.365, 0.692
No. of measured, independent and
observed [I > 2σ(I)] reflections
10561, 2792, 1958
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.02
No. of reflections2792
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.612 (2)146
 

Acknowledgements

AAA thanks the Islamic Azad University, Ardakan Branch for the research facilities (this paper was extracted from a research project supported by IAU). RK thanks the Science and Research Branch, Islamic Azad University, Tehran. HK thanks the PNU for financial support. MNT thanks Sargodha University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds