metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m303-m304

Di-μ2-acetato-di­acetato-bis­­{μ2-3,3′,5,5′-tetra­meth­­oxy-2,2-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}tricobalt(II,III) di­chloro­methane disolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 11 January 2011; accepted 29 January 2011; online 5 February 2011)

The trinuclear title compound, [Co3(CH3COO)4(C20H22N2O6)2]·2CH2Cl2, contains mixed-valence cobalt ions in the following order CoIII–CoII–CoIII where all the three cobalt ions are hexa­coordinated. The central cobalt ion is situated on an inversion centre and is in an all-oxygen environment, coordinated by four phenolate O atoms and two O atoms from bridging acetate groups, while the terminal cobalt ion is hexa­coordinated by two phenolate O atoms, two acetate O atoms and two imine N atoms. This complex contains a high-spin central CoII and two terminal low-spin CoIII i.e. CoIII(S = 0)–CoII(S = 3/2)-CoIII(S = 0). There are weak inter­molecular C—H⋯O inter­actions involving the meth­oxy groups, as well as inter­molecular C—H⋯O inter­actions involving the acetate anions. In addition, the dichoromethane solvate mol­ecules are held in place by weak C—H⋯Cl inter­actions.

Related literature

For background to to the use of transition metal complexes with Schiff bases as potential enzyme inhibitors, see: You et al. (2008[You, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862-871.]); Shi et al. (2007[Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404-406.]). For the use of transition metal complexes for the development of catalysis, magnetism and mol­ecular architectures, see: Yu et al. (2007[Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Fan, D. & Dong, W. (2007). Inorg. Chem. Commun. 10, 401-403.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.]); You & Zhou (2007[You, Z.-L. & Zhou, P. (2007). Inorg. Chem. Commun. 10, 1273-1275.]). For the use of transition metal complexes for optoelectronic and also for photo- and electro­luminescence applications, see: Yu et al. (2008[Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Qian, L., Fan, D., Dong, W., Chen, L. & Qiu, Y. (2008). Inorg. Chim. Acta, 361, 233-240.]). For the potential use of transition metal complexes in the modeling of multisite metalloproteins and in nano-science, see: Chattopadhyay et al. (2006[Chattopadhyay, S., Bocelli, G., Musatti, A. & Ghosh, A. (2006). Inorg. Chem. Commun. 9, 1053-1057.]). For the importance of tri-nuclear cobalt Schiff base complexes as catalysts for organic mol­ecules and as anti­viral agents due to their ability to inter­act with proteins and nucleic acids, see: Chattopadhyay et al. (2006[Chattopadhyay, S., Bocelli, G., Musatti, A. & Ghosh, A. (2006). Inorg. Chem. Commun. 9, 1053-1057.], 2008[Chattopadhyay, S., Drew, G. B. M. & Ghosh, A. (2008). Eur. J. Inorg. Chem. pp. 1693-1701.]); Babushkin & Talsi (1998)[Babushkin, D. E. & Talsi, E. P. (1998). J. Mol. Catal. A, 130, 131-137.]. For background to metallosalen complexes, see: Dong et al. (2008[Dong, W., Shi, J., Xu, L., Zhong, J., Duan, J. & Zhang, Y. (2008). Appl. Organomet. Chem. 22, 89-96.]). For the magnetic properties of quadridentate metal complexes of Schiff bases, see: He et al. (2006[He, X., Lu, C.-Z. & Wu, C.-D. (2006). J. Coord. Chem 59, 977-984.]); Gerli et al. (1991[Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673-4676.]). For the anti­microbial activity of Schiff base ligands and their complexes, see: You et al. (2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1900-m1902.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2

  • Mr = 1355.61

  • Monoclinic, P 21 /n

  • a = 13.9235 (9) Å

  • b = 13.4407 (8) Å

  • c = 16.0019 (11) Å

  • β = 112.724 (8)°

  • V = 2762.2 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 9.45 mm−1

  • T = 110 K

  • 0.42 × 0.25 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.320, Tmax = 1.000

  • 10708 measured reflections

  • 5306 independent reflections

  • 3777 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.251

  • S = 1.03

  • 5306 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C—H0A⋯O22A 0.99 2.33 3.269 (13) 158
C4—H4A⋯O6i 0.98 2.35 3.326 (8) 175
C7—H7A⋯O6ii 0.98 2.51 3.421 (9) 156
C11—H11A⋯O3ii 0.99 2.62 3.602 (8) 174
C11—H11B⋯Cl1iii 0.99 2.73 3.664 (8) 158
C15—H15A⋯O4iv 0.98 2.64 3.568 (10) 158
C12A—H12B⋯Cl1ii 0.98 2.91 3.354 (8) 108
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A number of transition metal complexes with Schiff base ligands have been studied as potential inhibitors for the xanthine oxidase (XO) enzyme (You et al., 2008) and also for the jack bean urease enzyme (jbU) (Shi et al., 2007). The enzyme XO catalyzes the hydroxylation of hypoxanthine and xanthine to yield uric acid and superoxide anions. Other areas where complexes of transition metals have played roles are in the development of catalysis, magnetism and molecular architecture (Yu et al., 2007, You & Zhu, 2004, You & Zhou, 2007). Complexes of transition metals with Schiff base ligands have also been shown to be useful materials for optoelectronics and also for photo and electro-luminance applications (Yu et al., 2008). Studies for antimicrobial activities of Schiff base ligands as well as those of their corresponding complexes have been investigated (You et al., 2004) where it was shown that Schiff base ligands as well as their complexes exhibited good antibacterial properties. Metallosalen complexes are of great importance due to their use in various catalytic chemical transformations that includes, epoxidation of olefins, symmetric ring opening, azirdination of olefins, olefine cyclopropanation and formation of linear and cyclic hydrocarbonation (Dong et al., 2008).

The importance of tri-nuclear cobalt Schiff base complexes ranges from, catalysts for oxidation of organic molecules, antiviral agents due to their ability to interact with proteins and nucleic acids and they have also used to mimic the biological co-factor such as cobalamin (Chattopadhyay et al., 2008, Babushkin & Talsi, 1998). The quadridentate metal complexes of Schiff bases have been studied extensively as B12 models, their magnetic interaction between bridged paramagnetic metal ions and their applications (Gerli et al., 1991). Magnetic susceptibilities data for the trinuclear mixed valence compound [CoII(OAc)2(hapt)2Co2(III)(py)2](ClO4)2 [where (hapt) is bis-(2-hydroxyacetophenone) trimethylenediimine] were measured in the temperature range of 300–2 K and it was found that µeff values are almost constant ranging from 4.37 to 5.00 BM (He et al., 2006). The values obtained suggested that the oxidation states are CoIII(S = 0)-CoII(S = 3/2)-CoIII(S = 0). Cyclic tri-nuclear cobalt complexes have also shown some catalytic activities in epoxidation of olefins, autoxidation of hydrocarbons, utility in modeling multinuclear active sites of metalloproteins and their potential use in nanoscience (Chattopadhyay et al., 2006).

The title compound C50H60Cl4Co3N4O20 is a trinuclear cobalt Schiff base complex containing a central high spin CoII and two terminal low spin CoIII centers. The environment around Co(1) is hexacoordinated with two imine nitrogen atoms, N(1) and N(2), two phenolate oxygen atoms, O(1) and O(2), and two oxygen atoms, O(11 A) and O(21 A), from two acetate groups. The central Co(2) ion is coordinated by four phenolate oxygen atoms and two acetate oxygen atoms O(12 A), O(2)#2, O(2), O(1), O(1), O(1)#1 and O(12)#1. The bond distances of the coordination atoms around Co(1) are Co(1)—N(2) = 1.861 (5) Å, Co(1)—N(1) = 1.871 (5) Å, Co(1)—O(2) = 1.887 (4) Å, Co(1)—O(1) = 1.89 (4) Å, Co(1)—O(21 A) = 1.891 (4) Å, Co(1)—O(11 A) = 1.929 (4) Å and the bond lengths between Co(2) and its coordinating atoms are Co(2)—O(12 A)#1 = 2.043 (4) Å, Co(2)—O(12 A) = 2.043 (4) Å, Co(2)—O(2)#1 = 2.117 (4) Å, Co(A)—O(2) = 2.117 (4) Å, Co(2)—O(1) = 2.160 (4) Å, Co(2)—O(1)#1 = 2.160 (4) Å. The coordination around the central metal ion displays a slight distortion from octahedral geometry as shown by the cis angles are mostly close to 90°. The main deviations are caused by the small bite of the salen O donors [72.15 (15)°]. The basal planes of the complex are formed by the two bridging O atoms and two N atoms of the Schiff base ligand. The O atoms of the acetate group occupy apical positions.

There are weak intermolecular C—H···O interactions involving the methoxy groups and acetate anions. In addition the dichoromethane solvate molecules are held in place by weak C—H···Cl interactions.

Related literature top

For background to to the use of transition metal complexes with Schiff bases as potential enzyme inhibitors, see: You et al. (2008); Shi et al. (2007). For the use of transition metal complexes for the development of catalysis, magnetism and molecular architectures, see: Yu et al. (2007); You & Zhu (2004); You & Zhou (2007). For the use of transition metal complexes for optoelectronical and also for photo and electroluminance applications, see: Yu et al. (2008). For the potential use of transition metal complexes in the modeling of multisite metalloproteins and in nano-science, see: Chattopadhyay et al. (2006). For the importance of tri-nuclear cobalt Schiff base complexes as catalysts for organic molecules and as antiviral agents due to their ability to interact with proteins and nucleic acids, see: Chattopadhyay et al. (2006, 2008); Babushkin & Talsi (1998). For background to metallosalen complexes, see: Dong et al. (2008). For the magnetic properties of quadridentate metal complexes of Schiff bases, see: He et al. (2006); Gerli et al. (1991). For the antimicrobial activity of Schiff base ligands and their complexes, see: You et al. (2004). AUTHOR: please ensure all papers are cited in the Rel. lit

Experimental top

The synthesis of the ligand ethylene-bis(2,4-dimethoxy-salicylaldimine) was achieved by adding a solution of (2 g, 33.3 mmol) ethylenediamine in 25 ml s of methanol to the solution of (12.13 g, 66.6 mmol) 2,4-dimethoxysalicylaldehyde in 40 ml s of methanol. The mixture was refluxed overnight while stirring. The reaction mixture was then evaporated under reduced pressure to afford yellow solids.

The synthesis of the complex C50H60Cl4Co3N4O20 was accomplished by adding a solution of (0.38 g, 1 mmol) of ethylene-bis(2,4-dimethoxy-salicylaldimine) in 20 ml dichloromethane to a solution of Co(CH3COO)2.H2O in 5 ml me thanol. The mixture was stirred for 3 h, filtered and layered with di-ethyl ether for crystallization. Crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. In the final difference Fourier the maximum and minimum electron density of 1.11 and -1.66 e-3 were located 0.93 Å and 0.44 Å from H0A and Cl1 respectively

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of trinuclear C48H56Co3N4O20 unit showing atom labeling. Thermal ellipsoids are at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for C48H56Co3N4O20.2(CH2Cl2) viewed down the b axis. C—H···Cl and C—H···O interactions bonds are shown by dashed lines.
Di-µ2-acetato-diacetato-bis{µ2-3,3',5,5'-tetramethoxy-2,2-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}tricobalt(II,III) dichloromethane disolvate top
Crystal data top
[Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2F(000) = 1394
Mr = 1355.61Dx = 1.630 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 4463 reflections
a = 13.9235 (9) Åθ = 4.4–73.9°
b = 13.4407 (8) ŵ = 9.45 mm1
c = 16.0019 (11) ÅT = 110 K
β = 112.724 (8)°Thick needle, red-brown
V = 2762.2 (3) Å30.42 × 0.25 × 0.18 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
5306 independent reflections
Radiation source: Enhance (Cu) X-ray Source3777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 4.5°
ω scansh = 1713
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1613
Tmin = 0.320, Tmax = 1.000l = 1918
10708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1718P)2 + 2.5393P]
where P = (Fo2 + 2Fc2)/3
5306 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
[Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2V = 2762.2 (3) Å3
Mr = 1355.61Z = 2
Monoclinic, P21/nCu Kα radiation
a = 13.9235 (9) ŵ = 9.45 mm1
b = 13.4407 (8) ÅT = 110 K
c = 16.0019 (11) Å0.42 × 0.25 × 0.18 mm
β = 112.724 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
5306 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3777 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 1.000Rint = 0.043
10708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.251H-atom parameters constrained
S = 1.03Δρmax = 1.11 e Å3
5306 reflectionsΔρmin = 1.66 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.31088 (7)0.37441 (7)0.38337 (6)0.0133 (3)
Co20.50000.50000.50000.0138 (3)
Cl10.1730 (2)0.4911 (2)0.0248 (2)0.0736 (8)
Cl20.2861 (3)0.3805 (3)0.1142 (2)0.0826 (10)
O10.4170 (3)0.4463 (3)0.3637 (3)0.0142 (8)
O20.3510 (3)0.4519 (3)0.4897 (3)0.0176 (9)
O30.5670 (4)0.6103 (3)0.1809 (3)0.0229 (10)
O40.3576 (4)0.3258 (4)0.0695 (3)0.0239 (10)
O50.0593 (4)0.3797 (4)0.5633 (3)0.0276 (11)
O60.2587 (4)0.6707 (4)0.6799 (3)0.0279 (11)
O11A0.4076 (3)0.2697 (3)0.4437 (3)0.0178 (9)
O12A0.5482 (3)0.3568 (3)0.5344 (3)0.0182 (9)
O21A0.2186 (3)0.4771 (3)0.3178 (3)0.0213 (10)
O22A0.0637 (4)0.3991 (4)0.2533 (3)0.0296 (11)
N10.2737 (4)0.2957 (4)0.2792 (3)0.0154 (10)
N20.2130 (4)0.3016 (4)0.4107 (3)0.0179 (11)
C0.1698 (10)0.3882 (8)0.0942 (7)0.062 (3)
H0A0.10960.39460.15270.075*
H0B0.16080.32630.06440.075*
C10.4274 (4)0.4539 (5)0.2860 (4)0.0146 (12)
C20.4903 (4)0.5312 (5)0.2754 (4)0.0129 (11)
H2A0.51950.57900.32220.015*
C30.5093 (5)0.5373 (5)0.1979 (4)0.0190 (13)
C40.6125 (5)0.6836 (5)0.2508 (4)0.0265 (15)
H4A0.65500.72980.23230.040*
H4B0.65630.65030.30720.040*
H4C0.55700.72050.26070.040*
C50.4666 (5)0.4690 (5)0.1259 (4)0.0188 (13)
H5A0.48170.47400.07310.023*
C60.4019 (5)0.3940 (5)0.1342 (4)0.0170 (12)
C70.3851 (7)0.3271 (6)0.0085 (5)0.0353 (18)
H7A0.35800.26710.04480.053*
H7B0.46110.32880.01140.053*
H7C0.35500.38610.04520.053*
C80.3786 (5)0.3854 (5)0.2132 (4)0.0179 (12)
C90.3083 (4)0.3071 (5)0.2162 (4)0.0150 (12)
H9A0.28610.26070.16780.018*
C100.1969 (5)0.2181 (5)0.2716 (4)0.0210 (13)
H10A0.21790.15490.25180.025*
H10B0.12800.23760.22610.025*
C110.1902 (6)0.2044 (5)0.3629 (5)0.0267 (15)
H11A0.11970.18140.35510.032*
H11B0.24130.15380.39870.032*
C120.1734 (4)0.3272 (5)0.4676 (4)0.0176 (12)
H12A0.12350.28390.47520.021*
C130.1990 (5)0.4164 (5)0.5206 (4)0.0181 (13)
C140.1394 (5)0.4440 (5)0.5709 (4)0.0238 (14)
C150.0028 (6)0.4037 (6)0.6139 (5)0.0316 (17)
H15A0.05620.35250.60380.047*
H15B0.03630.46840.59410.047*
H15C0.04170.40670.67860.047*
C160.1603 (5)0.5288 (5)0.6242 (5)0.0231 (14)
H16A0.11920.54560.65770.028*
C170.2433 (5)0.5885 (5)0.6274 (4)0.0223 (14)
C180.3486 (6)0.7310 (6)0.6947 (6)0.041 (2)
H18A0.34980.78660.73470.061*
H18B0.34580.75700.63660.061*
H18C0.41160.69070.72290.061*
C190.3059 (5)0.5648 (5)0.5799 (4)0.0185 (13)
H19A0.36160.60720.58250.022*
C200.2851 (4)0.4775 (5)0.5283 (4)0.0178 (13)
C11A0.5005 (5)0.2775 (5)0.5022 (4)0.0175 (12)
C12A0.5555 (5)0.1810 (5)0.5336 (5)0.0272 (15)
H12B0.51890.12820.49100.041*
H12C0.55690.16510.59380.041*
H12D0.62700.18630.53670.041*
C21A0.1218 (5)0.4706 (5)0.2639 (4)0.0210 (13)
C22A0.0821 (6)0.5634 (6)0.2093 (5)0.0308 (16)
H22A0.00670.55800.17580.046*
H22B0.11630.57170.16650.046*
H22C0.09740.62100.25000.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0088 (5)0.0168 (5)0.0142 (5)0.0035 (4)0.0043 (3)0.0026 (4)
Co20.0088 (6)0.0186 (7)0.0142 (6)0.0039 (5)0.0046 (5)0.0031 (5)
Cl10.0671 (18)0.0709 (19)0.0748 (18)0.0053 (15)0.0184 (15)0.0120 (15)
Cl20.087 (2)0.093 (2)0.075 (2)0.0023 (19)0.0400 (18)0.0040 (18)
O10.0090 (19)0.020 (2)0.0145 (19)0.0039 (17)0.0058 (15)0.0011 (17)
O20.0118 (19)0.024 (2)0.019 (2)0.0044 (18)0.0085 (16)0.0089 (18)
O30.023 (2)0.022 (2)0.027 (2)0.0050 (19)0.0145 (19)0.001 (2)
O40.025 (2)0.033 (3)0.014 (2)0.005 (2)0.0088 (18)0.004 (2)
O50.017 (2)0.035 (3)0.037 (3)0.004 (2)0.017 (2)0.005 (2)
O60.023 (2)0.031 (3)0.034 (3)0.004 (2)0.016 (2)0.010 (2)
O11A0.013 (2)0.019 (2)0.018 (2)0.0029 (17)0.0019 (16)0.0023 (17)
O12A0.010 (2)0.022 (2)0.019 (2)0.0030 (17)0.0019 (16)0.0040 (18)
O21A0.014 (2)0.023 (2)0.024 (2)0.0015 (18)0.0034 (17)0.0020 (19)
O22A0.023 (2)0.024 (3)0.034 (3)0.006 (2)0.002 (2)0.001 (2)
N10.011 (2)0.017 (2)0.016 (2)0.001 (2)0.0028 (18)0.004 (2)
N20.012 (2)0.020 (3)0.021 (2)0.007 (2)0.005 (2)0.001 (2)
C0.084 (8)0.044 (5)0.052 (6)0.003 (6)0.019 (6)0.009 (5)
C10.007 (2)0.017 (3)0.016 (3)0.003 (2)0.001 (2)0.000 (2)
C20.006 (2)0.018 (3)0.014 (3)0.002 (2)0.003 (2)0.001 (2)
C30.011 (3)0.019 (3)0.024 (3)0.007 (2)0.003 (2)0.005 (3)
C40.025 (3)0.033 (4)0.023 (3)0.015 (3)0.012 (3)0.002 (3)
C50.024 (3)0.024 (3)0.014 (3)0.005 (3)0.013 (2)0.002 (3)
C60.015 (3)0.022 (3)0.011 (3)0.005 (2)0.002 (2)0.001 (2)
C70.046 (5)0.042 (5)0.024 (3)0.009 (4)0.020 (3)0.012 (3)
C80.012 (3)0.017 (3)0.025 (3)0.003 (2)0.008 (2)0.001 (3)
C90.013 (3)0.016 (3)0.011 (2)0.006 (2)0.000 (2)0.001 (2)
C100.019 (3)0.020 (3)0.027 (3)0.008 (3)0.011 (3)0.008 (3)
C110.027 (4)0.025 (4)0.026 (3)0.016 (3)0.007 (3)0.011 (3)
C120.011 (3)0.023 (3)0.019 (3)0.007 (2)0.006 (2)0.001 (3)
C130.011 (3)0.027 (3)0.015 (3)0.003 (2)0.004 (2)0.004 (3)
C140.015 (3)0.033 (4)0.022 (3)0.006 (3)0.006 (3)0.004 (3)
C150.027 (4)0.043 (4)0.038 (4)0.003 (3)0.027 (3)0.007 (3)
C160.014 (3)0.029 (4)0.031 (3)0.008 (3)0.014 (3)0.000 (3)
C170.019 (3)0.027 (3)0.020 (3)0.004 (3)0.006 (2)0.001 (3)
C180.029 (4)0.038 (4)0.052 (5)0.000 (4)0.011 (4)0.030 (4)
C190.012 (3)0.019 (3)0.024 (3)0.005 (2)0.006 (2)0.001 (3)
C200.009 (3)0.026 (3)0.015 (3)0.002 (2)0.001 (2)0.001 (3)
C11A0.012 (3)0.026 (3)0.017 (3)0.001 (2)0.008 (2)0.004 (3)
C12A0.022 (3)0.027 (4)0.024 (3)0.002 (3)0.001 (3)0.004 (3)
C21A0.017 (3)0.028 (3)0.019 (3)0.006 (3)0.008 (2)0.003 (3)
C22A0.024 (3)0.035 (4)0.034 (4)0.004 (3)0.011 (3)0.007 (3)
Geometric parameters (Å, º) top
Co1—N21.861 (5)C4—H4B0.9800
Co1—N11.871 (5)C4—H4C0.9800
Co1—O21.887 (4)C5—C61.391 (9)
Co1—O11.891 (4)C5—H5A0.9500
Co1—O21A1.902 (5)C6—C81.425 (9)
Co1—O11A1.929 (4)C7—H7A0.9800
Co2—O12Ai2.043 (4)C7—H7B0.9800
Co2—O12A2.043 (4)C7—H7C0.9800
Co2—O2i2.117 (4)C8—C91.451 (8)
Co2—O22.117 (4)C9—H9A0.9500
Co2—O12.160 (4)C10—C111.511 (9)
Co2—O1i2.160 (4)C10—H10A0.9900
Cl1—C1.763 (10)C10—H10B0.9900
Cl2—C1.771 (13)C11—H11A0.9900
O1—C11.310 (7)C11—H11B0.9900
O2—C201.334 (7)C12—C131.432 (9)
O3—C31.361 (8)C12—H12A0.9500
O3—C41.441 (8)C13—C141.411 (9)
O4—C61.342 (7)C13—C201.418 (9)
O4—C71.440 (8)C14—C161.385 (10)
O5—C141.380 (8)C15—H15A0.9800
O5—C151.431 (8)C15—H15B0.9800
O6—C171.353 (8)C15—H15C0.9800
O6—C181.432 (9)C16—C171.393 (9)
O11A—C11A1.275 (7)C16—H16A0.9500
O12A—C11A1.256 (8)C17—C191.397 (9)
O21A—C21A1.293 (8)C18—H18A0.9800
O22A—C21A1.226 (8)C18—H18B0.9800
N1—C91.282 (8)C18—H18C0.9800
N1—C101.465 (8)C19—C201.400 (9)
N2—C121.281 (8)C19—H19A0.9500
N2—C111.485 (8)C11A—C12A1.491 (9)
C—H0A0.9900C12A—H12B0.9800
C—H0B0.9900C12A—H12C0.9800
C1—C21.411 (8)C12A—H12D0.9800
C1—C81.433 (8)C21A—C22A1.500 (10)
C2—C31.366 (9)C22A—H22A0.9800
C2—H2A0.9500C22A—H22B0.9800
C3—C51.412 (9)C22A—H22C0.9800
C4—H4A0.9800
N2—Co1—N186.4 (2)O4—C7—H7A109.5
N2—Co1—O293.9 (2)O4—C7—H7B109.5
N1—Co1—O2178.7 (2)H7A—C7—H7B109.5
N2—Co1—O1176.1 (2)O4—C7—H7C109.5
N1—Co1—O196.1 (2)H7A—C7—H7C109.5
O2—Co1—O183.65 (18)H7B—C7—H7C109.5
N2—Co1—O21A96.4 (2)C6—C8—C1118.0 (6)
N1—Co1—O21A91.4 (2)C6—C8—C9118.4 (6)
O2—Co1—O21A89.90 (19)C1—C8—C9123.5 (6)
O1—Co1—O21A86.66 (19)N1—C9—C8125.2 (6)
N2—Co1—O11A86.1 (2)N1—C9—H9A117.4
N1—Co1—O11A86.2 (2)C8—C9—H9A117.4
O2—Co1—O11A92.57 (18)N1—C10—C11108.8 (5)
O1—Co1—O11A90.98 (18)N1—C10—H10A109.9
O21A—Co1—O11A176.38 (19)C11—C10—H10A109.9
O12Ai—Co2—O12A180.000 (1)N1—C10—H10B109.9
O12Ai—Co2—O2i86.78 (17)C11—C10—H10B109.9
O12A—Co2—O2i93.22 (17)H10A—C10—H10B108.3
O12Ai—Co2—O293.22 (17)N2—C11—C10108.0 (5)
O12A—Co2—O286.78 (17)N2—C11—H11A110.1
O2i—Co2—O2180.0C10—C11—H11A110.1
O12Ai—Co2—O192.92 (16)N2—C11—H11B110.1
O12A—Co2—O187.08 (16)C10—C11—H11B110.1
O2i—Co2—O1107.85 (15)H11A—C11—H11B108.4
O2—Co2—O172.15 (15)N2—C12—C13124.7 (6)
O12Ai—Co2—O1i87.08 (16)N2—C12—H12A117.7
O12A—Co2—O1i92.92 (16)C13—C12—H12A117.7
O2i—Co2—O1i72.15 (15)C14—C13—C20117.5 (6)
O2—Co2—O1i107.85 (15)C14—C13—C12119.5 (6)
O1—Co2—O1i180.000 (1)C20—C13—C12123.0 (5)
C1—O1—Co1125.3 (4)O5—C14—C16122.7 (6)
C1—O1—Co2136.1 (4)O5—C14—C13114.7 (6)
Co1—O1—Co298.66 (17)C16—C14—C13122.6 (6)
C20—O2—Co1122.9 (4)O5—C15—H15A109.5
C20—O2—Co2135.6 (4)O5—C15—H15B109.5
Co1—O2—Co2100.29 (18)H15A—C15—H15B109.5
C3—O3—C4117.0 (5)O5—C15—H15C109.5
C6—O4—C7117.7 (5)H15A—C15—H15C109.5
C14—O5—C15116.9 (6)H15B—C15—H15C109.5
C17—O6—C18118.9 (5)C14—C16—C17118.1 (6)
C11A—O11A—Co1128.5 (4)C14—C16—H16A121.0
C11A—O12A—Co2128.5 (4)C17—C16—H16A121.0
C21A—O21A—Co1128.8 (4)O6—C17—C16115.1 (6)
C9—N1—C10120.3 (5)O6—C17—C19122.8 (6)
C9—N1—Co1125.0 (4)C16—C17—C19122.2 (6)
C10—N1—Co1114.7 (4)O6—C18—H18A109.5
C12—N2—C11122.4 (5)O6—C18—H18B109.5
C12—N2—Co1125.5 (4)H18A—C18—H18B109.5
C11—N2—Co1111.9 (4)O6—C18—H18C109.5
Cl1—C—Cl2110.9 (7)H18A—C18—H18C109.5
Cl1—C—H0A109.5H18B—C18—H18C109.5
Cl2—C—H0A109.5C17—C19—C20118.8 (6)
Cl1—C—H0B109.5C17—C19—H19A120.6
Cl2—C—H0B109.5C20—C19—H19A120.6
H0A—C—H0B108.0O2—C20—C19117.8 (5)
O1—C1—C2118.2 (5)O2—C20—C13121.3 (6)
O1—C1—C8122.0 (5)C19—C20—C13120.9 (6)
C2—C1—C8119.8 (5)O12A—C11A—O11A126.6 (6)
C3—C2—C1119.9 (6)O12A—C11A—C12A118.5 (5)
C3—C2—H2A120.0O11A—C11A—C12A114.9 (6)
C1—C2—H2A120.0C11A—C12A—H12B109.5
O3—C3—C2124.1 (6)C11A—C12A—H12C109.5
O3—C3—C5113.6 (6)H12B—C12A—H12C109.5
C2—C3—C5122.3 (6)C11A—C12A—H12D109.5
O3—C4—H4A109.5H12B—C12A—H12D109.5
O3—C4—H4B109.5H12C—C12A—H12D109.5
H4A—C4—H4B109.5O22A—C21A—O21A127.5 (6)
O3—C4—H4C109.5O22A—C21A—C22A119.8 (6)
H4A—C4—H4C109.5O21A—C21A—C22A112.8 (6)
H4B—C4—H4C109.5C21A—C22A—H22A109.5
C6—C5—C3118.5 (5)C21A—C22A—H22B109.5
C6—C5—H5A120.8H22A—C22A—H22B109.5
C3—C5—H5A120.8C21A—C22A—H22C109.5
O4—C6—C5122.9 (5)H22A—C22A—H22C109.5
O4—C6—C8115.8 (5)H22B—C22A—H22C109.5
C5—C6—C8121.4 (6)
N1—Co1—O1—C118.7 (5)Co2—O1—C1—C8160.4 (4)
O2—Co1—O1—C1162.6 (5)O1—C1—C2—C3175.2 (5)
O21A—Co1—O1—C172.3 (5)C8—C1—C2—C33.6 (8)
O11A—Co1—O1—C1104.9 (5)C4—O3—C3—C21.8 (9)
N1—Co1—O1—Co2160.9 (2)C4—O3—C3—C5179.5 (5)
O2—Co1—O1—Co217.86 (18)C1—C2—C3—O3178.4 (5)
O21A—Co1—O1—Co2108.13 (19)C1—C2—C3—C50.9 (9)
O11A—Co1—O1—Co274.62 (18)O3—C3—C5—C6176.8 (5)
O12Ai—Co2—O1—C171.5 (5)C2—C3—C5—C61.0 (9)
O12A—Co2—O1—C1108.5 (5)C7—O4—C6—C54.5 (9)
O2i—Co2—O1—C116.1 (6)C7—O4—C6—C8175.5 (6)
O2—Co2—O1—C1163.9 (6)C3—C5—C6—O4180.0 (5)
O12Ai—Co2—O1—Co1109.03 (19)C3—C5—C6—C80.1 (9)
O12A—Co2—O1—Co170.97 (19)O4—C6—C8—C1177.4 (5)
O2i—Co2—O1—Co1163.42 (17)C5—C6—C8—C12.5 (9)
O2—Co2—O1—Co116.58 (17)O4—C6—C8—C91.7 (8)
N2—Co1—O2—C2032.5 (5)C5—C6—C8—C9178.4 (6)
O1—Co1—O2—C20150.6 (5)O1—C1—C8—C6174.4 (5)
O21A—Co1—O2—C2063.9 (5)C2—C1—C8—C64.4 (8)
O11A—Co1—O2—C20118.7 (5)O1—C1—C8—C94.6 (9)
N2—Co1—O2—Co2158.6 (2)C2—C1—C8—C9176.6 (5)
O1—Co1—O2—Co218.32 (19)C10—N1—C9—C8175.5 (6)
O21A—Co1—O2—Co2105.0 (2)Co1—N1—C9—C82.7 (8)
O11A—Co1—O2—Co272.4 (2)C6—C8—C9—N1173.9 (6)
O12Ai—Co2—O2—C2057.9 (6)C1—C8—C9—N17.1 (9)
O12A—Co2—O2—C20122.1 (6)C9—N1—C10—C11166.1 (6)
O1—Co2—O2—C20149.9 (6)Co1—N1—C10—C1115.5 (7)
O1i—Co2—O2—C2030.1 (6)C12—N2—C11—C10149.8 (6)
O12Ai—Co2—O2—Co1108.7 (2)Co1—N2—C11—C1034.2 (6)
O12A—Co2—O2—Co171.3 (2)N1—C10—C11—N230.8 (7)
O1—Co2—O2—Co116.70 (17)C11—N2—C12—C13174.9 (6)
O1i—Co2—O2—Co1163.30 (17)Co1—N2—C12—C130.6 (9)
N2—Co1—O11A—C11A133.8 (5)N2—C12—C13—C14170.6 (6)
N1—Co1—O11A—C11A139.6 (5)N2—C12—C13—C2012.1 (10)
O2—Co1—O11A—C11A40.1 (5)C15—O5—C14—C160.3 (9)
O1—Co1—O11A—C11A43.6 (5)C15—O5—C14—C13179.3 (6)
O2i—Co2—O12A—C11A140.5 (5)C20—C13—C14—O5177.6 (5)
O2—Co2—O12A—C11A39.5 (5)C12—C13—C14—O50.2 (9)
O1—Co2—O12A—C11A32.8 (5)C20—C13—C14—C162.0 (10)
O1i—Co2—O12A—C11A147.2 (5)C12—C13—C14—C16179.4 (6)
N2—Co1—O21A—C21A37.0 (6)O5—C14—C16—C17179.8 (6)
N1—Co1—O21A—C21A49.5 (5)C13—C14—C16—C170.2 (10)
O2—Co1—O21A—C21A130.8 (5)C18—O6—C17—C16173.6 (6)
O1—Co1—O21A—C21A145.5 (5)C18—O6—C17—C196.2 (10)
N2—Co1—N1—C9175.4 (5)C14—C16—C17—O6179.2 (6)
O1—Co1—N1—C97.7 (5)C14—C16—C17—C190.9 (10)
O21A—Co1—N1—C979.1 (5)O6—C17—C19—C20179.1 (6)
O11A—Co1—N1—C998.3 (5)C16—C17—C19—C200.8 (10)
N2—Co1—N1—C102.9 (4)Co1—O2—C20—C19153.3 (4)
O1—Co1—N1—C10174.0 (4)Co2—O2—C20—C1911.0 (9)
O21A—Co1—N1—C1099.2 (4)Co1—O2—C20—C1329.1 (8)
O11A—Co1—N1—C1083.4 (4)Co2—O2—C20—C13166.6 (4)
N1—Co1—N2—C12162.8 (6)C17—C19—C20—O2174.5 (6)
O2—Co1—N2—C1218.5 (5)C17—C19—C20—C133.1 (9)
O1—Co1—N2—C1269 (3)C14—C13—C20—O2173.8 (6)
O21A—Co1—N2—C1271.9 (5)C12—C13—C20—O23.5 (9)
O11A—Co1—N2—C12110.8 (5)C14—C13—C20—C193.6 (9)
N1—Co1—N2—C1121.3 (4)C12—C13—C20—C19179.0 (6)
O2—Co1—N2—C11157.4 (4)Co2—O12A—C11A—O11A4.4 (9)
O21A—Co1—N2—C11112.3 (4)Co2—O12A—C11A—C12A175.4 (4)
O11A—Co1—N2—C1165.1 (4)Co1—O11A—C11A—O12A1.6 (9)
Co1—O1—C1—C2162.2 (4)Co1—O11A—C11A—C12A178.2 (4)
Co2—O1—C1—C218.5 (8)Co1—O21A—C21A—O22A11.6 (10)
Co1—O1—C1—C819.0 (8)Co1—O21A—C21A—C22A167.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C—H0A···O22A0.992.333.269 (13)158
C4—H4A···O6ii0.982.353.326 (8)175
C7—H7A···O6iii0.982.513.421 (9)156
C11—H11A···O3iii0.992.623.602 (8)174
C11—H11B···Cl1iv0.992.733.664 (8)158
C15—H15A···O4v0.982.643.568 (10)158
C12A—H12B···Cl1iii0.982.913.354 (8)108
Symmetry codes: (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co3(C2H3O2)4(C20H22N2O6)2]·2CH2Cl2
Mr1355.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)13.9235 (9), 13.4407 (8), 16.0019 (11)
β (°) 112.724 (8)
V3)2762.2 (3)
Z2
Radiation typeCu Kα
µ (mm1)9.45
Crystal size (mm)0.42 × 0.25 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.320, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10708, 5306, 3777
Rint0.043
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.251, 1.03
No. of reflections5306
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 1.66

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C—H0A···O22A0.992.333.269 (13)158
C4—H4A···O6i0.982.353.326 (8)175
C7—H7A···O6ii0.982.513.421 (9)156
C11—H11A···O3ii0.992.623.602 (8)174
C11—H11B···Cl1iii0.992.733.664 (8)158
C15—H15A···O4iv0.982.643.568 (10)158
C12A—H12B···Cl1ii0.982.913.354 (8)108
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBabushkin, D. E. & Talsi, E. P. (1998). J. Mol. Catal. A, 130, 131–137.  CrossRef CAS Google Scholar
First citationChattopadhyay, S., Bocelli, G., Musatti, A. & Ghosh, A. (2006). Inorg. Chem. Commun. 9, 1053–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationChattopadhyay, S., Drew, G. B. M. & Ghosh, A. (2008). Eur. J. Inorg. Chem. pp. 1693–1701.  Web of Science CSD CrossRef Google Scholar
First citationDong, W., Shi, J., Xu, L., Zhong, J., Duan, J. & Zhang, Y. (2008). Appl. Organomet. Chem. 22, 89–96.  Web of Science CrossRef CAS Google Scholar
First citationGerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673–4676.  CSD CrossRef CAS Web of Science Google Scholar
First citationHe, X., Lu, C.-Z. & Wu, C.-D. (2006). J. Coord. Chem 59, 977–984.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406.  Web of Science CSD CrossRef Google Scholar
First citationYou, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862–871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYou, Z.-L. & Zhou, P. (2007). Inorg. Chem. Commun. 10, 1273–1275.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754–2760.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1900–m1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Fan, D. & Dong, W. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Qian, L., Fan, D., Dong, W., Chen, L. & Qiu, Y. (2008). Inorg. Chim. Acta, 361, 233–240.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m303-m304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds