organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(Benzyl­carbamo­yl)prop-2-enoic acid

aHuaiyin Institute of Technology, Huaiyin 223003, Jiangsu, People's Republic of China, and bCollege of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
*Correspondence e-mail: dsl710221@163.com

(Received 19 October 2010; accepted 17 February 2011; online 23 February 2011)

The title compound, C11H11NO3, was synthesized by the reaction of maleic andydride and phenyl­methanamine. The mol­ecular conformation is stabilized by by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a chain along the b axis.

Related literature

For related structures, see Gowda et al. (2009a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.],c[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009c). Acta Cryst. E65, o2945.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3

  • Mr = 205.21

  • Monoclinic, P 21 /c

  • a = 10.651 (2) Å

  • b = 12.601 (3) Å

  • c = 8.3130 (17) Å

  • β = 108.44 (3)°

  • V = 1058.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.991

  • 2018 measured reflections

  • 1913 independent reflections

  • 1013 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.175

  • S = 1.00

  • 1913 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1 0.85 1.61 2.461 (3) 178
N—H0A⋯O2i 0.86 2.00 2.855 (3) 171
C9—H9A⋯O3i 0.93 2.48 3.413 (4) 177
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitution on the crystal structures of this class compounds (Gowda et al., 2009a, 2009b, 2009c; Prasad et al., 2002), the crystal structure of (Z)-4-(benzylamino)-4-oxobut-2-enoic acid has been determined. The molecular conformation (Fig. 1) is stabilized by intramolecular O–H···O bonds. As can be seen from the packing diagram (Fig.2), molecules are linked by intermolecular N–H···O and C–H···O hydrogen bonds to form a chain along the b axis in which they may be effective in the stabilization of structure (Table 1).

Related literature top

For related structures, see Gowda et al. (2009a,b,c); Prasad et al. (2002).

Experimental top

A solution of maleic andydride (10 g, 0.1 mol) in dichloromethane (50 ml) was added dropwise to an ice-cold solution of phenylmethanamine (10.7 g,0.1 mol) in dichloromethane (50 ml). After the addition was complete (1.5 h), the resulting suspension was stirred at ambient temperature for 20 h. A white solid was collected and washed twice with ether to give the crude product. This crude soild was partitioned between a saturated NaHCO3 solution and ether. The aqueous fraction was brought to pH = 1–2 with 5 N HCl in an ice bath then extracted with a (1:l) EtOAc-THF mixture. The combined organic layers were dried with Na2SO4, filtered and concentrated to give (Z)-4-(benzylamino)-4-oxobut-2-enoic acid as a white solid. The product was purified by repeated crystallization from methanol. Crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in methanol.

Refinement top

H atoms were positioned geometrically and H-atom parameters were constrained, with O—H = 0.85 Å(for OH), N—H = 0.86 Å(for NH) and C—H = 0.93,0.93 and 0.97Å for aromatic, methylene and doublebond H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
(Z)-3-(Benzylcarbamoyl)prop-2-enoic acid top
Crystal data top
C11H11NO3F(000) = 432
Mr = 205.21Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.651 (2) Åθ = 9–12°
b = 12.601 (3) ŵ = 0.10 mm1
c = 8.3130 (17) ÅT = 298 K
β = 108.44 (3)°Block, colorless
V = 1058.4 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1013 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.972, Tmax = 0.991l = 99
2018 measured reflections3 standard reflections every 200 reflections
1913 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1913 reflectionsΔρmax = 0.17 e Å3
137 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
C11H11NO3V = 1058.4 (4) Å3
Mr = 205.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.651 (2) ŵ = 0.10 mm1
b = 12.601 (3) ÅT = 298 K
c = 8.3130 (17) Å0.30 × 0.20 × 0.10 mm
β = 108.44 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1013 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.972, Tmax = 0.9913 standard reflections every 200 reflections
2018 measured reflections intensity decay: 1%
1913 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
1913 reflectionsΔρmin = 0.16 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.6963 (2)0.4593 (2)0.1087 (3)0.0537 (7)
H0A0.66780.52110.12420.064*
O10.6741 (2)0.28274 (17)0.1283 (3)0.0636 (7)
C11.0039 (4)0.3602 (3)0.2253 (6)0.0904 (14)
H1A0.96780.29620.17670.108*
O20.3695 (2)0.17148 (18)0.3280 (3)0.0750 (8)
C21.1254 (4)0.3611 (4)0.3536 (7)0.1015 (16)
H2A1.16930.29750.39030.122*
O30.5270 (2)0.15868 (18)0.2112 (3)0.0669 (7)
H3B0.57860.20050.18210.100*
C31.1799 (4)0.4531 (4)0.4250 (6)0.0853 (13)
H3A1.26110.45320.51060.102*
C41.1149 (4)0.5457 (4)0.3707 (6)0.0871 (13)
H4A1.15190.60970.41880.104*
C50.9942 (4)0.5450 (3)0.2443 (5)0.0754 (11)
H5A0.95050.60880.20850.090*
C60.9377 (3)0.4525 (3)0.1707 (4)0.0547 (9)
C70.8043 (3)0.4522 (3)0.0365 (4)0.0621 (10)
H7A0.79890.51170.03940.074*
H7B0.79460.38760.02960.074*
C80.6403 (3)0.3750 (2)0.1514 (4)0.0491 (8)
C90.5356 (3)0.3986 (3)0.2282 (4)0.0500 (8)
H9A0.52190.47020.24400.060*
C100.4586 (3)0.3320 (3)0.2777 (4)0.0522 (8)
H10A0.39950.36480.32350.063*
C110.4498 (4)0.2143 (3)0.2731 (4)0.0556 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0488 (16)0.0458 (15)0.0658 (18)0.0025 (13)0.0169 (14)0.0026 (13)
O10.0654 (15)0.0463 (13)0.0842 (17)0.0078 (12)0.0306 (13)0.0028 (12)
C10.064 (2)0.062 (3)0.134 (4)0.000 (2)0.016 (3)0.001 (2)
O20.0792 (17)0.0585 (15)0.094 (2)0.0142 (14)0.0373 (16)0.0101 (14)
C20.068 (3)0.083 (3)0.141 (4)0.014 (2)0.014 (3)0.025 (3)
O30.0856 (18)0.0436 (13)0.0764 (16)0.0009 (12)0.0326 (15)0.0007 (12)
C30.066 (3)0.109 (4)0.078 (3)0.001 (3)0.020 (2)0.001 (3)
C40.077 (3)0.086 (3)0.097 (3)0.011 (3)0.025 (3)0.027 (3)
C50.070 (2)0.061 (3)0.088 (3)0.002 (2)0.014 (2)0.003 (2)
C60.0485 (19)0.055 (2)0.065 (2)0.0001 (17)0.0250 (17)0.0034 (18)
C70.059 (2)0.066 (2)0.067 (2)0.0028 (18)0.0293 (19)0.0036 (18)
C80.0486 (19)0.0436 (18)0.0496 (19)0.0012 (16)0.0075 (15)0.0011 (15)
C90.055 (2)0.0375 (17)0.057 (2)0.0008 (15)0.0162 (17)0.0012 (15)
C100.058 (2)0.0462 (18)0.054 (2)0.0006 (17)0.0205 (17)0.0011 (16)
C110.061 (2)0.0463 (19)0.053 (2)0.0039 (19)0.0084 (17)0.0024 (17)
Geometric parameters (Å, º) top
N—C81.320 (4)C3—H3A0.9300
N—C71.459 (4)C4—C51.379 (5)
N—H0A0.8600C4—H4A0.9300
O1—C81.250 (3)C5—C61.365 (5)
C1—C61.361 (5)C5—H5A0.9300
C1—C21.392 (6)C6—C71.503 (4)
C1—H1A0.9300C7—H7A0.9700
O2—C111.216 (4)C7—H7B0.9700
C2—C31.347 (6)C8—C91.480 (4)
C2—H2A0.9300C9—C101.327 (4)
O3—C111.304 (4)C9—H9A0.9300
O3—H3B0.8501C10—C111.485 (4)
C3—C41.360 (6)C10—H10A0.9300
C8—N—C7122.9 (3)C1—C6—C7121.0 (3)
C8—N—H0A118.5C5—C6—C7120.9 (3)
C7—N—H0A118.5N—C7—C6112.2 (3)
C6—C1—C2120.5 (4)N—C7—H7A109.2
C6—C1—H1A119.8C6—C7—H7A109.2
C2—C1—H1A119.8N—C7—H7B109.2
C3—C2—C1120.7 (4)C6—C7—H7B109.2
C3—C2—H2A119.6H7A—C7—H7B107.9
C1—C2—H2A119.6O1—C8—N122.1 (3)
C11—O3—H3B108.9O1—C8—C9123.1 (3)
C2—C3—C4119.3 (4)N—C8—C9114.8 (3)
C2—C3—H3A120.4C10—C9—C8129.1 (3)
C4—C3—H3A120.4C10—C9—H9A115.5
C3—C4—C5120.1 (4)C8—C9—H9A115.5
C3—C4—H4A120.0C9—C10—C11131.6 (3)
C5—C4—H4A120.0C9—C10—H10A114.2
C6—C5—C4121.3 (4)C11—C10—H10A114.2
C6—C5—H5A119.3O2—C11—O3121.0 (3)
C4—C5—H5A119.3O2—C11—C10118.7 (3)
C1—C6—C5118.1 (4)O3—C11—C10120.3 (3)
C6—C1—C2—C30.4 (7)C1—C6—C7—N98.2 (4)
C1—C2—C3—C40.1 (7)C5—C6—C7—N80.0 (4)
C2—C3—C4—C50.3 (7)C7—N—C8—O11.9 (5)
C3—C4—C5—C60.3 (6)C7—N—C8—C9177.9 (3)
C2—C1—C6—C50.4 (6)O1—C8—C9—C103.0 (5)
C2—C1—C6—C7177.9 (4)N—C8—C9—C10177.2 (3)
C4—C5—C6—C10.1 (6)C8—C9—C10—C110.3 (5)
C4—C5—C6—C7178.2 (4)C9—C10—C11—O2179.7 (3)
C8—N—C7—C689.9 (4)C9—C10—C11—O30.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O10.851.612.461 (3)178
N—H0A···O2i0.862.002.855 (3)171
C9—H9A···O3i0.932.483.413 (4)177
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11NO3
Mr205.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.651 (2), 12.601 (3), 8.3130 (17)
β (°) 108.44 (3)
V3)1058.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2018, 1913, 1013
Rint0.022
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.175, 1.00
No. of reflections1913
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O10.851.612.461 (3)178
N—H0A···O2i0.862.002.855 (3)171
C9—H9A···O3i0.932.483.413 (4)177
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. They also thank the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009c). Acta Cryst. E65, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds