organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium pyridine-2,5-di­carboxyl­ate di­methyl sulfoxide mono­solvate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: minoobayan@yahoo.com

(Received 21 January 2011; accepted 7 February 2011; online 12 February 2011)

In the crystal structure of the title solvated molecular salt, C3H12N22+·C7H3NO42−·C2H6OS, two amine groups of propane-1,3-diamine (pda) are protonated and two carb­oxy­lic acid groups of pyridine-2,5-dicarb­oxy­lic acid (2,5-pydcH2) are deprotonated. The crystal packing features N—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions.

Related literature

Pyridine-2,5-dicarb­oxy­lic acid (2,5-pydcH2) can coordinate to metal centers (Pasdar et al., 2011[Pasdar, H., Safari, Z., Aghabozorg, H., Notash, B. & Mirzaei, M. (2011). Acta Cryst. E67, m221.]) or form hydrogen-bonded networks (Zeng et al., 2005[Zeng, M. H., Feng, X. L. & Chen, X. M. (2005). Dalton Trans. pp. 2217-2223.]). For work by our group on the synthesis of proton-transfer compounds containing different proton donor and acceptor groups, see: Eshtiagh-Hosseini et al. (2010a[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010a). Acta Cryst. E66, o2810-o2811.],b[Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010b). Acta Cryst. E66, o1368-o1369.]); Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.], 2011[Aghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011). Acta Cryst. E67, o292.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·C7H3NO42−·C2H6OS

  • Mr = 319.39

  • Monoclinic, P 21 /n

  • a = 11.984 (2) Å

  • b = 10.346 (2) Å

  • c = 12.942 (3) Å

  • β = 111.63 (3)°

  • V = 1491.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 K

  • 0.4 × 0.3 × 0.3 mm

Data collection
  • STOE IPDS 2T diffractometer

  • 12249 measured reflections

  • 4010 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.07

  • 4010 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.91 (2) 1.96 (2) 2.8260 (16) 157.8 (17)
N2—H2B⋯O3ii 0.86 (2) 2.06 (2) 2.8461 (17) 151.0 (18)
N2—H2C⋯O2iii 0.92 (2) 1.84 (2) 2.7385 (17) 164.4 (18)
N3—H3A⋯O1iv 0.91 (2) 1.85 (2) 2.7369 (17) 161.6 (18)
N3—H3B⋯O3 0.890 (19) 2.073 (19) 2.8427 (16) 144.2 (16)
N3—H3C⋯O4v 0.86 (2) 1.96 (2) 2.7925 (17) 164.2 (18)
C8—H8A⋯O5vi 0.97 2.50 3.4614 (19) 170
C10—H10A⋯O5 0.97 2.53 3.4718 (19) 165
C11—H11B⋯O1ii 0.96 2.46 3.424 (2) 178
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) x-1, y, z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-2,5-dicarboxylic acid (2,5-pydcH2) can coordinate to metal centers (Pasdar et al., 2011) or form hydrogen-bonded networks (Zeng et al., 2005). Our research group has been focused on synthesis of proton transfer compounds containing different proton donor and acceptor groups (Eshtiagh-Hosseini et al., 2010a; Eshtiagh-Hosseini et al., 2010b; Aghabozorg et al., 2008, 2011).

We report here the synthesis and crystal structure of the title proton transfer compound, [pdaH2]2+.[2,5-pydc]2-.(DMSO). The asymmetric unit contains deprotonated pyridine-2,5-dicarboxylic acid, diprotonated propane-1,3-diamine, and one DMSO solvent molecule (Fig. 1). Crystal packing is stabilized by N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Fig. 2 & Table 1).

Related literature top

Pyridine-2,5-dicarboxylic acid (2,5-pydcH2) can coordinate to metal centers (Pasdar et al., 2011) or form hydrogen-bonded networks (Zeng et al., 2005). For work by our group on the synthesis of proton-transfer compounds containing different proton donor and acceptor groups, see: Eshtiagh-Hosseini et al. (2010a,b); Aghabozorg et al. (2008, 2011).

Experimental top

Propane-1,3-diamine (0.07 g, 0.29 ml, 1 mmol) was added to a DMSO/H2O solution of pyridine-2,5-dicarboxylic acid (0.17 g, 1 mmol) (13 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were isolated by slow evaporation of the solvent after two months.

Refinement top

Nitrogen-bound H atoms were found in difference Fourier map and refined isotropically without restraint. Carbon-bound H atoms were positioned geometrically and refined as riding atoms with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the a axis, showing N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (dashed lines).
Propane-1,3-diaminium pyridine-2,5-dicarboxylate dimethyl sulfoxide monosolvate top
Crystal data top
C3H12N22+·C7H3NO42·C2H6OSF(000) = 680
Mr = 319.39Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4010 reflections
a = 11.984 (2) Åθ = 2.6–29.2°
b = 10.346 (2) ŵ = 0.24 mm1
c = 12.942 (3) ÅT = 120 K
β = 111.63 (3)°Block, colorless
V = 1491.6 (6) Å30.4 × 0.3 × 0.3 mm
Z = 4
Data collection top
STOE IPDS 2T
diffractometer
3380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 29.2°, θmin = 2.6°
Detector resolution: 0.15 pixels mm-1h = 1614
rotation method scansk = 1414
12249 measured reflectionsl = 1717
4010 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6814P]
where P = (Fo2 + 2Fc2)/3
4010 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C3H12N22+·C7H3NO42·C2H6OSV = 1491.6 (6) Å3
Mr = 319.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.984 (2) ŵ = 0.24 mm1
b = 10.346 (2) ÅT = 120 K
c = 12.942 (3) Å0.4 × 0.3 × 0.3 mm
β = 111.63 (3)°
Data collection top
STOE IPDS 2T
diffractometer
3380 reflections with I > 2σ(I)
12249 measured reflectionsRint = 0.035
4010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
4010 reflectionsΔρmin = 0.34 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25330 (3)0.98812 (3)0.01042 (3)0.01677 (10)
O10.89632 (10)0.63514 (12)0.26504 (10)0.0237 (2)
O20.87767 (10)0.45057 (12)0.17030 (11)0.0271 (3)
O30.28902 (9)0.63320 (10)0.16349 (8)0.0147 (2)
O40.28589 (9)0.41856 (10)0.13819 (8)0.0145 (2)
O50.26031 (11)1.00924 (11)0.12737 (9)0.0216 (2)
N10.52969 (11)0.63725 (11)0.20599 (10)0.0136 (2)
N20.08584 (11)0.67039 (12)0.18378 (10)0.0120 (2)
H2A0.1484 (18)0.6233 (18)0.1797 (15)0.018 (5)*
H2B0.1114 (17)0.7160 (19)0.2439 (16)0.019 (5)*
H2C0.0253 (19)0.619 (2)0.1876 (16)0.024 (5)*
N30.09589 (11)0.71239 (12)0.22640 (10)0.0122 (2)
H3A0.0361 (18)0.6692 (19)0.2400 (15)0.020 (5)*
H3B0.1526 (17)0.6583 (18)0.2240 (14)0.013 (4)*
H3C0.1289 (18)0.768 (2)0.2777 (16)0.021 (5)*
C10.83737 (12)0.54143 (14)0.20910 (12)0.0143 (3)
C20.70396 (12)0.53745 (13)0.18810 (11)0.0116 (2)
C30.63536 (13)0.43090 (13)0.13750 (12)0.0151 (3)
H30.66940.36310.11220.018*
C40.51512 (13)0.42656 (13)0.12501 (12)0.0144 (3)
H40.46820.35500.09290.017*
C50.46609 (11)0.53089 (13)0.16125 (11)0.0108 (2)
C60.33590 (12)0.52826 (13)0.15352 (10)0.0111 (2)
C70.64639 (12)0.63845 (13)0.21994 (11)0.0133 (3)
H70.69150.71090.25280.016*
C80.03989 (13)0.75898 (13)0.08677 (11)0.0144 (3)
H8A0.10220.82020.08960.017*
H8B0.02780.80730.09070.017*
C90.00090 (12)0.68569 (13)0.02247 (11)0.0134 (3)
H9A0.06220.62490.02640.016*
H9B0.06820.63740.02720.016*
C100.04461 (13)0.78090 (13)0.11828 (11)0.0139 (3)
H10A0.10560.83570.10840.017*
H10B0.02100.83570.11830.017*
C110.37246 (17)0.88029 (16)0.02034 (14)0.0256 (3)
H11A0.44600.91230.07440.038*
H11B0.38030.87390.05070.038*
H11C0.35530.79650.04270.038*
C120.31441 (17)1.13018 (16)0.02737 (15)0.0264 (3)
H12A0.26501.20330.02750.040*
H12B0.31671.11910.10020.040*
H12C0.39431.14440.02530.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01593 (17)0.01708 (17)0.01747 (17)0.00372 (13)0.00635 (13)0.00230 (13)
O10.0141 (5)0.0294 (6)0.0311 (6)0.0076 (5)0.0125 (5)0.0101 (5)
O20.0145 (5)0.0236 (6)0.0466 (7)0.0026 (5)0.0151 (5)0.0072 (5)
O30.0106 (4)0.0155 (5)0.0186 (5)0.0014 (4)0.0061 (4)0.0011 (4)
O40.0103 (4)0.0146 (5)0.0187 (5)0.0015 (4)0.0054 (4)0.0018 (4)
O50.0245 (6)0.0222 (5)0.0223 (5)0.0018 (4)0.0137 (4)0.0039 (4)
N10.0118 (5)0.0126 (5)0.0174 (5)0.0001 (4)0.0065 (4)0.0009 (4)
N20.0098 (5)0.0133 (5)0.0133 (5)0.0003 (4)0.0046 (4)0.0006 (4)
N30.0092 (5)0.0134 (5)0.0133 (5)0.0004 (5)0.0035 (4)0.0003 (4)
C10.0103 (6)0.0176 (6)0.0164 (6)0.0004 (5)0.0064 (5)0.0038 (5)
C20.0099 (6)0.0131 (6)0.0131 (6)0.0005 (5)0.0057 (5)0.0017 (5)
C30.0139 (6)0.0126 (6)0.0208 (6)0.0015 (5)0.0087 (5)0.0021 (5)
C40.0122 (6)0.0118 (6)0.0195 (6)0.0013 (5)0.0063 (5)0.0021 (5)
C50.0085 (6)0.0121 (6)0.0124 (5)0.0006 (5)0.0044 (5)0.0022 (5)
C60.0082 (6)0.0152 (6)0.0101 (5)0.0001 (5)0.0035 (4)0.0008 (5)
C70.0116 (6)0.0114 (6)0.0172 (6)0.0021 (5)0.0056 (5)0.0021 (5)
C80.0166 (7)0.0125 (6)0.0144 (6)0.0006 (5)0.0059 (5)0.0008 (5)
C90.0121 (6)0.0132 (6)0.0145 (6)0.0004 (5)0.0047 (5)0.0000 (5)
C100.0149 (6)0.0127 (6)0.0137 (6)0.0001 (5)0.0049 (5)0.0007 (5)
C110.0380 (10)0.0197 (7)0.0261 (8)0.0078 (7)0.0201 (7)0.0009 (6)
C120.0351 (9)0.0171 (7)0.0315 (8)0.0015 (7)0.0175 (7)0.0028 (6)
Geometric parameters (Å, º) top
S1—O51.5007 (12)C3—C41.3904 (19)
S1—C111.7791 (17)C3—H30.9300
S1—C121.7888 (17)C4—C51.3905 (18)
O1—C11.2594 (18)C4—H40.9300
O2—C11.2442 (19)C5—C61.5265 (18)
O3—C61.2508 (17)C7—H70.9300
O4—C61.2645 (17)C8—C91.5182 (19)
N1—C51.3423 (17)C8—H8A0.9700
N1—C71.3427 (18)C8—H8B0.9700
N2—C81.4866 (18)C9—C101.5189 (19)
N2—H2A0.91 (2)C9—H9A0.9700
N2—H2B0.86 (2)C9—H9B0.9700
N2—H2C0.92 (2)C10—H10A0.9700
N3—C101.4847 (18)C10—H10B0.9700
N3—H3A0.91 (2)C11—H11A0.9600
N3—H3B0.890 (19)C11—H11B0.9600
N3—H3C0.86 (2)C11—H11C0.9600
C1—C21.5204 (19)C12—H12A0.9600
C2—C31.3867 (19)C12—H12B0.9600
C2—C71.3955 (18)C12—H12C0.9600
O5—S1—C11105.87 (8)N1—C7—C2123.87 (13)
O5—S1—C12106.25 (7)N1—C7—H7118.1
C11—S1—C1297.83 (8)C2—C7—H7118.1
C5—N1—C7117.60 (12)N2—C8—C9111.69 (11)
C8—N2—H2A109.7 (12)N2—C8—H8A109.3
C8—N2—H2B108.8 (13)C9—C8—H8A109.3
H2A—N2—H2B108.5 (17)N2—C8—H8B109.3
C8—N2—H2C110.5 (12)C9—C8—H8B109.3
H2A—N2—H2C112.2 (17)H8A—C8—H8B107.9
H2B—N2—H2C107.1 (17)C8—C9—C10109.33 (12)
C10—N3—H3A109.5 (12)C8—C9—H9A109.8
C10—N3—H3B108.8 (11)C10—C9—H9A109.8
H3A—N3—H3B111.2 (17)C8—C9—H9B109.8
C10—N3—H3C108.6 (13)C10—C9—H9B109.8
H3A—N3—H3C110.5 (17)H9A—C9—H9B108.3
H3B—N3—H3C108.1 (17)N3—C10—C9111.05 (11)
O2—C1—O1126.50 (14)N3—C10—H10A109.4
O2—C1—C2116.52 (13)C9—C10—H10A109.4
O1—C1—C2116.98 (13)N3—C10—H10B109.4
C3—C2—C7117.59 (12)C9—C10—H10B109.4
C3—C2—C1120.48 (12)H10A—C10—H10B108.0
C7—C2—C1121.92 (12)S1—C11—H11A109.5
C2—C3—C4119.29 (13)S1—C11—H11B109.5
C2—C3—H3120.4H11A—C11—H11B109.5
C4—C3—H3120.4S1—C11—H11C109.5
C3—C4—C5118.97 (13)H11A—C11—H11C109.5
C3—C4—H4120.5H11B—C11—H11C109.5
C5—C4—H4120.5S1—C12—H12A109.5
N1—C5—C4122.59 (12)S1—C12—H12B109.5
N1—C5—C6116.55 (11)H12A—C12—H12B109.5
C4—C5—C6120.85 (12)S1—C12—H12C109.5
O3—C6—O4126.18 (12)H12A—C12—H12C109.5
O3—C6—C5117.70 (12)H12B—C12—H12C109.5
O4—C6—C5116.11 (12)
O2—C1—C2—C36.0 (2)C3—C4—C5—C6177.55 (12)
O1—C1—C2—C3173.18 (13)N1—C5—C6—O316.67 (17)
O2—C1—C2—C7175.04 (14)C4—C5—C6—O3164.35 (13)
O1—C1—C2—C75.8 (2)N1—C5—C6—O4162.89 (12)
C7—C2—C3—C42.7 (2)C4—C5—C6—O416.09 (18)
C1—C2—C3—C4176.36 (13)C5—N1—C7—C21.7 (2)
C2—C3—C4—C51.6 (2)C3—C2—C7—N11.1 (2)
C7—N1—C5—C42.97 (19)C1—C2—C7—N1177.95 (13)
C7—N1—C5—C6175.99 (11)N2—C8—C9—C10179.79 (11)
C3—C4—C5—N11.4 (2)C8—C9—C10—N3173.86 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.91 (2)1.96 (2)2.8260 (16)157.8 (17)
N2—H2B···O3ii0.86 (2)2.06 (2)2.8461 (17)151.0 (18)
N2—H2C···O2iii0.92 (2)1.84 (2)2.7385 (17)164.4 (18)
N3—H3A···O1iv0.91 (2)1.85 (2)2.7369 (17)161.6 (18)
N3—H3B···O30.890 (19)2.073 (19)2.8427 (16)144.2 (16)
N3—H3C···O4v0.86 (2)1.96 (2)2.7925 (17)164.2 (18)
C8—H8A···O5vi0.972.503.4614 (19)170
C10—H10A···O50.972.533.4718 (19)165
C11—H11B···O1ii0.962.463.424 (2)178
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC3H12N22+·C7H3NO42·C2H6OS
Mr319.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.984 (2), 10.346 (2), 12.942 (3)
β (°) 111.63 (3)
V3)1491.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.4 × 0.3 × 0.3
Data collection
DiffractometerSTOE IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12249, 4010, 3380
Rint0.035
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.07
No. of reflections4010
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.91 (2)1.96 (2)2.8260 (16)157.8 (17)
N2—H2B···O3ii0.86 (2)2.06 (2)2.8461 (17)151.0 (18)
N2—H2C···O2iii0.92 (2)1.84 (2)2.7385 (17)164.4 (18)
N3—H3A···O1iv0.91 (2)1.85 (2)2.7369 (17)161.6 (18)
N3—H3B···O30.890 (19)2.073 (19)2.8427 (16)144.2 (16)
N3—H3C···O4v0.86 (2)1.96 (2)2.7925 (17)164.2 (18)
C8—H8A···O5vi0.972.503.4614 (19)170
C10—H10A···O50.972.533.4718 (19)165
C11—H11B···O1ii0.962.463.424 (2)178
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+2, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011). Acta Cryst. E67, o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010a). Acta Cryst. E66, o2810–o2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010b). Acta Cryst. E66, o1368–o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPasdar, H., Safari, Z., Aghabozorg, H., Notash, B. & Mirzaei, M. (2011). Acta Cryst. E67, m221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZeng, M. H., Feng, X. L. & Chen, X. M. (2005). Dalton Trans. pp. 2217–2223.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds