metal-organic compounds
Di-μ2-acetato-diacetato-bis{μ2-3,3′,5,5′-tetramethoxy-2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}tricobalt(II,III) dichloromethane disolvate
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The trinuclear title compound, [Co3(CH3COO)4(C20H22N2O6)2]·2CH2Cl2, contains mixed-valence cobalt ions in the following order CoIII–CoII–CoIII where all the three cobalt ions are hexacoordinated. The central cobalt ion is situated on an inversion centre and is in an all-oxygen environment, coordinated by four phenolate O atoms and two O atoms from bridging acetate groups, while the terminal cobalt ion is hexacoordinated by two phenolate O atoms, two acetate O atoms and two imine N atoms. This complex contains a high-spin central CoII and two terminal low-spin CoIII i.e. CoIII(S = 0)–CoII(S = 3/2)-CoIII(S = 0). There are weak intermolecular C—H⋯O interactions involving the methoxy groups, as well as intermolecular C—H⋯O interactions involving the acetate anions. In addition, the dichoromethane solvate molecules are held in place by weak C—H⋯Cl interactions.
Related literature
For background to to the use of transition metal complexes with et al. (2008); Shi et al. (2007). For the use of transition metal complexes for the development of catalysis, magnetism and molecular architectures, see: Yu et al. (2007); You & Zhu (2004); You & Zhou (2007). For the use of transition metal complexes for optoelectronic and also for photo- and electroluminescence applications, see: Yu et al. (2008). For the potential use of transition metal complexes in the modeling of multisite metalloproteins and in nano-science, see: Chattopadhyay et al. (2006). For the importance of tri-nuclear cobalt Schiff base complexes as catalysts for organic molecules and as antiviral agents due to their ability to interact with proteins and see: Chattopadhyay et al. (2006, 2008); Babushkin & Talsi (1998). For background to metallosalen complexes, see: Dong et al. (2008). For the magnetic properties of quadridentate metal complexes of see: He et al. (2006); Gerli et al. (1991). For the antimicrobial activity of Schiff base ligands and their complexes, see: You et al. (2004).
as potential enzyme inhibitors, see: YouExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811003783/jj2072sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811003783/jj2072Isup2.hkl
The synthesis of the ligand ethylene-bis(2,4-dimethoxy-salicylaldimine) was achieved by adding a solution of (2 g, 33.3 mmol) ethylenediamine in 25 ml s of methanol to the solution of (12.13 g, 66.6 mmol) 2,4-dimethoxysalicylaldehyde in 40 ml s of methanol. The mixture was refluxed overnight while stirring. The reaction mixture was then evaporated under reduced pressure to afford yellow solids.
The synthesis of the complex C50H60Cl4Co3N4O20 was accomplished by adding a solution of (0.38 g, 1 mmol) of ethylene-bis(2,4-dimethoxy-salicylaldimine) in 20 ml dichloromethane to a solution of Co(CH3COO)2.H2O in 5 ml me thanol. The mixture was stirred for 3 h, filtered and layered with di-ethyl ether for crystallization. Crystals suitable for X-ray diffraction were obtained.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. In the final difference Fourier the maximum and minimum electron density of 1.11 and -1.66 e-/Å3 were located 0.93 Å and 0.44 Å from H0A and Cl1 respectively
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Diagram of trinuclear C48H56Co3N4O20 unit showing atom labeling. Thermal ellipsoids are at the 30% probability level. | |
Fig. 2. The molecular packing for C48H56Co3N4O20.2(CH2Cl2) viewed down the b axis. C—H···Cl and C—H···O interactions bonds are shown by dashed lines. |
[Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2 | F(000) = 1394 |
Mr = 1355.61 | Dx = 1.630 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 4463 reflections |
a = 13.9235 (9) Å | θ = 4.4–73.9° |
b = 13.4407 (8) Å | µ = 9.45 mm−1 |
c = 16.0019 (11) Å | T = 110 K |
β = 112.724 (8)° | Thick needle, red-brown |
V = 2762.2 (3) Å3 | 0.42 × 0.25 × 0.18 mm |
Z = 2 |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 5306 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3777 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.2°, θmin = 4.5° |
ω scans | h = −17→13 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −16→13 |
Tmin = 0.320, Tmax = 1.000 | l = −19→18 |
10708 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.083 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.251 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1718P)2 + 2.5393P] where P = (Fo2 + 2Fc2)/3 |
5306 reflections | (Δ/σ)max < 0.001 |
373 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −1.66 e Å−3 |
[Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2 | V = 2762.2 (3) Å3 |
Mr = 1355.61 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 13.9235 (9) Å | µ = 9.45 mm−1 |
b = 13.4407 (8) Å | T = 110 K |
c = 16.0019 (11) Å | 0.42 × 0.25 × 0.18 mm |
β = 112.724 (8)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 5306 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3777 reflections with I > 2σ(I) |
Tmin = 0.320, Tmax = 1.000 | Rint = 0.043 |
10708 measured reflections |
R[F2 > 2σ(F2)] = 0.083 | 0 restraints |
wR(F2) = 0.251 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.11 e Å−3 |
5306 reflections | Δρmin = −1.66 e Å−3 |
373 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.31088 (7) | 0.37441 (7) | 0.38337 (6) | 0.0133 (3) | |
Co2 | 0.5000 | 0.5000 | 0.5000 | 0.0138 (3) | |
Cl1 | −0.1730 (2) | 0.4911 (2) | 0.0248 (2) | 0.0736 (8) | |
Cl2 | −0.2861 (3) | 0.3805 (3) | 0.1142 (2) | 0.0826 (10) | |
O1 | 0.4170 (3) | 0.4463 (3) | 0.3637 (3) | 0.0142 (8) | |
O2 | 0.3510 (3) | 0.4519 (3) | 0.4897 (3) | 0.0176 (9) | |
O3 | 0.5670 (4) | 0.6103 (3) | 0.1809 (3) | 0.0229 (10) | |
O4 | 0.3576 (4) | 0.3258 (4) | 0.0695 (3) | 0.0239 (10) | |
O5 | 0.0593 (4) | 0.3797 (4) | 0.5633 (3) | 0.0276 (11) | |
O6 | 0.2587 (4) | 0.6707 (4) | 0.6799 (3) | 0.0279 (11) | |
O11A | 0.4076 (3) | 0.2697 (3) | 0.4437 (3) | 0.0178 (9) | |
O12A | 0.5482 (3) | 0.3568 (3) | 0.5344 (3) | 0.0182 (9) | |
O21A | 0.2186 (3) | 0.4771 (3) | 0.3178 (3) | 0.0213 (10) | |
O22A | 0.0637 (4) | 0.3991 (4) | 0.2533 (3) | 0.0296 (11) | |
N1 | 0.2737 (4) | 0.2957 (4) | 0.2792 (3) | 0.0154 (10) | |
N2 | 0.2130 (4) | 0.3016 (4) | 0.4107 (3) | 0.0179 (11) | |
C | −0.1698 (10) | 0.3882 (8) | 0.0942 (7) | 0.062 (3) | |
H0A | −0.1096 | 0.3946 | 0.1527 | 0.075* | |
H0B | −0.1608 | 0.3263 | 0.0644 | 0.075* | |
C1 | 0.4274 (4) | 0.4539 (5) | 0.2860 (4) | 0.0146 (12) | |
C2 | 0.4903 (4) | 0.5312 (5) | 0.2754 (4) | 0.0129 (11) | |
H2A | 0.5195 | 0.5790 | 0.3222 | 0.015* | |
C3 | 0.5093 (5) | 0.5373 (5) | 0.1979 (4) | 0.0190 (13) | |
C4 | 0.6125 (5) | 0.6836 (5) | 0.2508 (4) | 0.0265 (15) | |
H4A | 0.6550 | 0.7298 | 0.2323 | 0.040* | |
H4B | 0.6563 | 0.6503 | 0.3072 | 0.040* | |
H4C | 0.5570 | 0.7205 | 0.2607 | 0.040* | |
C5 | 0.4666 (5) | 0.4690 (5) | 0.1259 (4) | 0.0188 (13) | |
H5A | 0.4817 | 0.4740 | 0.0731 | 0.023* | |
C6 | 0.4019 (5) | 0.3940 (5) | 0.1342 (4) | 0.0170 (12) | |
C7 | 0.3851 (7) | 0.3271 (6) | −0.0085 (5) | 0.0353 (18) | |
H7A | 0.3580 | 0.2671 | −0.0448 | 0.053* | |
H7B | 0.4611 | 0.3288 | 0.0114 | 0.053* | |
H7C | 0.3550 | 0.3861 | −0.0452 | 0.053* | |
C8 | 0.3786 (5) | 0.3854 (5) | 0.2132 (4) | 0.0179 (12) | |
C9 | 0.3083 (4) | 0.3071 (5) | 0.2162 (4) | 0.0150 (12) | |
H9A | 0.2861 | 0.2607 | 0.1678 | 0.018* | |
C10 | 0.1969 (5) | 0.2181 (5) | 0.2716 (4) | 0.0210 (13) | |
H10A | 0.2179 | 0.1549 | 0.2518 | 0.025* | |
H10B | 0.1280 | 0.2376 | 0.2261 | 0.025* | |
C11 | 0.1902 (6) | 0.2044 (5) | 0.3629 (5) | 0.0267 (15) | |
H11A | 0.1197 | 0.1814 | 0.3551 | 0.032* | |
H11B | 0.2413 | 0.1538 | 0.3987 | 0.032* | |
C12 | 0.1734 (4) | 0.3272 (5) | 0.4676 (4) | 0.0176 (12) | |
H12A | 0.1235 | 0.2839 | 0.4752 | 0.021* | |
C13 | 0.1990 (5) | 0.4164 (5) | 0.5206 (4) | 0.0181 (13) | |
C14 | 0.1394 (5) | 0.4440 (5) | 0.5709 (4) | 0.0238 (14) | |
C15 | −0.0028 (6) | 0.4037 (6) | 0.6139 (5) | 0.0316 (17) | |
H15A | −0.0562 | 0.3525 | 0.6038 | 0.047* | |
H15B | −0.0363 | 0.4684 | 0.5941 | 0.047* | |
H15C | 0.0417 | 0.4067 | 0.6786 | 0.047* | |
C16 | 0.1603 (5) | 0.5288 (5) | 0.6242 (5) | 0.0231 (14) | |
H16A | 0.1192 | 0.5456 | 0.6577 | 0.028* | |
C17 | 0.2433 (5) | 0.5885 (5) | 0.6274 (4) | 0.0223 (14) | |
C18 | 0.3486 (6) | 0.7310 (6) | 0.6947 (6) | 0.041 (2) | |
H18A | 0.3498 | 0.7866 | 0.7347 | 0.061* | |
H18B | 0.3458 | 0.7570 | 0.6366 | 0.061* | |
H18C | 0.4116 | 0.6907 | 0.7229 | 0.061* | |
C19 | 0.3059 (5) | 0.5648 (5) | 0.5799 (4) | 0.0185 (13) | |
H19A | 0.3616 | 0.6072 | 0.5825 | 0.022* | |
C20 | 0.2851 (4) | 0.4775 (5) | 0.5283 (4) | 0.0178 (13) | |
C11A | 0.5005 (5) | 0.2775 (5) | 0.5022 (4) | 0.0175 (12) | |
C12A | 0.5555 (5) | 0.1810 (5) | 0.5336 (5) | 0.0272 (15) | |
H12B | 0.5189 | 0.1282 | 0.4910 | 0.041* | |
H12C | 0.5569 | 0.1651 | 0.5938 | 0.041* | |
H12D | 0.6270 | 0.1863 | 0.5367 | 0.041* | |
C21A | 0.1218 (5) | 0.4706 (5) | 0.2639 (4) | 0.0210 (13) | |
C22A | 0.0821 (6) | 0.5634 (6) | 0.2093 (5) | 0.0308 (16) | |
H22A | 0.0067 | 0.5580 | 0.1758 | 0.046* | |
H22B | 0.1163 | 0.5717 | 0.1665 | 0.046* | |
H22C | 0.0974 | 0.6210 | 0.2500 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0088 (5) | 0.0168 (5) | 0.0142 (5) | −0.0035 (4) | 0.0043 (3) | −0.0026 (4) |
Co2 | 0.0088 (6) | 0.0186 (7) | 0.0142 (6) | −0.0039 (5) | 0.0046 (5) | −0.0031 (5) |
Cl1 | 0.0671 (18) | 0.0709 (19) | 0.0748 (18) | −0.0053 (15) | 0.0184 (15) | 0.0120 (15) |
Cl2 | 0.087 (2) | 0.093 (2) | 0.075 (2) | −0.0023 (19) | 0.0400 (18) | 0.0040 (18) |
O1 | 0.0090 (19) | 0.020 (2) | 0.0145 (19) | −0.0039 (17) | 0.0058 (15) | −0.0011 (17) |
O2 | 0.0118 (19) | 0.024 (2) | 0.019 (2) | −0.0044 (18) | 0.0085 (16) | −0.0089 (18) |
O3 | 0.023 (2) | 0.022 (2) | 0.027 (2) | −0.0050 (19) | 0.0145 (19) | 0.001 (2) |
O4 | 0.025 (2) | 0.033 (3) | 0.014 (2) | −0.005 (2) | 0.0088 (18) | −0.004 (2) |
O5 | 0.017 (2) | 0.035 (3) | 0.037 (3) | −0.004 (2) | 0.017 (2) | −0.005 (2) |
O6 | 0.023 (2) | 0.031 (3) | 0.034 (3) | 0.004 (2) | 0.016 (2) | −0.010 (2) |
O11A | 0.013 (2) | 0.019 (2) | 0.018 (2) | −0.0029 (17) | 0.0019 (16) | −0.0023 (17) |
O12A | 0.010 (2) | 0.022 (2) | 0.019 (2) | −0.0030 (17) | 0.0019 (16) | −0.0040 (18) |
O21A | 0.014 (2) | 0.023 (2) | 0.024 (2) | 0.0015 (18) | 0.0034 (17) | −0.0020 (19) |
O22A | 0.023 (2) | 0.024 (3) | 0.034 (3) | −0.006 (2) | 0.002 (2) | 0.001 (2) |
N1 | 0.011 (2) | 0.017 (2) | 0.016 (2) | −0.001 (2) | 0.0028 (18) | −0.004 (2) |
N2 | 0.012 (2) | 0.020 (3) | 0.021 (2) | −0.007 (2) | 0.005 (2) | −0.001 (2) |
C | 0.084 (8) | 0.044 (5) | 0.052 (6) | −0.003 (6) | 0.019 (6) | 0.009 (5) |
C1 | 0.007 (2) | 0.017 (3) | 0.016 (3) | 0.003 (2) | 0.001 (2) | 0.000 (2) |
C2 | 0.006 (2) | 0.018 (3) | 0.014 (3) | 0.002 (2) | 0.003 (2) | 0.001 (2) |
C3 | 0.011 (3) | 0.019 (3) | 0.024 (3) | 0.007 (2) | 0.003 (2) | 0.005 (3) |
C4 | 0.025 (3) | 0.033 (4) | 0.023 (3) | −0.015 (3) | 0.012 (3) | −0.002 (3) |
C5 | 0.024 (3) | 0.024 (3) | 0.014 (3) | 0.005 (3) | 0.013 (2) | 0.002 (3) |
C6 | 0.015 (3) | 0.022 (3) | 0.011 (3) | 0.005 (2) | 0.002 (2) | 0.001 (2) |
C7 | 0.046 (5) | 0.042 (5) | 0.024 (3) | −0.009 (4) | 0.020 (3) | −0.012 (3) |
C8 | 0.012 (3) | 0.017 (3) | 0.025 (3) | 0.003 (2) | 0.008 (2) | 0.001 (3) |
C9 | 0.013 (3) | 0.016 (3) | 0.011 (2) | 0.006 (2) | 0.000 (2) | −0.001 (2) |
C10 | 0.019 (3) | 0.020 (3) | 0.027 (3) | −0.008 (3) | 0.011 (3) | −0.008 (3) |
C11 | 0.027 (4) | 0.025 (4) | 0.026 (3) | −0.016 (3) | 0.007 (3) | −0.011 (3) |
C12 | 0.011 (3) | 0.023 (3) | 0.019 (3) | −0.007 (2) | 0.006 (2) | −0.001 (3) |
C13 | 0.011 (3) | 0.027 (3) | 0.015 (3) | 0.003 (2) | 0.004 (2) | 0.004 (3) |
C14 | 0.015 (3) | 0.033 (4) | 0.022 (3) | 0.006 (3) | 0.006 (3) | 0.004 (3) |
C15 | 0.027 (4) | 0.043 (4) | 0.038 (4) | 0.003 (3) | 0.027 (3) | 0.007 (3) |
C16 | 0.014 (3) | 0.029 (4) | 0.031 (3) | 0.008 (3) | 0.014 (3) | 0.000 (3) |
C17 | 0.019 (3) | 0.027 (3) | 0.020 (3) | 0.004 (3) | 0.006 (2) | 0.001 (3) |
C18 | 0.029 (4) | 0.038 (4) | 0.052 (5) | 0.000 (4) | 0.011 (4) | −0.030 (4) |
C19 | 0.012 (3) | 0.019 (3) | 0.024 (3) | 0.005 (2) | 0.006 (2) | −0.001 (3) |
C20 | 0.009 (3) | 0.026 (3) | 0.015 (3) | 0.002 (2) | 0.001 (2) | 0.001 (3) |
C11A | 0.012 (3) | 0.026 (3) | 0.017 (3) | −0.001 (2) | 0.008 (2) | 0.004 (3) |
C12A | 0.022 (3) | 0.027 (4) | 0.024 (3) | −0.002 (3) | −0.001 (3) | −0.004 (3) |
C21A | 0.017 (3) | 0.028 (3) | 0.019 (3) | 0.006 (3) | 0.008 (2) | −0.003 (3) |
C22A | 0.024 (3) | 0.035 (4) | 0.034 (4) | −0.004 (3) | 0.011 (3) | 0.007 (3) |
Co1—N2 | 1.861 (5) | C4—H4B | 0.9800 |
Co1—N1 | 1.871 (5) | C4—H4C | 0.9800 |
Co1—O2 | 1.887 (4) | C5—C6 | 1.391 (9) |
Co1—O1 | 1.891 (4) | C5—H5A | 0.9500 |
Co1—O21A | 1.902 (5) | C6—C8 | 1.425 (9) |
Co1—O11A | 1.929 (4) | C7—H7A | 0.9800 |
Co2—O12Ai | 2.043 (4) | C7—H7B | 0.9800 |
Co2—O12A | 2.043 (4) | C7—H7C | 0.9800 |
Co2—O2i | 2.117 (4) | C8—C9 | 1.451 (8) |
Co2—O2 | 2.117 (4) | C9—H9A | 0.9500 |
Co2—O1 | 2.160 (4) | C10—C11 | 1.511 (9) |
Co2—O1i | 2.160 (4) | C10—H10A | 0.9900 |
Cl1—C | 1.763 (10) | C10—H10B | 0.9900 |
Cl2—C | 1.771 (13) | C11—H11A | 0.9900 |
O1—C1 | 1.310 (7) | C11—H11B | 0.9900 |
O2—C20 | 1.334 (7) | C12—C13 | 1.432 (9) |
O3—C3 | 1.361 (8) | C12—H12A | 0.9500 |
O3—C4 | 1.441 (8) | C13—C14 | 1.411 (9) |
O4—C6 | 1.342 (7) | C13—C20 | 1.418 (9) |
O4—C7 | 1.440 (8) | C14—C16 | 1.385 (10) |
O5—C14 | 1.380 (8) | C15—H15A | 0.9800 |
O5—C15 | 1.431 (8) | C15—H15B | 0.9800 |
O6—C17 | 1.353 (8) | C15—H15C | 0.9800 |
O6—C18 | 1.432 (9) | C16—C17 | 1.393 (9) |
O11A—C11A | 1.275 (7) | C16—H16A | 0.9500 |
O12A—C11A | 1.256 (8) | C17—C19 | 1.397 (9) |
O21A—C21A | 1.293 (8) | C18—H18A | 0.9800 |
O22A—C21A | 1.226 (8) | C18—H18B | 0.9800 |
N1—C9 | 1.282 (8) | C18—H18C | 0.9800 |
N1—C10 | 1.465 (8) | C19—C20 | 1.400 (9) |
N2—C12 | 1.281 (8) | C19—H19A | 0.9500 |
N2—C11 | 1.485 (8) | C11A—C12A | 1.491 (9) |
C—H0A | 0.9900 | C12A—H12B | 0.9800 |
C—H0B | 0.9900 | C12A—H12C | 0.9800 |
C1—C2 | 1.411 (8) | C12A—H12D | 0.9800 |
C1—C8 | 1.433 (8) | C21A—C22A | 1.500 (10) |
C2—C3 | 1.366 (9) | C22A—H22A | 0.9800 |
C2—H2A | 0.9500 | C22A—H22B | 0.9800 |
C3—C5 | 1.412 (9) | C22A—H22C | 0.9800 |
C4—H4A | 0.9800 | ||
N2—Co1—N1 | 86.4 (2) | O4—C7—H7A | 109.5 |
N2—Co1—O2 | 93.9 (2) | O4—C7—H7B | 109.5 |
N1—Co1—O2 | 178.7 (2) | H7A—C7—H7B | 109.5 |
N2—Co1—O1 | 176.1 (2) | O4—C7—H7C | 109.5 |
N1—Co1—O1 | 96.1 (2) | H7A—C7—H7C | 109.5 |
O2—Co1—O1 | 83.65 (18) | H7B—C7—H7C | 109.5 |
N2—Co1—O21A | 96.4 (2) | C6—C8—C1 | 118.0 (6) |
N1—Co1—O21A | 91.4 (2) | C6—C8—C9 | 118.4 (6) |
O2—Co1—O21A | 89.90 (19) | C1—C8—C9 | 123.5 (6) |
O1—Co1—O21A | 86.66 (19) | N1—C9—C8 | 125.2 (6) |
N2—Co1—O11A | 86.1 (2) | N1—C9—H9A | 117.4 |
N1—Co1—O11A | 86.2 (2) | C8—C9—H9A | 117.4 |
O2—Co1—O11A | 92.57 (18) | N1—C10—C11 | 108.8 (5) |
O1—Co1—O11A | 90.98 (18) | N1—C10—H10A | 109.9 |
O21A—Co1—O11A | 176.38 (19) | C11—C10—H10A | 109.9 |
O12Ai—Co2—O12A | 180.000 (1) | N1—C10—H10B | 109.9 |
O12Ai—Co2—O2i | 86.78 (17) | C11—C10—H10B | 109.9 |
O12A—Co2—O2i | 93.22 (17) | H10A—C10—H10B | 108.3 |
O12Ai—Co2—O2 | 93.22 (17) | N2—C11—C10 | 108.0 (5) |
O12A—Co2—O2 | 86.78 (17) | N2—C11—H11A | 110.1 |
O2i—Co2—O2 | 180.0 | C10—C11—H11A | 110.1 |
O12Ai—Co2—O1 | 92.92 (16) | N2—C11—H11B | 110.1 |
O12A—Co2—O1 | 87.08 (16) | C10—C11—H11B | 110.1 |
O2i—Co2—O1 | 107.85 (15) | H11A—C11—H11B | 108.4 |
O2—Co2—O1 | 72.15 (15) | N2—C12—C13 | 124.7 (6) |
O12Ai—Co2—O1i | 87.08 (16) | N2—C12—H12A | 117.7 |
O12A—Co2—O1i | 92.92 (16) | C13—C12—H12A | 117.7 |
O2i—Co2—O1i | 72.15 (15) | C14—C13—C20 | 117.5 (6) |
O2—Co2—O1i | 107.85 (15) | C14—C13—C12 | 119.5 (6) |
O1—Co2—O1i | 180.000 (1) | C20—C13—C12 | 123.0 (5) |
C1—O1—Co1 | 125.3 (4) | O5—C14—C16 | 122.7 (6) |
C1—O1—Co2 | 136.1 (4) | O5—C14—C13 | 114.7 (6) |
Co1—O1—Co2 | 98.66 (17) | C16—C14—C13 | 122.6 (6) |
C20—O2—Co1 | 122.9 (4) | O5—C15—H15A | 109.5 |
C20—O2—Co2 | 135.6 (4) | O5—C15—H15B | 109.5 |
Co1—O2—Co2 | 100.29 (18) | H15A—C15—H15B | 109.5 |
C3—O3—C4 | 117.0 (5) | O5—C15—H15C | 109.5 |
C6—O4—C7 | 117.7 (5) | H15A—C15—H15C | 109.5 |
C14—O5—C15 | 116.9 (6) | H15B—C15—H15C | 109.5 |
C17—O6—C18 | 118.9 (5) | C14—C16—C17 | 118.1 (6) |
C11A—O11A—Co1 | 128.5 (4) | C14—C16—H16A | 121.0 |
C11A—O12A—Co2 | 128.5 (4) | C17—C16—H16A | 121.0 |
C21A—O21A—Co1 | 128.8 (4) | O6—C17—C16 | 115.1 (6) |
C9—N1—C10 | 120.3 (5) | O6—C17—C19 | 122.8 (6) |
C9—N1—Co1 | 125.0 (4) | C16—C17—C19 | 122.2 (6) |
C10—N1—Co1 | 114.7 (4) | O6—C18—H18A | 109.5 |
C12—N2—C11 | 122.4 (5) | O6—C18—H18B | 109.5 |
C12—N2—Co1 | 125.5 (4) | H18A—C18—H18B | 109.5 |
C11—N2—Co1 | 111.9 (4) | O6—C18—H18C | 109.5 |
Cl1—C—Cl2 | 110.9 (7) | H18A—C18—H18C | 109.5 |
Cl1—C—H0A | 109.5 | H18B—C18—H18C | 109.5 |
Cl2—C—H0A | 109.5 | C17—C19—C20 | 118.8 (6) |
Cl1—C—H0B | 109.5 | C17—C19—H19A | 120.6 |
Cl2—C—H0B | 109.5 | C20—C19—H19A | 120.6 |
H0A—C—H0B | 108.0 | O2—C20—C19 | 117.8 (5) |
O1—C1—C2 | 118.2 (5) | O2—C20—C13 | 121.3 (6) |
O1—C1—C8 | 122.0 (5) | C19—C20—C13 | 120.9 (6) |
C2—C1—C8 | 119.8 (5) | O12A—C11A—O11A | 126.6 (6) |
C3—C2—C1 | 119.9 (6) | O12A—C11A—C12A | 118.5 (5) |
C3—C2—H2A | 120.0 | O11A—C11A—C12A | 114.9 (6) |
C1—C2—H2A | 120.0 | C11A—C12A—H12B | 109.5 |
O3—C3—C2 | 124.1 (6) | C11A—C12A—H12C | 109.5 |
O3—C3—C5 | 113.6 (6) | H12B—C12A—H12C | 109.5 |
C2—C3—C5 | 122.3 (6) | C11A—C12A—H12D | 109.5 |
O3—C4—H4A | 109.5 | H12B—C12A—H12D | 109.5 |
O3—C4—H4B | 109.5 | H12C—C12A—H12D | 109.5 |
H4A—C4—H4B | 109.5 | O22A—C21A—O21A | 127.5 (6) |
O3—C4—H4C | 109.5 | O22A—C21A—C22A | 119.8 (6) |
H4A—C4—H4C | 109.5 | O21A—C21A—C22A | 112.8 (6) |
H4B—C4—H4C | 109.5 | C21A—C22A—H22A | 109.5 |
C6—C5—C3 | 118.5 (5) | C21A—C22A—H22B | 109.5 |
C6—C5—H5A | 120.8 | H22A—C22A—H22B | 109.5 |
C3—C5—H5A | 120.8 | C21A—C22A—H22C | 109.5 |
O4—C6—C5 | 122.9 (5) | H22A—C22A—H22C | 109.5 |
O4—C6—C8 | 115.8 (5) | H22B—C22A—H22C | 109.5 |
C5—C6—C8 | 121.4 (6) | ||
N1—Co1—O1—C1 | 18.7 (5) | Co2—O1—C1—C8 | 160.4 (4) |
O2—Co1—O1—C1 | −162.6 (5) | O1—C1—C2—C3 | 175.2 (5) |
O21A—Co1—O1—C1 | −72.3 (5) | C8—C1—C2—C3 | −3.6 (8) |
O11A—Co1—O1—C1 | 104.9 (5) | C4—O3—C3—C2 | 1.8 (9) |
N1—Co1—O1—Co2 | −160.9 (2) | C4—O3—C3—C5 | 179.5 (5) |
O2—Co1—O1—Co2 | 17.86 (18) | C1—C2—C3—O3 | 178.4 (5) |
O21A—Co1—O1—Co2 | 108.13 (19) | C1—C2—C3—C5 | 0.9 (9) |
O11A—Co1—O1—Co2 | −74.62 (18) | O3—C3—C5—C6 | −176.8 (5) |
O12Ai—Co2—O1—C1 | 71.5 (5) | C2—C3—C5—C6 | 1.0 (9) |
O12A—Co2—O1—C1 | −108.5 (5) | C7—O4—C6—C5 | 4.5 (9) |
O2i—Co2—O1—C1 | −16.1 (6) | C7—O4—C6—C8 | −175.5 (6) |
O2—Co2—O1—C1 | 163.9 (6) | C3—C5—C6—O4 | 180.0 (5) |
O12Ai—Co2—O1—Co1 | −109.03 (19) | C3—C5—C6—C8 | −0.1 (9) |
O12A—Co2—O1—Co1 | 70.97 (19) | O4—C6—C8—C1 | 177.4 (5) |
O2i—Co2—O1—Co1 | 163.42 (17) | C5—C6—C8—C1 | −2.5 (9) |
O2—Co2—O1—Co1 | −16.58 (17) | O4—C6—C8—C9 | −1.7 (8) |
N2—Co1—O2—C20 | −32.5 (5) | C5—C6—C8—C9 | 178.4 (6) |
O1—Co1—O2—C20 | 150.6 (5) | O1—C1—C8—C6 | −174.4 (5) |
O21A—Co1—O2—C20 | 63.9 (5) | C2—C1—C8—C6 | 4.4 (8) |
O11A—Co1—O2—C20 | −118.7 (5) | O1—C1—C8—C9 | 4.6 (9) |
N2—Co1—O2—Co2 | 158.6 (2) | C2—C1—C8—C9 | −176.6 (5) |
O1—Co1—O2—Co2 | −18.32 (19) | C10—N1—C9—C8 | 175.5 (6) |
O21A—Co1—O2—Co2 | −105.0 (2) | Co1—N1—C9—C8 | −2.7 (8) |
O11A—Co1—O2—Co2 | 72.4 (2) | C6—C8—C9—N1 | −173.9 (6) |
O12Ai—Co2—O2—C20 | −57.9 (6) | C1—C8—C9—N1 | 7.1 (9) |
O12A—Co2—O2—C20 | 122.1 (6) | C9—N1—C10—C11 | 166.1 (6) |
O1—Co2—O2—C20 | −149.9 (6) | Co1—N1—C10—C11 | −15.5 (7) |
O1i—Co2—O2—C20 | 30.1 (6) | C12—N2—C11—C10 | 149.8 (6) |
O12Ai—Co2—O2—Co1 | 108.7 (2) | Co1—N2—C11—C10 | −34.2 (6) |
O12A—Co2—O2—Co1 | −71.3 (2) | N1—C10—C11—N2 | 30.8 (7) |
O1—Co2—O2—Co1 | 16.70 (17) | C11—N2—C12—C13 | 174.9 (6) |
O1i—Co2—O2—Co1 | −163.30 (17) | Co1—N2—C12—C13 | −0.6 (9) |
N2—Co1—O11A—C11A | −133.8 (5) | N2—C12—C13—C14 | 170.6 (6) |
N1—Co1—O11A—C11A | 139.6 (5) | N2—C12—C13—C20 | −12.1 (10) |
O2—Co1—O11A—C11A | −40.1 (5) | C15—O5—C14—C16 | −0.3 (9) |
O1—Co1—O11A—C11A | 43.6 (5) | C15—O5—C14—C13 | 179.3 (6) |
O2i—Co2—O12A—C11A | −140.5 (5) | C20—C13—C14—O5 | −177.6 (5) |
O2—Co2—O12A—C11A | 39.5 (5) | C12—C13—C14—O5 | −0.2 (9) |
O1—Co2—O12A—C11A | −32.8 (5) | C20—C13—C14—C16 | 2.0 (10) |
O1i—Co2—O12A—C11A | 147.2 (5) | C12—C13—C14—C16 | 179.4 (6) |
N2—Co1—O21A—C21A | −37.0 (6) | O5—C14—C16—C17 | 179.8 (6) |
N1—Co1—O21A—C21A | 49.5 (5) | C13—C14—C16—C17 | 0.2 (10) |
O2—Co1—O21A—C21A | −130.8 (5) | C18—O6—C17—C16 | 173.6 (6) |
O1—Co1—O21A—C21A | 145.5 (5) | C18—O6—C17—C19 | −6.2 (10) |
N2—Co1—N1—C9 | 175.4 (5) | C14—C16—C17—O6 | 179.2 (6) |
O1—Co1—N1—C9 | −7.7 (5) | C14—C16—C17—C19 | −0.9 (10) |
O21A—Co1—N1—C9 | 79.1 (5) | O6—C17—C19—C20 | 179.1 (6) |
O11A—Co1—N1—C9 | −98.3 (5) | C16—C17—C19—C20 | −0.8 (10) |
N2—Co1—N1—C10 | −2.9 (4) | Co1—O2—C20—C19 | −153.3 (4) |
O1—Co1—N1—C10 | 174.0 (4) | Co2—O2—C20—C19 | 11.0 (9) |
O21A—Co1—N1—C10 | −99.2 (4) | Co1—O2—C20—C13 | 29.1 (8) |
O11A—Co1—N1—C10 | 83.4 (4) | Co2—O2—C20—C13 | −166.6 (4) |
N1—Co1—N2—C12 | −162.8 (6) | C17—C19—C20—O2 | −174.5 (6) |
O2—Co1—N2—C12 | 18.5 (5) | C17—C19—C20—C13 | 3.1 (9) |
O1—Co1—N2—C12 | 69 (3) | C14—C13—C20—O2 | 173.8 (6) |
O21A—Co1—N2—C12 | −71.9 (5) | C12—C13—C20—O2 | −3.5 (9) |
O11A—Co1—N2—C12 | 110.8 (5) | C14—C13—C20—C19 | −3.6 (9) |
N1—Co1—N2—C11 | 21.3 (4) | C12—C13—C20—C19 | 179.0 (6) |
O2—Co1—N2—C11 | −157.4 (4) | Co2—O12A—C11A—O11A | −4.4 (9) |
O21A—Co1—N2—C11 | 112.3 (4) | Co2—O12A—C11A—C12A | 175.4 (4) |
O11A—Co1—N2—C11 | −65.1 (4) | Co1—O11A—C11A—O12A | 1.6 (9) |
Co1—O1—C1—C2 | 162.2 (4) | Co1—O11A—C11A—C12A | −178.2 (4) |
Co2—O1—C1—C2 | −18.5 (8) | Co1—O21A—C21A—O22A | 11.6 (10) |
Co1—O1—C1—C8 | −19.0 (8) | Co1—O21A—C21A—C22A | −167.3 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C—H0A···O22A | 0.99 | 2.33 | 3.269 (13) | 158 |
C4—H4A···O6ii | 0.98 | 2.35 | 3.326 (8) | 175 |
C7—H7A···O6iii | 0.98 | 2.51 | 3.421 (9) | 156 |
C11—H11A···O3iii | 0.99 | 2.62 | 3.602 (8) | 174 |
C11—H11B···Cl1iv | 0.99 | 2.73 | 3.664 (8) | 158 |
C15—H15A···O4v | 0.98 | 2.64 | 3.568 (10) | 158 |
C12A—H12B···Cl1iii | 0.98 | 2.91 | 3.354 (8) | 108 |
Symmetry codes: (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2 |
Mr | 1355.61 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 110 |
a, b, c (Å) | 13.9235 (9), 13.4407 (8), 16.0019 (11) |
β (°) | 112.724 (8) |
V (Å3) | 2762.2 (3) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 9.45 |
Crystal size (mm) | 0.42 × 0.25 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.320, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10708, 5306, 3777 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.083, 0.251, 1.03 |
No. of reflections | 5306 |
No. of parameters | 373 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.11, −1.66 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C—H0A···O22A | 0.99 | 2.33 | 3.269 (13) | 158 |
C4—H4A···O6i | 0.98 | 2.35 | 3.326 (8) | 175 |
C7—H7A···O6ii | 0.98 | 2.51 | 3.421 (9) | 156 |
C11—H11A···O3ii | 0.99 | 2.62 | 3.602 (8) | 174 |
C11—H11B···Cl1iii | 0.99 | 2.73 | 3.664 (8) | 158 |
C15—H15A···O4iv | 0.98 | 2.64 | 3.568 (10) | 158 |
C12A—H12B···Cl1ii | 0.98 | 2.91 | 3.354 (8) | 108 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Babushkin, D. E. & Talsi, E. P. (1998). J. Mol. Catal. A, 130, 131–137. CrossRef CAS Google Scholar
Chattopadhyay, S., Bocelli, G., Musatti, A. & Ghosh, A. (2006). Inorg. Chem. Commun. 9, 1053–1057. Web of Science CSD CrossRef CAS Google Scholar
Chattopadhyay, S., Drew, G. B. M. & Ghosh, A. (2008). Eur. J. Inorg. Chem. pp. 1693–1701. Web of Science CSD CrossRef Google Scholar
Dong, W., Shi, J., Xu, L., Zhong, J., Duan, J. & Zhang, Y. (2008). Appl. Organomet. Chem. 22, 89–96. Web of Science CrossRef CAS Google Scholar
Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673–4676. CSD CrossRef CAS Web of Science Google Scholar
He, X., Lu, C.-Z. & Wu, C.-D. (2006). J. Coord. Chem 59, 977–984. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406. Web of Science CSD CrossRef Google Scholar
You, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862–871. Web of Science CrossRef PubMed CAS Google Scholar
You, Z.-L. & Zhou, P. (2007). Inorg. Chem. Commun. 10, 1273–1275. Web of Science CSD CrossRef CAS Google Scholar
You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754–2760. Web of Science CSD CrossRef CAS Google Scholar
You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1900–m1902. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Fan, D. & Dong, W. (2007). Inorg. Chem. Commun. 10, 401–403. Web of Science CSD CrossRef CAS Google Scholar
Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Qian, L., Fan, D., Dong, W., Chen, L. & Qiu, Y. (2008). Inorg. Chim. Acta, 361, 233–240. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of transition metal complexes with Schiff base ligands have been studied as potential inhibitors for the xanthine oxidase (XO) enzyme (You et al., 2008) and also for the jack bean urease enzyme (jbU) (Shi et al., 2007). The enzyme XO catalyzes the hydroxylation of hypoxanthine and xanthine to yield uric acid and superoxide anions. Other areas where complexes of transition metals have played roles are in the development of catalysis, magnetism and molecular architecture (Yu et al., 2007, You & Zhu, 2004, You & Zhou, 2007). Complexes of transition metals with Schiff base ligands have also been shown to be useful materials for optoelectronics and also for photo and electro-luminance applications (Yu et al., 2008). Studies for antimicrobial activities of Schiff base ligands as well as those of their corresponding complexes have been investigated (You et al., 2004) where it was shown that Schiff base ligands as well as their complexes exhibited good antibacterial properties. Metallosalen complexes are of great importance due to their use in various catalytic chemical transformations that includes, epoxidation of olefins, symmetric ring opening, azirdination of olefins, olefine cyclopropanation and formation of linear and cyclic hydrocarbonation (Dong et al., 2008).
The importance of tri-nuclear cobalt Schiff base complexes ranges from, catalysts for oxidation of organic molecules, antiviral agents due to their ability to interact with proteins and nucleic acids and they have also used to mimic the biological co-factor such as cobalamin (Chattopadhyay et al., 2008, Babushkin & Talsi, 1998). The quadridentate metal complexes of Schiff bases have been studied extensively as B12 models, their magnetic interaction between bridged paramagnetic metal ions and their applications (Gerli et al., 1991). Magnetic susceptibilities data for the trinuclear mixed valence compound [CoII(OAc)2(hapt)2Co2(III)(py)2](ClO4)2 [where (hapt) is bis-(2-hydroxyacetophenone) trimethylenediimine] were measured in the temperature range of 300–2 K and it was found that µeff values are almost constant ranging from 4.37 to 5.00 BM (He et al., 2006). The values obtained suggested that the oxidation states are CoIII(S = 0)-CoII(S = 3/2)-CoIII(S = 0). Cyclic tri-nuclear cobalt complexes have also shown some catalytic activities in epoxidation of olefins, autoxidation of hydrocarbons, utility in modeling multinuclear active sites of metalloproteins and their potential use in nanoscience (Chattopadhyay et al., 2006).
The title compound C50H60Cl4Co3N4O20 is a trinuclear cobalt Schiff base complex containing a central high spin CoII and two terminal low spin CoIII centers. The environment around Co(1) is hexacoordinated with two imine nitrogen atoms, N(1) and N(2), two phenolate oxygen atoms, O(1) and O(2), and two oxygen atoms, O(11 A) and O(21 A), from two acetate groups. The central Co(2) ion is coordinated by four phenolate oxygen atoms and two acetate oxygen atoms O(12 A), O(2)#2, O(2), O(1), O(1), O(1)#1 and O(12)#1. The bond distances of the coordination atoms around Co(1) are Co(1)—N(2) = 1.861 (5) Å, Co(1)—N(1) = 1.871 (5) Å, Co(1)—O(2) = 1.887 (4) Å, Co(1)—O(1) = 1.89 (4) Å, Co(1)—O(21 A) = 1.891 (4) Å, Co(1)—O(11 A) = 1.929 (4) Å and the bond lengths between Co(2) and its coordinating atoms are Co(2)—O(12 A)#1 = 2.043 (4) Å, Co(2)—O(12 A) = 2.043 (4) Å, Co(2)—O(2)#1 = 2.117 (4) Å, Co(A)—O(2) = 2.117 (4) Å, Co(2)—O(1) = 2.160 (4) Å, Co(2)—O(1)#1 = 2.160 (4) Å. The coordination around the central metal ion displays a slight distortion from octahedral geometry as shown by the cis angles are mostly close to 90°. The main deviations are caused by the small bite of the salen O donors [72.15 (15)°]. The basal planes of the complex are formed by the two bridging O atoms and two N atoms of the Schiff base ligand. The O atoms of the acetate group occupy apical positions.
There are weak intermolecular C—H···O interactions involving the methoxy groups and acetate anions. In addition the dichoromethane solvate molecules are held in place by weak C—H···Cl interactions.