metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(di­methyl sulfoxide-κS)(η6-mesitylene)ruthenium(II)

aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
*Correspondence e-mail: jsu@staff.uni-marburg.de

(Received 18 November 2010; accepted 24 January 2011; online 12 February 2011)

The title compound, [RuCl2(C9H12)(C2H6OS)], features a planar [maximum deviation = 0.0075 (17) Å] η6-bound mesitylene ligand and a dimethyl sulfoxide ligand coordinated via the S atom. The overall complex geometry about the Ru(II) atom is best described as a piano-stool configuration.

Related literature

For similar complexes of the type [RuCl2(DMSO)(arene)], see: Ogata et al. (1970[Ogata, I., Iwata, R. & Ikeda, Y. (1970). Tetrahedron Lett. 34, 3011-3014.]) (arene = benzene); Chandra et al. (2002[Chandra, M., Pandey, D. S., Puerta, M. C. & Valerga, P. (2002). Acta Cryst. E58, m28-m29.]) (arene = p-cymene); Beasley et al. (1993[Beasley, T. J., Brost, R. D., Chu, C. K., Grundy, S. L. & Stobart, S. R. (1993). Organometallics, 12, 4599-4606.]) (arene = 1,4,9,10-tetra­hydro­anthracene); Haquette et al. (2008[Haquette, P., Talbi, B., Canaguier, S., Dagorne, S., Fosse, C., Martel, A., Jaouen, G. & Salmain, M. (2008). Tetrahedron Lett. 49, 4670-4673.]) (arene = 9,10-dihydro­anthracene); Sadler et al. (2005[Sadler, P., Chen, H., Parsons, S. & Messenger, D. (2005). Private communication (refcode: KANXUT). CCDC, Cambridge, England.]) (arene = 2-chloro-N-(2-phenyl­eth­yl)acetamide).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C9H12)(C2H6OS)]

  • Mr = 370.28

  • Monoclinic, P 21 /n

  • a = 8.1184 (4) Å

  • b = 22.9372 (13) Å

  • c = 8.3417 (4) Å

  • β = 116.443 (3)°

  • V = 1390.82 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 100 K

  • 0.24 × 0.15 × 0.09 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.630, Tmax = 0.994

  • 9737 measured reflections

  • 2935 independent reflections

  • 2753 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.04

  • 2935 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Ru1 2.2209 (15)
C2—Ru1 2.2162 (15)
C3—Ru1 2.2219 (16)
C4—Ru1 2.2097 (16)
C5—Ru1 2.2160 (17)
C6—Ru1 2.1978 (15)
S1—Ru1 2.3399 (4)
Cl1—Ru1 2.4097 (4)
Cl2—Ru1 2.3963 (4)
S1—Ru1—Cl2 85.030 (14)
S1—Ru1—Cl1 84.567 (14)
Cl2—Ru1—Cl1 88.636 (15)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes of the type [{RuCl2(arene)}2] are valuable starting materials for the preparation of ruthenium(II) complexes because they allow facile ligand substitution. During our investigations concerning the arene substitution behaviour of such complexes, we found that [{RuCl2(C6H3Me3)}2] readily reacts with dimethylsulfoxide, yielding the monomeric title compound [RuCl2(DMSO)(C6H3Me3)]. Similar reactivity has been reported for the corresponding benzene and p-cymene complexes (Ogata et al., 1970; Chandra et al., 2002).

The overall complex geometry of the title compound is best described as a piano-stool configuration. Another possible description is that of an octahedral d6 low-spin complex with the arene ligand occupying three fac-oriented coordination sites. The angles between the monodentate chloro and DMSO ligands are thus close to 90° (Table 1). The planar, η6-bound mesitylene ligand shows almost equal Ru–C distances of 2.1978 (15) to 2.2219 (16) Å. Dimethylsulfoxide is coordinated via sulfur as usual for complexes without sufficient steric bulk to force O-coordination. All numerical parameters concerning the molecular geometry are similar to those observed for the corresponding p-cymene complex (Chandra et al., 2002).

Related literature top

For similar complexes of the type [RuCl2(DMSO)(arene)], see: Ogata et al. (1970) (arene = benzene); Chandra et al. (2002) (arene = p-cymene); Beasley et al. (1993) (arene = 1,4,9,10-tetrahydroanthracene); Haquette et al. (2008) (arene = 9,10-dihydroanthracene); Sadler et al. (2005) (arene = 2-chloro-N-(2-phenylethyl)acetamide).

Experimental top

[{RuCl2(C6H3Me3)}2] (175 mg, 0.30 mmol) was dissolved in DMSO (12 ml). The solution was heated to 100 °C for 45 min and a small amount of ruthenium black was removed by filtration. The dark red solution was concentrated in vacuo until the formation of crystals was observed. The product was isolated by filtration and dried in vacuo. A second crop of material was obtained from the mother liquor by layering with toluene. Yield: 150 mg (68%) of red crystals. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a saturated DMSO solution.

Refinement top

Hydrogen atoms were placed on idealized positions and refined using a riding model with Uiso(H) = 1.2 × Ueq(C) (1.5 for methyl groups) and C–H bond lengths of 0.95 Å for aromatic protons and 0.98 Å for methyl groups.

Reflexes 0 1 1 and -1 1 1 were omitted from the refinement because they were effected by the diffractometer's beamstop. Reflex -5 0 3 was also omitted because of its exceptionally large deviation from the calculated intensity.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown for 50% probability.
Dichlorido(dimethyl sulfoxide-κS)(η6-mesitylene)ruthenium(II) top
Crystal data top
[RuCl2(C9H12)(C2H6OS)]F(000) = 744
Mr = 370.28Dx = 1.768 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16004 reflections
a = 8.1184 (4) Åθ = 1.9–27.2°
b = 22.9372 (13) ŵ = 1.64 mm1
c = 8.3417 (4) ÅT = 100 K
β = 116.443 (3)°Block, light red
V = 1390.82 (12) Å30.24 × 0.15 × 0.09 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
2935 independent reflections
Radiation source: fine-focus sealed tube2753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 26.7°, θmin = 2.9°
rotation method scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 2829
Tmin = 0.630, Tmax = 0.994l = 910
9737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.742P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max = 0.002
150 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[RuCl2(C9H12)(C2H6OS)]V = 1390.82 (12) Å3
Mr = 370.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1184 (4) ŵ = 1.64 mm1
b = 22.9372 (13) ÅT = 100 K
c = 8.3417 (4) Å0.24 × 0.15 × 0.09 mm
β = 116.443 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2753 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.994Rint = 0.051
9737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
2935 reflectionsΔρmin = 0.71 e Å3
150 parameters
Special details top

Experimental. Anal. calc. for C11H18Cl2ORuS (370.29 g/mol) C 35.68, H 4.90%; found C 35.42, H 4.98%. 1H NMR (250 MHz, DMSO-d6, 300 K) δ = 2.14 (s, 9H, CH3), 2.54 (s, 6H, DMSO), 5.46 (s, 3H, CH) p.p.m.; 13C NMR (75 MHz, DMSO-d6, 300 K) δ = 18.2 (CH3), 40.4 (DMSO), 82.0 (CH), 104.8 (CCH3) p.p.m.. IR (neat, ATR) ν = 3063 w, 3024 m, 2963 w, 2931 w, 1525 m, 1447 m, 1408 m, 1377 m, 1303 m, 1286 m, 1105 s, 1034 m, 1008 versus, 983 s, 971 m, 932 m, 905 m, 887 m, 721 m, 680 m, 641 m, 507 w, 415 s cm-1.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1365 (2)0.08700 (8)0.1389 (2)0.0176 (4)
C20.2204 (2)0.03526 (7)0.0475 (2)0.0172 (3)
H20.26390.00740.10390.021*
C30.2406 (2)0.02437 (7)0.1282 (2)0.0168 (3)
C40.1758 (2)0.06592 (7)0.2106 (2)0.0162 (3)
H40.18890.05880.32790.019*
C50.0910 (2)0.11842 (7)0.1211 (2)0.0161 (3)
C60.0741 (2)0.12862 (7)0.0535 (2)0.0168 (3)
H60.02010.16390.11370.020*
C70.1190 (3)0.09819 (10)0.3227 (2)0.0283 (4)
H7A0.21380.07620.33920.042*
H7B0.13480.13990.33690.042*
H7C0.00300.08580.41220.042*
C80.3318 (3)0.03050 (8)0.2244 (3)0.0257 (4)
H8A0.38770.02380.35390.039*
H8B0.42730.04200.18910.039*
H8C0.24000.06160.19300.039*
C90.0139 (2)0.16108 (8)0.2056 (3)0.0244 (4)
H9A0.11360.15060.17530.037*
H9B0.01740.20040.16090.037*
H9C0.08750.16020.33590.037*
C100.5260 (2)0.16583 (7)0.5447 (2)0.0178 (3)
H10A0.59070.19700.62980.027*
H10B0.60340.13090.57550.027*
H10C0.41050.15700.55000.027*
C110.7007 (2)0.21278 (7)0.3628 (2)0.0169 (3)
H11A0.69390.23150.25440.025*
H11B0.78410.17930.39350.025*
H11C0.74700.24080.46180.025*
O10.35990 (15)0.24130 (5)0.28238 (15)0.0164 (2)
S10.47771 (5)0.188752 (16)0.32416 (5)0.01120 (8)
Cl10.65955 (5)0.066716 (17)0.30769 (5)0.01704 (9)
Cl20.50102 (5)0.159381 (18)0.04032 (5)0.01767 (9)
Ru10.364774 (16)0.110410 (5)0.124893 (15)0.01033 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0100 (8)0.0246 (9)0.0132 (8)0.0059 (6)0.0007 (6)0.0026 (6)
C20.0133 (8)0.0158 (7)0.0200 (8)0.0048 (6)0.0052 (6)0.0089 (6)
C30.0126 (7)0.0115 (7)0.0229 (8)0.0046 (6)0.0048 (6)0.0011 (6)
C40.0138 (8)0.0175 (8)0.0167 (8)0.0050 (6)0.0062 (6)0.0005 (6)
C50.0102 (8)0.0152 (7)0.0219 (8)0.0033 (6)0.0063 (7)0.0044 (6)
C60.0075 (7)0.0165 (8)0.0200 (8)0.0007 (6)0.0003 (6)0.0032 (6)
C70.0219 (10)0.0449 (11)0.0126 (8)0.0066 (8)0.0029 (7)0.0010 (8)
C80.0215 (9)0.0144 (8)0.0358 (10)0.0009 (7)0.0079 (8)0.0028 (7)
C90.0184 (9)0.0226 (9)0.0368 (10)0.0024 (7)0.0165 (8)0.0075 (8)
C100.0231 (9)0.0162 (8)0.0126 (7)0.0017 (7)0.0067 (7)0.0004 (6)
C110.0140 (8)0.0169 (8)0.0189 (8)0.0046 (6)0.0065 (6)0.0047 (6)
O10.0164 (6)0.0114 (5)0.0179 (5)0.0031 (4)0.0044 (5)0.0005 (4)
S10.01161 (18)0.00975 (17)0.01084 (17)0.00026 (13)0.00373 (14)0.00063 (13)
Cl10.01246 (19)0.01451 (18)0.01854 (19)0.00243 (14)0.00185 (15)0.00313 (14)
Cl20.01695 (19)0.0227 (2)0.01450 (18)0.00450 (15)0.00802 (15)0.00160 (14)
Ru10.00945 (8)0.00984 (7)0.01029 (8)0.00034 (4)0.00314 (5)0.00124 (4)
Geometric parameters (Å, º) top
C1—C21.411 (2)C7—H7C0.9800
C1—C61.413 (3)C8—H8A0.9800
C1—C71.498 (2)C8—H8B0.9800
C1—Ru12.2209 (15)C8—H8C0.9800
C2—C31.423 (2)C9—H9A0.9800
C2—Ru12.2162 (15)C9—H9B0.9800
C2—H20.9500C9—H9C0.9800
C3—C41.407 (2)C10—S11.7807 (16)
C3—C81.499 (2)C10—H10A0.9800
C3—Ru12.2219 (16)C10—H10B0.9800
C4—C51.423 (2)C10—H10C0.9800
C4—Ru12.2097 (16)C11—S11.7792 (17)
C4—H40.9500C11—H11A0.9800
C5—C61.420 (2)C11—H11B0.9800
C5—C91.496 (2)C11—H11C0.9800
C5—Ru12.2160 (17)O1—S11.4806 (11)
C6—Ru12.1978 (15)S1—Ru12.3399 (4)
C6—H60.9500Cl1—Ru12.4097 (4)
C7—H7A0.9800Cl2—Ru12.3963 (4)
C7—H7B0.9800
C2—C1—C6119.41 (15)S1—C10—H10A109.5
C2—C1—C7120.01 (17)S1—C10—H10B109.5
C6—C1—C7120.56 (17)H10A—C10—H10B109.5
C2—C1—Ru171.28 (9)S1—C10—H10C109.5
C6—C1—Ru170.47 (9)H10A—C10—H10C109.5
C7—C1—Ru1129.03 (12)H10B—C10—H10C109.5
C1—C2—C3120.71 (15)S1—C11—H11A109.5
C1—C2—Ru171.64 (9)S1—C11—H11B109.5
C3—C2—Ru171.52 (9)H11A—C11—H11B109.5
C1—C2—H2119.6S1—C11—H11C109.5
C3—C2—H2119.6H11A—C11—H11C109.5
Ru1—C2—H2129.7H11B—C11—H11C109.5
C4—C3—C2119.20 (15)O1—S1—C11106.80 (8)
C4—C3—C8120.71 (16)O1—S1—C10107.79 (8)
C2—C3—C8120.09 (16)C11—S1—C1099.56 (8)
C4—C3—Ru171.02 (9)O1—S1—Ru1116.76 (5)
C2—C3—Ru171.09 (9)C11—S1—Ru1114.32 (6)
C8—C3—Ru1129.33 (12)C10—S1—Ru1110.09 (6)
C3—C4—C5121.05 (16)C6—Ru1—C467.42 (6)
C3—C4—Ru171.97 (10)C6—Ru1—C537.53 (6)
C5—C4—Ru171.49 (10)C4—Ru1—C537.50 (6)
C3—C4—H4119.5C6—Ru1—C267.06 (6)
C5—C4—H4119.5C4—Ru1—C266.92 (6)
Ru1—C4—H4129.6C5—Ru1—C279.51 (6)
C6—C5—C4118.76 (15)C6—Ru1—C137.29 (7)
C6—C5—C9120.37 (16)C4—Ru1—C179.38 (6)
C4—C5—C9120.83 (16)C5—Ru1—C167.47 (6)
C6—C5—Ru170.54 (9)C2—Ru1—C137.08 (6)
C4—C5—Ru171.01 (9)C6—Ru1—C379.68 (6)
C9—C5—Ru1132.43 (12)C4—Ru1—C337.01 (6)
C1—C6—C5120.86 (15)C5—Ru1—C367.42 (6)
C1—C6—Ru172.24 (9)C2—Ru1—C337.40 (6)
C5—C6—Ru171.93 (9)C1—Ru1—C367.33 (6)
C1—C6—H6119.6C6—Ru1—S1107.34 (5)
C5—C6—H6119.6C4—Ru1—S1103.51 (4)
Ru1—C6—H6128.6C5—Ru1—S191.13 (4)
C1—C7—H7A109.5C2—Ru1—S1170.04 (5)
C1—C7—H7B109.5C1—Ru1—S1141.22 (5)
H7A—C7—H7B109.5C3—Ru1—S1135.20 (5)
C1—C7—H7C109.5C6—Ru1—Cl298.80 (5)
H7A—C7—H7C109.5C4—Ru1—Cl2165.32 (4)
H7B—C7—H7C109.5C5—Ru1—Cl2132.05 (5)
C3—C8—H8A109.5C2—Ru1—Cl2103.74 (5)
C3—C8—H8B109.5C1—Ru1—Cl286.49 (5)
H8A—C8—H8B109.5C3—Ru1—Cl2138.75 (5)
C3—C8—H8C109.5S1—Ru1—Cl285.030 (14)
H8A—C8—H8C109.5C6—Ru1—Cl1166.37 (4)
H8B—C8—H8C109.5C4—Ru1—Cl1103.89 (4)
C5—C9—H9A109.5C5—Ru1—Cl1138.64 (5)
C5—C9—H9B109.5C2—Ru1—Cl1100.16 (5)
H9A—C9—H9B109.5C1—Ru1—Cl1132.98 (5)
C5—C9—H9C109.5C3—Ru1—Cl187.19 (4)
H9A—C9—H9C109.5S1—Ru1—Cl184.567 (14)
H9B—C9—H9C109.5Cl2—Ru1—Cl188.636 (15)
C6—C1—C2—C30.8 (2)C9—C5—Ru1—Cl186.88 (18)
C7—C1—C2—C3179.05 (15)C1—C2—Ru1—C629.22 (10)
Ru1—C1—C2—C354.15 (14)C3—C2—Ru1—C6103.49 (11)
C6—C1—C2—Ru153.39 (13)C1—C2—Ru1—C4103.39 (11)
C7—C1—C2—Ru1124.90 (15)C3—C2—Ru1—C429.32 (10)
C1—C2—C3—C40.0 (2)C1—C2—Ru1—C566.34 (10)
Ru1—C2—C3—C454.18 (13)C3—C2—Ru1—C566.37 (10)
C1—C2—C3—C8179.36 (15)C3—C2—Ru1—C1132.71 (15)
Ru1—C2—C3—C8125.15 (15)C1—C2—Ru1—C3132.71 (15)
C1—C2—C3—Ru154.21 (14)C1—C2—Ru1—Cl264.65 (10)
C2—C3—C4—C50.1 (2)C3—C2—Ru1—Cl2162.64 (9)
C8—C3—C4—C5179.26 (15)C1—C2—Ru1—Cl1155.73 (9)
Ru1—C3—C4—C554.15 (14)C3—C2—Ru1—Cl171.55 (9)
C2—C3—C4—Ru154.21 (13)C2—C1—Ru1—C6132.10 (15)
C8—C3—C4—Ru1125.12 (15)C7—C1—Ru1—C6114.0 (2)
C3—C4—C5—C60.6 (2)C2—C1—Ru1—C465.58 (10)
Ru1—C4—C5—C653.79 (13)C6—C1—Ru1—C466.52 (10)
C3—C4—C5—C9176.92 (15)C7—C1—Ru1—C4179.48 (19)
Ru1—C4—C5—C9128.72 (15)C2—C1—Ru1—C5102.83 (11)
C3—C4—C5—Ru154.37 (14)C6—C1—Ru1—C529.27 (10)
C2—C1—C6—C51.4 (2)C7—C1—Ru1—C5143.28 (19)
C7—C1—C6—C5179.70 (15)C6—C1—Ru1—C2132.10 (15)
Ru1—C1—C6—C555.19 (13)C7—C1—Ru1—C2113.9 (2)
C2—C1—C6—Ru153.77 (13)C2—C1—Ru1—C328.92 (10)
C7—C1—C6—Ru1124.51 (15)C6—C1—Ru1—C3103.18 (11)
C4—C5—C6—C11.3 (2)C7—C1—Ru1—C3142.81 (19)
C9—C5—C6—C1176.18 (15)C2—C1—Ru1—S1163.99 (8)
Ru1—C5—C6—C155.34 (13)C6—C1—Ru1—S131.89 (13)
C4—C5—C6—Ru154.01 (13)C7—C1—Ru1—S182.11 (19)
C9—C5—C6—Ru1128.48 (15)C2—C1—Ru1—Cl2118.42 (10)
C1—C6—Ru1—C4102.51 (11)C6—C1—Ru1—Cl2109.48 (9)
C5—C6—Ru1—C429.64 (9)C7—C1—Ru1—Cl24.53 (17)
C1—C6—Ru1—C5132.15 (14)C2—C1—Ru1—Cl133.57 (12)
C1—C6—Ru1—C229.07 (10)C6—C1—Ru1—Cl1165.67 (8)
C5—C6—Ru1—C2103.08 (11)C7—C1—Ru1—Cl180.32 (19)
C5—C6—Ru1—C1132.15 (14)C4—C3—Ru1—C666.00 (10)
C1—C6—Ru1—C365.95 (10)C2—C3—Ru1—C665.54 (10)
C5—C6—Ru1—C366.20 (10)C8—C3—Ru1—C6179.40 (18)
C1—C6—Ru1—S1159.72 (9)C2—C3—Ru1—C4131.54 (14)
C5—C6—Ru1—S168.13 (9)C8—C3—Ru1—C4114.6 (2)
C1—C6—Ru1—Cl272.21 (10)C4—C3—Ru1—C528.87 (9)
C5—C6—Ru1—Cl2155.64 (9)C2—C3—Ru1—C5102.67 (11)
C1—C6—Ru1—Cl150.2 (2)C8—C3—Ru1—C5143.47 (18)
C5—C6—Ru1—Cl181.9 (2)C4—C3—Ru1—C2131.54 (14)
C3—C4—Ru1—C6103.26 (11)C8—C3—Ru1—C2113.9 (2)
C5—C4—Ru1—C629.67 (9)C4—C3—Ru1—C1102.85 (11)
C3—C4—Ru1—C5132.92 (14)C2—C3—Ru1—C128.69 (10)
C3—C4—Ru1—C229.61 (9)C8—C3—Ru1—C1142.55 (18)
C5—C4—Ru1—C2103.31 (11)C4—C3—Ru1—S138.27 (12)
C3—C4—Ru1—C166.25 (10)C2—C3—Ru1—S1169.81 (8)
C5—C4—Ru1—C166.67 (10)C8—C3—Ru1—S176.33 (18)
C5—C4—Ru1—C3132.92 (14)C4—C3—Ru1—Cl2157.62 (8)
C3—C4—Ru1—S1153.33 (9)C2—C3—Ru1—Cl226.08 (13)
C5—C4—Ru1—S173.75 (9)C8—C3—Ru1—Cl287.78 (17)
C3—C4—Ru1—Cl282.2 (2)C4—C3—Ru1—Cl1117.67 (9)
C5—C4—Ru1—Cl250.7 (2)C2—C3—Ru1—Cl1110.79 (9)
C3—C4—Ru1—Cl165.67 (9)C8—C3—Ru1—Cl13.07 (16)
C5—C4—Ru1—Cl1161.41 (8)O1—S1—Ru1—C611.73 (8)
C4—C5—Ru1—C6131.39 (14)C11—S1—Ru1—C6137.40 (8)
C9—C5—Ru1—C6113.8 (2)C10—S1—Ru1—C6111.55 (8)
C6—C5—Ru1—C4131.39 (14)O1—S1—Ru1—C481.94 (7)
C9—C5—Ru1—C4114.8 (2)C11—S1—Ru1—C4152.39 (8)
C6—C5—Ru1—C265.82 (10)C10—S1—Ru1—C441.34 (8)
C4—C5—Ru1—C265.57 (10)O1—S1—Ru1—C546.16 (7)
C9—C5—Ru1—C2179.61 (18)C11—S1—Ru1—C5171.83 (8)
C6—C5—Ru1—C129.10 (10)C10—S1—Ru1—C577.11 (8)
C4—C5—Ru1—C1102.29 (11)O1—S1—Ru1—C17.87 (9)
C9—C5—Ru1—C1142.89 (19)C11—S1—Ru1—C1117.80 (9)
C6—C5—Ru1—C3102.88 (10)C10—S1—Ru1—C1131.14 (9)
C4—C5—Ru1—C328.51 (10)O1—S1—Ru1—C3104.49 (8)
C9—C5—Ru1—C3143.33 (19)C11—S1—Ru1—C3129.85 (9)
C6—C5—Ru1—S1117.62 (9)C10—S1—Ru1—C318.79 (9)
C4—C5—Ru1—S1110.99 (9)O1—S1—Ru1—Cl285.96 (6)
C9—C5—Ru1—S13.83 (17)C11—S1—Ru1—Cl239.71 (6)
C6—C5—Ru1—Cl233.29 (11)C10—S1—Ru1—Cl2150.77 (6)
C4—C5—Ru1—Cl2164.69 (7)O1—S1—Ru1—Cl1175.05 (6)
C9—C5—Ru1—Cl280.50 (18)C11—S1—Ru1—Cl149.39 (6)
C6—C5—Ru1—Cl1159.32 (8)C10—S1—Ru1—Cl161.67 (6)
C4—C5—Ru1—Cl127.93 (12)

Experimental details

Crystal data
Chemical formula[RuCl2(C9H12)(C2H6OS)]
Mr370.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.1184 (4), 22.9372 (13), 8.3417 (4)
β (°) 116.443 (3)
V3)1390.82 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.24 × 0.15 × 0.09
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.630, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9737, 2935, 2753
Rint0.051
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.04
No. of reflections2935
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.71

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED (Stoe & Cie, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—Ru12.2209 (15)C6—Ru12.1978 (15)
C2—Ru12.2162 (15)S1—Ru12.3399 (4)
C3—Ru12.2219 (16)Cl1—Ru12.4097 (4)
C4—Ru12.2097 (16)Cl2—Ru12.3963 (4)
C5—Ru12.2160 (17)
S1—Ru1—Cl285.030 (14)Cl2—Ru1—Cl188.636 (15)
S1—Ru1—Cl184.567 (14)
 

Acknowledgements

Routine data collection was performed by the XRD service department (Dr K. Harms, G. Geiseler, R. Riedel) of the Chemistry Department, Philipps University, and is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeasley, T. J., Brost, R. D., Chu, C. K., Grundy, S. L. & Stobart, S. R. (1993). Organometallics, 12, 4599–4606.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChandra, M., Pandey, D. S., Puerta, M. C. & Valerga, P. (2002). Acta Cryst. E58, m28–m29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaquette, P., Talbi, B., Canaguier, S., Dagorne, S., Fosse, C., Martel, A., Jaouen, G. & Salmain, M. (2008). Tetrahedron Lett. 49, 4670–4673.  Web of Science CSD CrossRef CAS Google Scholar
First citationOgata, I., Iwata, R. & Ikeda, Y. (1970). Tetrahedron Lett. 34, 3011–3014.  CrossRef Google Scholar
First citationSadler, P., Chen, H., Parsons, S. & Messenger, D. (2005). Private communication (refcode: KANXUT). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds