organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro-2-methyl-3-nitro­benzene

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 27 January 2011; accepted 6 February 2011; online 12 February 2011)

In the title compound, C7H6ClNO2, the chloro, methyl and nitro substituents are situated next to each other in this order on the benzene ring, with the mean plane of the nitro group twisted away from the mean plane of the benzene ring by 38.81 (5)°.

Related literature

For information on industrial chemicals, see: Chloro­nitro­toluenes (2010[Chloronitrotoluenes (2010). Environment Agency. Environment Agency Wales, UK.]). For the use of the title compound as a starting material in the synthesis of 7-chlorovasicine (pyrrolo[2,1-b]quinazolin-3-ol, 8-chloro-1,2,3,9-tetrahydro), see: Southwick & Cremer (1959[Southwick, P. L. & Cremer, S. E. (1959). J. Org. Chem. 24, 753-755.]). For the toxic effects of the title compound on D. magna, see: Ramos et al. (2001[Ramos, E. U., Vaal, M. A. & Hermens, J. L. M. (2001). Environ. Toxicol. Pharmacol. 11, 149-158.]) and on T. pyriformis, see: Schultz (1999[Schultz, T. W. (1999). Chem. Res. Toxicol. 12, 1262-1267.]); Katritzky et al. (2003[Katritzky, A. R., Oliferenko, P., Oliferenko, A., Lomaka, A. & Karelson, M. (2003). J. Phys. Org. Chem. 16, 811-817.]). For a related structure, see: Liu & Du (2008[Liu, H.-L. & Du, Z.-Q. (2008). Acta Cryst. E64, o536.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO2

  • Mr = 171.58

  • Orthorhombic, P b c a

  • a = 7.3061 (5) Å

  • b = 13.8392 (9) Å

  • c = 14.6799 (10) Å

  • V = 1484.29 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 125 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.956

  • 22310 measured reflections

  • 2271 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.05

  • 2271 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C7H6ClNO2, also known as 2-chloro-6-nitrotoluene, is a common intermediate in the synthesis of industrial chemicals (Chloronitrotoluenes, 2010), as well as in pharmaceuticals such as the bronchodilatory compound vasicine (Southwick et al., 1959). 1-chloro-2-methyl-3-nitrobenzene is relatively toxic to biological species such as the freashwater flea D. magna and freshwater protozoa T. pyriformis, which suggests that this compound could become a harmful pollutant (Katritzky et al., 2003; Schultz, 1999; Ramos et al., 2001; Chloronitrotoluenes, 2010).

C7H6ClNO2, (I), contains an aromatic ring with chloro, methyl and nitro substituents arranged in this order next to one another, The C—Cl and C—N bond lengths and angles in (I) are very close to those found in a similar structure (Liu & Du, 2008). The central methyl group interacts sterically with the neighboring chloro and nitro groups, as evidenced by the N—C3—C4 and Cl—C1—C6 angles of 115.0 (1)° and 116.78 (8)°, respectively. These angles are compressed from the ideal sp2 - hybridized carbon atom. The mean plane of the nitro group is twisted away from the mean plane of the aromatic ring by 38.81 (5)°.

Related literature top

For information on industrial chemicals, see: Chloronitrotoluenes (2010). For the use of the title compound as a starting material in the synthesis of 7-chlorovasicine (pyrrolo[2,1-b]quinazolin-3-ol, 8-chloro-1,2,3,9-tetrahydro), see: Southwick & Cremer (1959). For its toxic effects on D. magna, see: Ramos et al. (2001) and on T. pyriformis, see: Schultz (1999); Katritzky et al. (2003). For a related structure, see: Liu & Du (2008).

Experimental top

Crystalline1-chloro-2-methyl-3-nitrobenzene was purchase from Aldrich Chemical Company, USA.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 × Ueq(C) of the aryl and methyl C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level.
1-Chloro-2-methyl-3-nitrobenzene top
Crystal data top
C7H6ClNO2F(000) = 704
Mr = 171.58Dx = 1.536 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9979 reflections
a = 7.3061 (5) Åθ = 2.8–30.5°
b = 13.8392 (9) ŵ = 0.46 mm1
c = 14.6799 (10) ÅT = 125 K
V = 1484.29 (17) Å3Block, colorless
Z = 80.32 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2271 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.868, Tmax = 0.956k = 1919
22310 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4184P]
where P = (Fo2 + 2Fc2)/3
2271 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H6ClNO2V = 1484.29 (17) Å3
Mr = 171.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3061 (5) ŵ = 0.46 mm1
b = 13.8392 (9) ÅT = 125 K
c = 14.6799 (10) Å0.32 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1963 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.956Rint = 0.038
22310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
2271 reflectionsΔρmin = 0.38 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.02248 (4)0.79411 (2)0.19541 (2)0.02921 (10)
O10.18412 (16)0.46030 (7)0.46513 (7)0.0383 (2)
O20.27741 (17)0.60583 (8)0.49519 (6)0.0414 (3)
N0.21538 (15)0.54450 (7)0.44328 (7)0.0269 (2)
C10.09994 (14)0.68212 (7)0.23325 (8)0.0200 (2)
C20.11332 (14)0.66404 (7)0.32692 (7)0.0202 (2)
C30.18229 (14)0.57217 (8)0.34792 (7)0.0198 (2)
C40.22965 (15)0.50274 (8)0.28388 (8)0.0207 (2)
H4A0.27340.44120.30260.025*
C50.21212 (15)0.52466 (8)0.19236 (7)0.0218 (2)
H5A0.24390.47830.14740.026*
C60.14754 (15)0.61522 (8)0.16681 (7)0.0218 (2)
H6A0.13600.63130.10410.026*
C70.05257 (18)0.73682 (9)0.39679 (9)0.0294 (3)
H7A0.05020.77440.37250.044*
H7B0.15440.78040.41110.044*
H7C0.01390.70320.45230.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02669 (16)0.01774 (15)0.04320 (19)0.00006 (9)0.00430 (11)0.00518 (11)
O10.0576 (6)0.0269 (5)0.0303 (5)0.0020 (4)0.0027 (4)0.0077 (4)
O20.0613 (7)0.0399 (6)0.0232 (4)0.0141 (5)0.0070 (4)0.0023 (4)
N0.0321 (5)0.0269 (5)0.0218 (4)0.0029 (4)0.0012 (4)0.0015 (4)
C10.0176 (4)0.0150 (4)0.0274 (5)0.0011 (4)0.0013 (4)0.0010 (4)
C20.0185 (5)0.0174 (5)0.0248 (5)0.0030 (4)0.0024 (4)0.0032 (4)
C30.0208 (5)0.0197 (5)0.0189 (5)0.0033 (4)0.0009 (4)0.0007 (4)
C40.0207 (5)0.0159 (4)0.0256 (5)0.0006 (4)0.0003 (4)0.0015 (4)
C50.0221 (5)0.0202 (5)0.0232 (5)0.0012 (4)0.0013 (4)0.0054 (4)
C60.0222 (5)0.0226 (5)0.0207 (5)0.0027 (4)0.0013 (4)0.0003 (4)
C70.0326 (6)0.0234 (5)0.0324 (6)0.0011 (5)0.0074 (5)0.0095 (5)
Geometric parameters (Å, º) top
Cl—C11.7410 (11)C4—C51.3832 (16)
O1—N1.2300 (13)C4—H4A0.9500
O2—N1.2275 (14)C5—C61.3907 (16)
N—C31.4713 (14)C5—H5A0.9500
C1—C61.3891 (15)C6—H6A0.9500
C1—C21.4010 (15)C7—H7A0.9800
C2—C31.4018 (15)C7—H7B0.9800
C2—C71.5045 (15)C7—H7C0.9800
C3—C41.3882 (15)
O2—N—O1124.17 (11)C3—C4—H4A120.6
O2—N—C3118.13 (10)C4—C5—C6119.41 (10)
O1—N—C3117.66 (10)C4—C5—H5A120.3
C6—C1—C2123.55 (10)C6—C5—H5A120.3
C6—C1—Cl116.78 (8)C1—C6—C5119.74 (10)
C2—C1—Cl119.66 (8)C1—C6—H6A120.1
C1—C2—C3113.76 (10)C5—C6—H6A120.1
C1—C2—C7121.93 (10)C2—C7—H7A109.5
C3—C2—C7124.29 (10)C2—C7—H7B109.5
C4—C3—C2124.64 (10)H7A—C7—H7B109.5
C4—C3—N115.04 (10)C2—C7—H7C109.5
C2—C3—N120.29 (10)H7A—C7—H7C109.5
C5—C4—C3118.87 (10)H7B—C7—H7C109.5
C5—C4—H4A120.6
C6—C1—C2—C30.94 (15)O1—N—C3—C438.35 (15)
Cl—C1—C2—C3178.30 (7)O2—N—C3—C238.54 (16)
C6—C1—C2—C7177.26 (11)O1—N—C3—C2143.61 (12)
Cl—C1—C2—C73.50 (15)C2—C3—C4—C51.31 (17)
C1—C2—C3—C41.68 (15)N—C3—C4—C5176.63 (10)
C7—C2—C3—C4176.46 (11)C3—C4—C5—C60.09 (17)
C1—C2—C3—N176.17 (9)C2—C1—C6—C50.13 (17)
C7—C2—C3—N5.69 (16)Cl—C1—C6—C5179.39 (8)
O2—N—C3—C4139.50 (12)C4—C5—C6—C10.59 (17)

Experimental details

Crystal data
Chemical formulaC7H6ClNO2
Mr171.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)125
a, b, c (Å)7.3061 (5), 13.8392 (9), 14.6799 (10)
V3)1484.29 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.868, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22310, 2271, 1963
Rint0.038
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.05
No. of reflections2271
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChloronitrotoluenes (2010). Environment Agency. Environment Agency Wales, UK.  Google Scholar
First citationKatritzky, A. R., Oliferenko, P., Oliferenko, A., Lomaka, A. & Karelson, M. (2003). J. Phys. Org. Chem. 16, 811–817.  Web of Science CrossRef CAS Google Scholar
First citationLiu, H.-L. & Du, Z.-Q. (2008). Acta Cryst. E64, o536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamos, E. U., Vaal, M. A. & Hermens, J. L. M. (2001). Environ. Toxicol. Pharmacol. 11, 149–158.  Web of Science CrossRef Google Scholar
First citationSchultz, T. W. (1999). Chem. Res. Toxicol. 12, 1262–1267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouthwick, P. L. & Cremer, S. E. (1959). J. Org. Chem. 24, 753–755.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds