organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-3,5-bis­­[(E)-3-thienyl­methyl­­idene]piperidin-4-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 17 January 2011; accepted 29 January 2011; online 5 February 2011)

In the title mol­ecule, C22H19NOS2, the piperidine ring adopts an envelope conformation with the benzyl substituent in an equatorial position. Each of the olefinic double bonds has an E configuration. The dihedral angle between the two thio­phene rings is 1.55 (18)°. The thio­phene rings form angles of 72.21 (14) and 73.43 (14)° with the phenyl ring. Both thio­phene rings are disordered over two orientations [occupancy ratios of 0.799 (1):0.201 (1)] at 180° from one another. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions help to stabilize the packing.

Related literature

For a related structure and applications of piperidone derivatives, see: Rajeswari et al. (2009[Rajeswari, K., Pandiarajan, K., Gayathri, P. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o885.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NOS2

  • Mr = 377.52

  • Triclinic, [P \overline 1]

  • a = 6.1809 (3) Å

  • b = 12.7391 (9) Å

  • c = 12.9251 (7) Å

  • α = 112.657 (6)°

  • β = 95.845 (5)°

  • γ = 98.512 (5)°

  • V = 914.65 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.71 mm−1

  • T = 123 K

  • 0.44 × 0.31 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.587, Tmax = 1.000

  • 6091 measured reflections

  • 3615 independent reflections

  • 3114 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.03

  • 3615 reflections

  • 276 parameters

  • 72 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O1i 0.95 2.39 3.177 (4) 140
C16—H16ACg6ii 0.99 2.68 3.6017 (19) 156
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As part of our research (Rajeswari et al., 2009), we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure of the title compound (I) is shown in Fig. 1. The piperidine ring adopts an envelope conformation with the benzyl substituent in an equatorial position. The sum of the bond angles around N1 [328.38 (13)°] indicates a pyramidal geometry. The N1 atom deviates by 0.715 (2) Å from the least-squares plane passing through atoms C1—C5. Each of the olefinic double bonds has an E configuration. The dihedral angle between the two thiophene rings is 1.55 (18)°. The thiophene rings form angles of 72.21 (14) and 73.43 (14)° with the phenyl ring. Both thiophene rings are disordered over two orientations [occupancies of 0.799 (1)/0.201 (1)] at 180° from one another. In the crystal, weak intermolecular C13A—H13A···O1 hydrogen bonds and C16—H16A···π interactions involving the phenyl ring (C17—C22) help to stabilize the packing (Table 1, Fig. 2).

Related literature top

For a related structure and applications of piperidone derivatives, see: Rajeswari et al. (2009).

Experimental top

The mixture of 1-benzylpiperidin-4-one (1.9 ml, 0.01 mol) and thiophene-3-aldehyde (1.8 ml, 0.02 mol) in ethanol (95%, 10 ml), was added with 5 ml of 20% sodium hydroxide followed by the heating on a waterbath for 30 minutes. The solid separated was filtered and recrystallized by slow evaporation from 95% ethanol. The yield was (3.0 g, 80%).

Refinement top

H6 at C6 and H11 at C11 atoms were located in a difference Fourier map and refined freely: C6—H6 = 0.943 (19) Å, C11—H11 = 0.92 (2) Å. Remaining H atoms were positioned geomentrically and allowed to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and Uiso(H) = 1.2 times Ueq(C). Both thiophene rings were found disordered with occupancies 0.799 (1)/0.201 (1). The disordered thiophene moieties were restricted to have C—S distances of 1.718 (2) to 1.718 (15) Å. A damping factor (damp 100 15 in the final refinement cycles) was applied to avoid large displacements of the hydrogen atoms of the less occupied thiophene rings.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Both thiophene rings are disordered over two orientations (0.799 (1)/0.201 (1)).
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate weak hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
1-Benzyl-3,5-bis[(E)-3-thienylmethylidene]piperidin-4-one top
Crystal data top
C22H19NOS2Z = 2
Mr = 377.52F(000) = 396
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Melting point: 429 K
a = 6.1809 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.7391 (9) ÅCell parameters from 3996 reflections
c = 12.9251 (7) Åθ = 6.4–74.0°
α = 112.657 (6)°µ = 2.71 mm1
β = 95.845 (5)°T = 123 K
γ = 98.512 (5)°Chunk, colourless
V = 914.65 (11) Å30.44 × 0.31 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3615 independent reflections
Radiation source: Enhance (Cu) X-ray Source3114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 6.4°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1415
Tmin = 0.587, Tmax = 1.000l = 1612
6091 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.4312P]
where P = (Fo2 + 2Fc2)/3
3615 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.37 e Å3
72 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H19NOS2γ = 98.512 (5)°
Mr = 377.52V = 914.65 (11) Å3
Triclinic, P1Z = 2
a = 6.1809 (3) ÅCu Kα radiation
b = 12.7391 (9) ŵ = 2.71 mm1
c = 12.9251 (7) ÅT = 123 K
α = 112.657 (6)°0.44 × 0.31 × 0.23 mm
β = 95.845 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3114 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 1.000Rint = 0.026
6091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04072 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3615 reflectionsΔρmin = 0.27 e Å3
276 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.18315 (9)1.03620 (4)0.61944 (5)0.0240 (2)0.799 (1)
S2A0.73267 (10)0.08626 (5)0.16709 (6)0.0279 (2)0.799 (1)
O10.8340 (2)0.63874 (10)0.50798 (10)0.0306 (3)
N10.3176 (2)0.57437 (11)0.26094 (11)0.0217 (4)
C10.3584 (3)0.46955 (14)0.27383 (14)0.0246 (4)
C20.5717 (3)0.49305 (13)0.35403 (13)0.0214 (4)
C30.6540 (3)0.61272 (14)0.44395 (13)0.0220 (4)
C40.5080 (3)0.69853 (13)0.45572 (13)0.0201 (4)
C50.2948 (3)0.66158 (13)0.37148 (13)0.0212 (4)
C60.5750 (3)0.80356 (12)0.54314 (13)0.0210 (4)
C7A0.4685 (3)0.90348 (14)0.5796 (3)0.0183 (5)0.799 (1)
C8A0.2461 (4)0.90208 (14)0.5516 (3)0.0207 (6)0.799 (1)
C9A0.4535 (3)1.0966 (3)0.6871 (4)0.0329 (4)0.799 (1)
C10A0.5831 (4)1.0177 (2)0.6602 (3)0.0234 (6)0.799 (1)
C110.6925 (3)0.41222 (11)0.34934 (12)0.0223 (4)
C12A0.6495 (7)0.28977 (15)0.2719 (3)0.0228 (5)0.799 (1)
C13A0.8188 (6)0.22914 (15)0.2613 (3)0.0238 (7)0.799 (1)
C14A0.4666 (3)0.1060 (3)0.1415 (4)0.0310 (5)0.799 (1)
C15A0.4455 (6)0.2152 (2)0.2014 (4)0.0263 (6)0.799 (1)
C160.1124 (3)0.54282 (14)0.17762 (14)0.0250 (4)
C170.0842 (3)0.63387 (14)0.13266 (13)0.0231 (4)
C180.2395 (3)0.66337 (15)0.07197 (14)0.0276 (5)
C190.2113 (3)0.74264 (16)0.02500 (15)0.0310 (5)
C200.0256 (3)0.79278 (16)0.03671 (15)0.0320 (5)
C210.1304 (3)0.76399 (16)0.09586 (15)0.0325 (5)
C220.1007 (3)0.68515 (15)0.14398 (14)0.0278 (5)
C8B0.5804 (14)1.0004 (7)0.6512 (15)0.0207 (6)0.201 (1)
C9B0.1915 (10)1.0076 (7)0.6059 (10)0.0240 (2)0.201 (1)
S1B0.4253 (4)1.1062 (3)0.6913 (4)0.0329 (4)0.201 (1)
S2B0.4472 (4)0.0861 (3)0.1254 (4)0.0310 (5)0.201 (1)
C13B0.438 (2)0.2290 (5)0.2021 (17)0.0238 (7)0.201 (1)
C14B0.7253 (7)0.1115 (10)0.1784 (12)0.0279 (2)0.201 (1)
C7B0.4467 (8)0.8937 (4)0.5864 (15)0.0183 (5)0.201 (1)
C12B0.640 (3)0.2900 (3)0.2707 (10)0.0228 (5)0.201 (1)
C10B0.221 (2)0.9007 (8)0.5623 (14)0.0234 (6)0.201 (1)
C15B0.800 (3)0.2159 (10)0.2558 (16)0.0263 (6)0.201 (1)
H1B0.365350.409610.198400.0296*
H5A0.255960.730170.361520.0255*
H5B0.173050.628630.401230.0255*
H1A0.233120.438720.303050.0296*
H16A0.112770.468940.112920.0300*
H16B0.016610.529560.213840.0300*
H180.366070.628660.062780.0331*
H190.319150.762650.015250.0372*
H200.005810.846760.004150.0383*
H210.257890.797980.103720.0390*
H220.208000.666180.185010.0333*
H60.713 (3)0.8169 (16)0.5895 (17)0.026 (5)*
H8A0.140540.834970.500850.0249*0.799 (1)
H9A0.504861.175980.737260.0395*0.799 (1)
H10A0.736601.035480.691410.0281*0.799 (1)
H110.823 (3)0.4373 (16)0.4015 (17)0.026 (5)*
H13A0.966460.262540.301620.0286*0.799 (1)
H14A0.347810.046200.090520.0372*0.799 (1)
H15A0.309300.240730.197590.0316*0.799 (1)
H8B0.737341.013880.671260.0249*0.201 (1)
H9B0.054091.028850.591820.0288*0.201 (1)
H10B0.104400.835260.519550.0281*0.201 (1)
H13B0.310350.261690.197820.0286*0.201 (1)
H14B0.814850.055040.153650.0335*0.201 (1)
H15B0.946140.241150.298620.0316*0.201 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0245 (2)0.0238 (3)0.0207 (3)0.0093 (2)0.0021 (2)0.0046 (2)
S2A0.0394 (3)0.0223 (3)0.0221 (3)0.0103 (2)0.0069 (2)0.0073 (2)
O10.0245 (6)0.0280 (6)0.0298 (6)0.0071 (5)0.0056 (5)0.0036 (5)
N10.0241 (7)0.0213 (6)0.0165 (6)0.0037 (5)0.0021 (5)0.0060 (5)
C10.0267 (8)0.0213 (7)0.0214 (8)0.0028 (6)0.0019 (6)0.0061 (6)
C20.0223 (7)0.0236 (8)0.0174 (7)0.0032 (6)0.0026 (6)0.0081 (6)
C30.0215 (8)0.0249 (8)0.0182 (7)0.0035 (6)0.0017 (6)0.0083 (6)
C40.0206 (7)0.0233 (7)0.0170 (7)0.0039 (6)0.0028 (6)0.0092 (6)
C50.0208 (7)0.0231 (7)0.0182 (7)0.0044 (6)0.0010 (6)0.0074 (6)
C60.0193 (7)0.0258 (8)0.0178 (7)0.0036 (6)0.0016 (6)0.0094 (6)
C7A0.0202 (8)0.0218 (8)0.0143 (8)0.0006 (6)0.0049 (7)0.0098 (7)
C8A0.0215 (11)0.0253 (10)0.0147 (11)0.0062 (8)0.0045 (8)0.0066 (8)
C9A0.0376 (8)0.0298 (7)0.0286 (6)0.0031 (6)0.0043 (7)0.0106 (5)
C10A0.0225 (10)0.0219 (11)0.0185 (12)0.0006 (9)0.0023 (8)0.0025 (10)
C110.0221 (8)0.0246 (8)0.0185 (7)0.0025 (6)0.0017 (6)0.0081 (6)
C12A0.0290 (9)0.0229 (8)0.0173 (7)0.0048 (6)0.0044 (6)0.0090 (6)
C13A0.0308 (13)0.0199 (11)0.0208 (10)0.0054 (10)0.0040 (9)0.0083 (9)
C14A0.0412 (7)0.0237 (9)0.0216 (10)0.0030 (6)0.0020 (5)0.0046 (7)
C15A0.0285 (11)0.0264 (11)0.0248 (10)0.0041 (10)0.0016 (9)0.0125 (11)
C160.0254 (8)0.0253 (8)0.0193 (7)0.0011 (6)0.0047 (6)0.0072 (6)
C170.0258 (8)0.0224 (7)0.0147 (7)0.0009 (6)0.0047 (6)0.0043 (6)
C180.0234 (8)0.0327 (9)0.0225 (8)0.0031 (7)0.0017 (6)0.0091 (7)
C190.0292 (9)0.0368 (9)0.0244 (8)0.0019 (7)0.0007 (7)0.0141 (7)
C200.0406 (10)0.0284 (8)0.0251 (8)0.0025 (7)0.0032 (7)0.0127 (7)
C210.0360 (10)0.0328 (9)0.0286 (9)0.0132 (8)0.0037 (7)0.0106 (7)
C220.0295 (9)0.0327 (9)0.0219 (8)0.0076 (7)0.0054 (7)0.0113 (7)
C8B0.0215 (11)0.0253 (10)0.0147 (11)0.0062 (8)0.0045 (8)0.0066 (8)
C9B0.0245 (2)0.0238 (3)0.0207 (3)0.0093 (2)0.0021 (2)0.0046 (2)
S1B0.0376 (8)0.0298 (7)0.0286 (6)0.0031 (6)0.0043 (7)0.0106 (5)
S2B0.0412 (7)0.0237 (9)0.0216 (10)0.0030 (6)0.0020 (5)0.0046 (7)
C13B0.0308 (13)0.0199 (11)0.0208 (10)0.0054 (10)0.0040 (9)0.0083 (9)
C14B0.0394 (3)0.0223 (3)0.0221 (3)0.0103 (2)0.0069 (2)0.0073 (2)
C7B0.0202 (8)0.0218 (8)0.0143 (8)0.0006 (6)0.0049 (7)0.0098 (7)
C12B0.0290 (9)0.0229 (8)0.0173 (7)0.0048 (6)0.0044 (6)0.0090 (6)
C10B0.0225 (10)0.0219 (11)0.0185 (12)0.0006 (9)0.0023 (8)0.0025 (10)
C15B0.0285 (11)0.0264 (11)0.0248 (10)0.0041 (10)0.0016 (9)0.0125 (11)
Geometric parameters (Å, º) top
S1A—C8A1.718 (3)C14B—C15B1.30 (2)
S1A—C9A1.718 (3)C16—C171.507 (3)
S1B—C9B1.719 (10)C17—C181.397 (3)
S1B—C8B1.718 (12)C17—C221.391 (3)
S2A—C13A1.718 (3)C18—C191.386 (3)
S2A—C14A1.718 (2)C19—C201.388 (3)
S2B—C13B1.718 (15)C20—C211.382 (3)
S2B—C14B1.719 (8)C21—C221.394 (3)
O1—C31.235 (2)C1—H1A0.9900
N1—C51.470 (2)C1—H1B0.9900
N1—C161.472 (2)C5—H5A0.9900
N1—C11.462 (2)C5—H5B0.9900
C1—C21.506 (3)C6—H60.943 (19)
C2—C31.490 (2)C8A—H8A0.9500
C2—C111.345 (2)C8B—H8B0.9500
C3—C41.491 (3)C9A—H9A0.9500
C4—C61.347 (2)C9B—H9B0.9500
C4—C51.508 (2)C10A—H10A0.9500
C6—C7A1.458 (3)C10B—H10B0.9500
C6—C7B1.458 (9)C11—H110.92 (2)
C7A—C8A1.381 (3)C13A—H13A0.9500
C7A—C10A1.443 (4)C13B—H13B0.9500
C7B—C8B1.372 (18)C14A—H14A0.9500
C7B—C10B1.422 (14)C14B—H14B0.9500
C9A—C10A1.341 (4)C15A—H15A0.9500
C9B—C10B1.307 (17)C15B—H15B0.9500
C11—C12A1.458 (3)C16—H16A0.9900
C11—C12B1.458 (9)C16—H16B0.9900
C12A—C15A1.438 (6)C18—H180.9500
C12A—C13A1.377 (5)C19—H190.9500
C12B—C13B1.38 (2)C20—H200.9500
C12B—C15B1.44 (2)C21—H210.9500
C14A—C15A1.340 (6)C22—H220.9500
S1A···C8Ai3.648 (3)C9A···H5Aiii2.9400
S1A···S1Ai3.3576 (9)C9A···H21i2.9900
S1A···S2Aii3.6853 (9)C9B···H9Bi2.6700
S1A···C21i3.6606 (19)C9B···H8Bv3.0200
S1B···C21i3.469 (4)C10B···H9Bi2.9700
S1B···C6iii3.631 (5)C10B···H5A2.7200
S1B···C18iii3.502 (5)C12A···H1B2.8100
S1B···C5iii3.609 (5)C12B···H1B2.7600
S1B···C4iii3.670 (5)C13B···H19vi3.0000
S2A···C9Aii3.651 (4)C13B···H1B2.4300
S2A···S1Aii3.6853 (9)C13B···H1A3.0200
S2A···C10Aii3.598 (3)C14A···H19vi3.0200
S2A···C8Aii3.569 (3)C15A···H1B2.6100
S2A···C7Aii3.582 (3)C15A···H19vi3.0200
S2B···C14Biv3.692 (15)C17···H5A2.7500
S2B···C8Bii3.475 (16)C17···H16Aix2.9700
S2B···S2Biv3.335 (6)C17···H9Aiii3.0500
S2B···C7Bii3.618 (17)C18···H16Aix2.8400
S1A···H10Av3.0000C18···H9Aiii2.6700
S1B···H21i2.8300C19···H16Aix2.9000
S1B···H5Aiii2.9700C19···H9Aiii3.0800
S2A···H20vi3.1600C20···H16Aix3.0700
S2A···H14Aiv3.0400H1A···H13Av2.5700
S2B···H19vi3.0900H1A···H16B2.5000
O1···C15Bvii3.296 (19)H1A···C13B3.0200
O1···C13Avii3.177 (4)H1A···H5B2.3700
O1···H10Bviii2.7400H1A···H15A2.5000
O1···H11vii2.79 (2)H1A···H13B2.2900
O1···H13Avii2.3900H1B···C15A2.6100
O1···H62.38 (2)H1B···H15A2.1200
O1···H112.39 (2)H1B···C13B2.4300
O1···H5Bviii2.6200H1B···H13B1.8600
O1···H15Bvii2.4900H1B···C12A2.8100
N1···H182.9300H1B···C12B2.7600
C1···C15A3.154 (4)H1B···H16A2.2100
C1···C13B2.974 (12)H5A···C10B2.7200
C4···C11ii3.568 (2)H5A···C7B2.8400
C4···S1Biii3.670 (5)H5A···C7A2.8500
C5···C10B3.228 (15)H5A···C8A2.6000
C5···S1Biii3.609 (5)H5A···C172.7500
C5···C8A3.133 (3)H5A···H8A2.0600
C6···C15Aii3.415 (5)H5A···C9Aiii2.9400
C6···C12Bii3.372 (12)H5A···S1Biii2.9700
C6···S1Biii3.631 (5)H5A···H10B2.3400
C6···C13Bii3.481 (18)H5A···H9Aiii2.5100
C6···C12Aii3.381 (4)H5B···H1A2.3700
C7A···C13Aii3.573 (4)H5B···H8A2.4900
C7A···C9Aiii3.529 (6)H5B···O1v2.6200
C7A···S2Aii3.582 (3)H5B···H16B2.3400
C7B···S2Bii3.618 (17)H6···O12.38 (2)
C7B···C15Bii3.26 (2)H6···H10A2.5500
C7B···C14Bii3.34 (2)H6···H8B2.2900
C7B···C12Bii3.512 (14)H8A···H5B2.4900
C8A···S2Aii3.569 (3)H8A···H5A2.0600
C8A···C53.133 (3)H8A···C43.0300
C8A···C13Aii3.452 (4)H8A···C52.5900
C8A···C10Aiii3.475 (4)H8B···C9Bviii3.0200
C8A···S1Ai3.648 (3)H8B···H62.2900
C8B···S2Bii3.475 (16)H8B···H9Bviii2.3200
C8B···C14Bii3.595 (18)H9A···C17iii3.0500
C9A···C18iii3.520 (5)H9A···H5Aiii2.5100
C9A···S2Aii3.651 (4)H9A···C19iii3.0800
C9A···C7Aiii3.529 (6)H9A···C18iii2.6700
C9B···C9Bi3.357 (14)H9B···H9Bi2.1900
C10A···C14Aii3.504 (6)H9B···H8Bv2.3200
C10A···C8Aiii3.475 (4)H9B···C10Bi2.9700
C10A···S2Aii3.598 (3)H9B···C9Bi2.6700
C10B···C15Bii3.23 (2)H10A···H62.5500
C10B···C14Bii3.40 (2)H10A···S1Aviii3.0000
C10B···C53.228 (15)H10B···H5A2.3400
C11···C4ii3.568 (2)H10B···C52.8100
C12A···C6ii3.381 (4)H10B···O1v2.7400
C12B···C6ii3.372 (12)H11···O1vii2.79 (2)
C12B···C7Bii3.512 (14)H11···O12.39 (2)
C13A···C8Aii3.452 (4)H11···H13A2.4500
C13A···O1vii3.177 (4)H13A···O1vii2.3900
C13A···C7Aii3.573 (4)H13A···H1Aviii2.5700
C13B···C6ii3.481 (18)H13A···H112.4500
C13B···C12.974 (12)H13B···H1B1.8600
C14A···C10Aii3.504 (6)H13B···C22.9500
C14B···C7Bii3.34 (2)H13B···H1A2.2900
C14B···C10Bii3.40 (2)H13B···C12.4000
C14B···C8Bii3.595 (18)H14A···S2Aiv3.0400
C14B···S2Biv3.692 (15)H15A···C12.6500
C15A···C6ii3.415 (5)H15A···H1B2.1200
C15A···C13.154 (4)H15A···H1A2.5000
C15B···C10Bii3.23 (2)H15B···O1vii2.4900
C15B···O1vii3.296 (19)H16A···C17ix2.9700
C15B···C7Bii3.26 (2)H16A···H1B2.2100
C16···C18ix3.520 (2)H16A···C20ix3.0700
C18···C16ix3.520 (2)H16A···C18ix2.8400
C18···S1Biii3.502 (5)H16A···C19ix2.9000
C18···C9Aiii3.520 (5)H16B···H222.3600
C21···S1Bi3.469 (4)H16B···H1A2.5000
C21···S1Ai3.6606 (19)H16B···H5B2.3400
C1···H13B2.4000H18···N12.9300
C1···H15A2.6500H19···S2Bvi3.0900
C2···H13B2.9500H19···C14Avi3.0200
C4···H8A3.0300H19···C15Avi3.0200
C5···H10B2.8100H19···C13Bvi3.0000
C5···H8A2.5900H20···S2Avi3.1600
C7A···H5A2.8500H21···S1Bi2.8300
C7B···H5A2.8400H21···C9Ai2.9900
C8A···H5A2.6000H22···H16B2.3600
C8A—S1A—C9A92.00 (17)N1—C1—H1A109.00
C8B—S1B—C9B90.4 (6)N1—C1—H1B109.00
C13A—S2A—C14A91.2 (2)C2—C1—H1A109.00
C13B—S2B—C14B91.2 (7)C2—C1—H1B109.00
C1—N1—C5109.61 (13)H1A—C1—H1B108.00
C5—N1—C16110.43 (13)N1—C5—H5A109.00
C1—N1—C16108.34 (14)N1—C5—H5B109.00
N1—C1—C2111.86 (15)C4—C5—H5A109.00
C1—C2—C3118.18 (16)C4—C5—H5B109.00
C1—C2—C11123.85 (15)H5A—C5—H5B108.00
C3—C2—C11117.97 (15)C4—C6—H6116.8 (13)
O1—C3—C2121.03 (17)C7A—C6—H6112.8 (13)
C2—C3—C4117.50 (15)C7B—C6—H6114.6 (14)
O1—C3—C4121.44 (16)S1A—C8A—H8A124.00
C5—C4—C6124.57 (17)C7A—C8A—H8A124.00
C3—C4—C6117.12 (16)C7B—C8B—H8B125.00
C3—C4—C5118.29 (14)S1B—C8B—H8B125.00
N1—C5—C4110.75 (14)C10A—C9A—H9A124.00
C4—C6—C7A130.47 (19)S1A—C9A—H9A124.00
C4—C6—C7B127.9 (5)C10B—C9B—H9B123.00
C6—C7A—C8A126.3 (2)S1B—C9B—H9B123.00
C8A—C7A—C10A110.5 (2)C9A—C10A—H10A123.00
C6—C7A—C10A123.0 (2)C7A—C10A—H10A123.00
C6—C7B—C10B134.6 (12)C9B—C10B—H10B124.00
C6—C7B—C8B112.0 (6)C7B—C10B—H10B124.00
C8B—C7B—C10B112.4 (9)C12A—C11—H11114.6 (13)
S1A—C8A—C7A111.9 (2)C2—C11—H11116.2 (13)
S1B—C8B—C7B110.7 (7)C12B—C11—H11116.8 (15)
S1A—C9A—C10A111.6 (3)C12A—C13A—H13A124.00
S1B—C9B—C10B113.6 (8)S2A—C13A—H13A124.00
C7A—C10A—C9A114.0 (3)S2B—C13B—H13B124.00
C7B—C10B—C9B112.2 (11)C12B—C13B—H13B125.00
C2—C11—C12A129.3 (2)S2A—C14A—H14A124.00
C2—C11—C12B127.0 (7)C15A—C14A—H14A124.00
C11—C12A—C13A119.8 (3)S2B—C14B—H14B124.00
C11—C12A—C15A129.5 (3)C15B—C14B—H14B124.00
C13A—C12A—C15A110.7 (3)C12A—C15A—H15A123.00
C13B—C12B—C15B110.8 (11)C14A—C15A—H15A123.00
C11—C12B—C13B126.5 (13)C12B—C15B—H15B123.00
C11—C12B—C15B122.8 (14)C14B—C15B—H15B123.00
S2A—C13A—C12A112.4 (3)H16A—C16—H16B108.00
S2B—C13B—C12B111.1 (9)N1—C16—H16B109.00
S2A—C14A—C15A112.4 (3)C17—C16—H16A109.00
S2B—C14B—C15B112.9 (10)N1—C16—H16A109.00
C12A—C15A—C14A113.3 (3)C17—C16—H16B109.00
C12B—C15B—C14B113.7 (14)C17—C18—H18120.00
N1—C16—C17113.51 (15)C19—C18—H18120.00
C18—C17—C22118.42 (17)C18—C19—H19120.00
C16—C17—C18119.81 (17)C20—C19—H19120.00
C16—C17—C22121.66 (16)C19—C20—H20120.00
C17—C18—C19120.85 (17)C21—C20—H20120.00
C18—C19—C20120.05 (18)C20—C21—H21120.00
C19—C20—C21119.84 (19)C22—C21—H21120.00
C20—C21—C22120.03 (18)C21—C22—H22120.00
C17—C22—C21120.80 (17)C17—C22—H22120.00
C9A—S1A—C8A—C7A0.2 (3)C6—C4—C5—N1151.56 (17)
C8A—S1A—C9A—C10A0.9 (3)C4—C6—C7A—C8A19.5 (4)
C14A—S2A—C13A—C12A0.4 (3)C4—C6—C7A—C10A166.4 (3)
C13A—S2A—C14A—C15A0.0 (4)C10A—C7A—C8A—S1A1.2 (3)
C5—N1—C1—C262.00 (18)C6—C7A—C8A—S1A175.9 (2)
C16—N1—C1—C2177.45 (13)C6—C7A—C10A—C9A176.8 (3)
C16—N1—C5—C4177.33 (14)C8A—C7A—C10A—C9A1.9 (4)
C1—N1—C16—C17164.29 (14)S1A—C9A—C10A—C7A1.7 (4)
C5—N1—C16—C1775.66 (18)C2—C11—C12A—C15A18.5 (5)
C1—N1—C5—C463.39 (18)C2—C11—C12A—C13A163.1 (2)
N1—C1—C2—C11153.36 (16)C15A—C12A—C13A—S2A0.7 (4)
N1—C1—C2—C326.7 (2)C11—C12A—C13A—S2A179.4 (2)
C11—C2—C3—C4174.12 (16)C11—C12A—C15A—C14A179.2 (3)
C3—C2—C11—C12A179.2 (2)C13A—C12A—C15A—C14A0.7 (5)
C11—C2—C3—O14.2 (3)S2A—C14A—C15A—C12A0.4 (5)
C1—C2—C11—C12A0.8 (3)N1—C16—C17—C1862.1 (2)
C1—C2—C3—C45.8 (2)N1—C16—C17—C22121.80 (17)
C1—C2—C3—O1175.89 (16)C16—C17—C18—C19176.81 (16)
O1—C3—C4—C5177.70 (16)C22—C17—C18—C190.6 (3)
O1—C3—C4—C63.6 (3)C16—C17—C22—C21176.10 (16)
C2—C3—C4—C54.0 (2)C18—C17—C22—C210.1 (3)
C2—C3—C4—C6174.63 (16)C17—C18—C19—C200.8 (3)
C3—C4—C5—N129.9 (2)C18—C19—C20—C210.4 (3)
C3—C4—C6—C7A177.8 (2)C19—C20—C21—C220.3 (3)
C5—C4—C6—C7A0.7 (3)C20—C21—C22—C170.5 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+2, y+1, z+1; (viii) x+1, y, z; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1vii0.952.393.177 (4)140
C16—H16A···Cg6ix0.992.683.6017 (19)156
Symmetry codes: (vii) x+2, y+1, z+1; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19NOS2
Mr377.52
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.1809 (3), 12.7391 (9), 12.9251 (7)
α, β, γ (°)112.657 (6), 95.845 (5), 98.512 (5)
V3)914.65 (11)
Z2
Radiation typeCu Kα
µ (mm1)2.71
Crystal size (mm)0.44 × 0.31 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.587, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6091, 3615, 3114
Rint0.026
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.03
No. of reflections3615
No. of parameters276
No. of restraints72
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1i0.952.393.177 (4)140
C16—H16A···Cg6ii0.992.683.6017 (19)156
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRajeswari, K., Pandiarajan, K., Gayathri, P. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds