organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hexyl­oxybenzamide

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: sidik@science.upm.edu.my

(Received 29 December 2010; accepted 24 January 2011; online 12 February 2011)

In the title compound, C13H19NO2, the dihedral angle between the benzene ring and the plane throught the non-H atoms of the amide group is 29.3 (1)°. The benzene ring and the alkane carbon skeleton plane are twisted slightly with respect to each other [5.40 (5)°]. In the crystal, mol­ecules are oriented with the amide groups head-to-head, forming N—H⋯O hydrogen-bonded dimers. The dimers are connected by further N—H⋯O hydrogen bonds into a ladder-like motif along the b axis.

Related literature

For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Merz (2002[Merz, K. (2002). Acta Cryst. E58, o450-o451.]); Jones et al. (2002[Jones, P. G., Thönnessen, H., Schmutzler, R. & Fischer, A. K. (2002). Acta Cryst. E58, o1436-o1438.]); Pagola & Stephens (2009[Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583-o586.]); Boese et al. (1999[Boese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988-992.]). For related experiments on the hydrolysis of nitrites, see: Gallardo & Begnini (1995[Gallardo, H. & Begnini, I. M. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. 258, 85-94.]); Pala Wilgus et al. (1995[Pala Wilgus, C., Downing, S., Molitor, E., Bains, S., Pagni, R. M. & Kabalka, G. W. (1995). Tetrahedron Lett. 36, 3469-3472]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO2

  • Mr = 221.30

  • Monoclinic, P 21 /n

  • a = 12.5507 (2) Å

  • b = 5.16441 (9) Å

  • c = 18.9322 (3) Å

  • β = 91.4702 (16)°

  • V = 1226.72 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 150 K

  • 0.31 × 0.08 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO: Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.894, Tmax = 1.000

  • 13258 measured reflections

  • 2355 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.01

  • 2101 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H101⋯O9i 0.90 2.14 3.0153 (18) 164
N10—H102⋯O9ii 0.90 2.04 2.9401 (18) 174
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Bond distance and angles in the titled compound (I), 4-(hexyloxy)benzamide (Fig.1) are in normal range (Allen et al. 1987) and are comparable with those in closely related structure which was determined by single-crystal X-ray diffraction method (Merz, 2002; Jones et al., 2002). On the other hand, bond distances at ether and amide group differ from those in the structure of 2-ethoxybenzamide (Pagola & Stephens, 2009). The benzene ring with O1 and C8 is nearly planar (r.m.s deviation of 0.0004 Å), whereas C7 is 0.019Å out of this plane. The dihedral angle between the benzene ring and the amide group plane is 29.3° [20.1° in p-nitrobenzamide (Jones et al., 2002)].In the molecular structure of (I) alkane carbon skeleton is not coplanar with the aromatic ring; the dihedral angle between the benzene ring and the alkane carbon skeleton is 5.40 (1)°. The torsion angles along the alkane carbon skeleton increase (torsion angle of C11—C14=174.1°, C12—C15=175.9°, and C13—C16=178.2°). The arrangement observed here is slightly different from n-alkanes which contain a planar zigzag carbon skeleton. However, the mean C(H3)—C(H2) and C(H2)—C(H2) distance, and C(H3)—C(H2)—C and C(H2)—C(H2)—C angles, are in agreement with those determined for n-alkanes [1.521 (1)Å and 112.8 (1)° and 113.5 (1)°, respectively; Boese et al., 1999]. In the crystal structure, the amide groups are oriented head-to-head forming N10—H102···O9 hydrogen bond at (-x, -y + 1, -z + 1) [the N···O distance is 1.941 Å] to generate a hydrogen bond dimer. These dimers are further linked together by N10—H101···O9 hydrogen bonding at (x,y + 1, z) [N···O distance is 3.106 Å] generating a ladder-like motif along the b axis (Table 1, Figs. 2 and 3) (Pagola & Stephens, 2009).

Related literature top

For standard bond lengths, see Allen et al. (1987). For related structures, see: Merz (2002); Jones et al. (2002); Pagola & Stephens (2009); Boese et al. (1999). For related experiments [what sort of experiments?], see: Gallardo & Begnini (1995); Pala Wilgus et al. (1995)

Experimental top

Attempts to crystallize 1,2-bis(4-heptylbenzylidene)hydrazine by liquid diffusion method from n-buthanol and water led to crystals of the title compound, presumably due to slow hydrolysis by supervenient of water (Gallardo & Begnini, 1995; Pala Wilgus et al., 1995).

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.90 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with arom numbering and displacement ellipsoids at the 50% probablity level.
[Figure 2] Fig. 2. The hydrogen-bonded ladder-like motif (dashed lines) extends along b-axis.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the a axis; hydrogen bond are shown as dashed lines.
4-Hexyloxybenzamide top
Crystal data top
C13H19NO2F(000) = 480
Mr = 221.30Dx = 1.198 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 8720 reflections
a = 12.5507 (2) Åθ = 3.5–70.8°
b = 5.16441 (9) ŵ = 0.64 mm1
c = 18.9322 (3) ÅT = 150 K
β = 91.4702 (16)°Needle-like, colourless
V = 1226.72 (4) Å30.31 × 0.08 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini E
diffractometer
2355 independent reflections
Radiation source: sealed x-ray tube2165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω/2θ scansθmax = 71.0°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO: Oxford Diffraction, 2006)
h = 1513
Tmin = 0.894, Tmax = 1.000k = 66
13258 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.41P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.01(Δ/σ)max = 0.0002608
2101 reflectionsΔρmax = 0.18 e Å3
145 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C13H19NO2V = 1226.72 (4) Å3
Mr = 221.30Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.5507 (2) ŵ = 0.64 mm1
b = 5.16441 (9) ÅT = 150 K
c = 18.9322 (3) Å0.31 × 0.08 × 0.05 mm
β = 91.4702 (16)°
Data collection top
Oxford Diffraction Gemini E
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO: Oxford Diffraction, 2006)
2165 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 1.000Rint = 0.018
13258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2101 reflectionsΔρmin = 0.18 e Å3
145 parameters
Special details top

Refinement. For this compound, 13258 reflections were measured and collected during the refinement. However after merging the symmetry equivalent reflections, there were only 2355 independent reflections. Further 254 more reflections were filtered, as sigma cutoff was set at 3.0 and (sin theta x 2)set to >0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore reduced the number of reflection to 2101 which were used in the Refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50007 (7)0.75339 (18)0.27977 (5)0.0339
C20.40797 (9)0.7236 (2)0.31525 (6)0.0276
C30.40594 (10)0.5166 (2)0.36254 (7)0.0327
C40.31610 (10)0.4686 (2)0.40089 (6)0.0302
C50.22742 (9)0.6304 (2)0.39492 (6)0.0258
C60.23026 (10)0.8374 (2)0.34797 (6)0.0283
C70.31893 (10)0.8824 (2)0.30718 (6)0.0292
C80.13215 (9)0.5718 (2)0.43773 (6)0.0265
O90.11152 (7)0.34604 (16)0.45547 (5)0.0322
N100.07033 (9)0.7708 (2)0.45501 (6)0.0326
C110.50247 (10)0.9496 (3)0.22591 (7)0.0334
C120.61157 (10)0.9498 (2)0.19414 (7)0.0337
C130.64375 (10)0.6928 (2)0.16146 (7)0.0321
C140.74928 (10)0.7091 (2)0.12345 (7)0.0314
C150.78664 (10)0.4500 (3)0.09497 (7)0.0339
C160.89010 (11)0.4699 (3)0.05528 (7)0.0392
H310.46880.40870.36720.0424*
H410.31390.31710.43180.0397*
H610.16910.95330.34290.0368*
H710.31771.03090.27440.0385*
H1120.48821.12520.24750.0433*
H1110.44610.90820.18850.0424*
H1220.66521.00290.23190.0438*
H1210.61111.08740.15760.0426*
H1310.64790.55550.19860.0402*
H1320.58590.64130.12630.0417*
H1410.80490.77820.15750.0417*
H1420.74330.83910.08470.0407*
H1510.79490.32320.13430.0435*
H1520.72990.37810.06280.0445*
H1620.91240.29830.03890.0627*
H1630.94720.53850.08700.0619*
H1610.88230.58750.01420.0630*
H1010.09380.93390.44980.0433*
H1020.01240.74370.48080.0432*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (4)0.0377 (5)0.0350 (5)0.0032 (4)0.0051 (4)0.0078 (4)
C20.0281 (6)0.0268 (6)0.0279 (6)0.0015 (5)0.0011 (4)0.0021 (5)
C30.0319 (6)0.0296 (6)0.0365 (7)0.0059 (5)0.0000 (5)0.0042 (5)
C40.0367 (7)0.0238 (6)0.0300 (6)0.0010 (5)0.0007 (5)0.0046 (5)
C50.0312 (6)0.0199 (5)0.0264 (5)0.0024 (4)0.0004 (4)0.0026 (4)
C60.0317 (6)0.0209 (6)0.0325 (6)0.0024 (5)0.0019 (5)0.0006 (5)
C70.0346 (6)0.0220 (6)0.0311 (6)0.0002 (5)0.0029 (5)0.0039 (5)
C80.0331 (6)0.0216 (6)0.0248 (5)0.0019 (5)0.0001 (5)0.0006 (4)
O90.0390 (5)0.0201 (4)0.0378 (5)0.0009 (3)0.0095 (4)0.0028 (3)
N100.0382 (6)0.0204 (5)0.0399 (6)0.0006 (4)0.0136 (5)0.0011 (4)
C110.0356 (7)0.0278 (6)0.0373 (7)0.0011 (5)0.0070 (5)0.0042 (5)
C120.0353 (7)0.0279 (6)0.0382 (7)0.0037 (5)0.0071 (5)0.0001 (5)
C130.0316 (6)0.0277 (6)0.0370 (7)0.0031 (5)0.0030 (5)0.0013 (5)
C140.0335 (6)0.0271 (6)0.0335 (6)0.0027 (5)0.0024 (5)0.0002 (5)
C150.0335 (7)0.0292 (7)0.0391 (7)0.0018 (5)0.0013 (5)0.0039 (5)
C160.0368 (7)0.0393 (8)0.0415 (7)0.0014 (6)0.0031 (6)0.0071 (6)
Geometric parameters (Å, º) top
O1—C21.3605 (14)C11—H1121.013
O1—C111.4384 (15)C11—H1111.011
C2—C31.3954 (17)C12—C131.5233 (17)
C2—C71.3915 (17)C12—H1221.007
C3—C41.3792 (17)C12—H1210.992
C3—H310.968C13—C141.5258 (17)
C4—C51.3943 (17)C13—H1310.998
C4—H410.978C13—H1321.007
C5—C61.3912 (16)C14—C151.5216 (17)
C5—C81.4926 (16)C14—H1411.003
C6—C71.3904 (17)C14—H1420.996
C6—H610.976C15—C161.5203 (18)
C7—H710.986C15—H1510.995
C8—O91.2423 (14)C15—H1520.997
C8—N101.3338 (15)C16—H1620.982
N10—H1010.898C16—H1630.989
N10—H1020.898C16—H1610.990
C11—C121.5096 (17)
C2—O1—C11117.58 (9)C11—C12—C13114.45 (10)
O1—C2—C3115.66 (11)C11—C12—H122108.3
O1—C2—C7124.71 (11)C13—C12—H122110.2
C3—C2—C7119.63 (11)C11—C12—H121106.8
C2—C3—C4120.28 (11)C13—C12—H121109.7
C2—C3—H31118.1H122—C12—H121106.9
C4—C3—H31121.6C12—C13—C14112.69 (10)
C3—C4—C5120.75 (11)C12—C13—H131110.0
C3—C4—H41119.7C14—C13—H131110.0
C5—C4—H41119.5C12—C13—H132107.7
C4—C5—C6118.62 (11)C14—C13—H132108.8
C4—C5—C8118.89 (10)H131—C13—H132107.5
C6—C5—C8122.47 (11)C13—C14—C15113.43 (10)
C5—C6—C7121.16 (11)C13—C14—H141108.4
C5—C6—H61120.1C15—C14—H141109.0
C7—C6—H61118.8C13—C14—H142109.6
C2—C7—C6119.50 (11)C15—C14—H142110.5
C2—C7—H71121.8H141—C14—H142105.7
C6—C7—H71118.6C14—C15—C16112.97 (11)
C5—C8—O9120.85 (10)C14—C15—H151109.9
C5—C8—N10117.12 (10)C16—C15—H151109.9
O9—C8—N10122.03 (11)C14—C15—H152108.8
C8—N10—H101120.1C16—C15—H152109.2
C8—N10—H102119.9H151—C15—H152105.8
H101—N10—H102118.5C15—C16—H162110.4
O1—C11—C12108.58 (10)C15—C16—H163109.8
O1—C11—H112109.7H162—C16—H163107.9
C12—C11—H112109.4C15—C16—H161111.2
O1—C11—H111108.7H162—C16—H161109.2
C12—C11—H111110.3H163—C16—H161108.3
H112—C11—H111110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O9i0.902.143.0153 (18)164
N10—H102···O9ii0.902.042.9401 (18)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H19NO2
Mr221.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.5507 (2), 5.16441 (9), 18.9322 (3)
β (°) 91.4702 (16)
V3)1226.72 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.31 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO: Oxford Diffraction, 2006)
Tmin, Tmax0.894, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13258, 2355, 2165
Rint0.018
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.01
No. of reflections2101
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O9i0.902.143.0153 (18)164
N10—H102···O9ii0.902.042.9401 (18)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The author would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for funding (Research Grant No. 04–01–04-SF0144 and 05–02-10–0934RU).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988–992.  CrossRef CAS Google Scholar
First citationGallardo, H. & Begnini, I. M. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. 258, 85–94.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. G., Thönnessen, H., Schmutzler, R. & Fischer, A. K. (2002). Acta Cryst. E58, o1436–o1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerz, K. (2002). Acta Cryst. E58, o450–o451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPala Wilgus, C., Downing, S., Molitor, E., Bains, S., Pagni, R. M. & Kabalka, G. W. (1995). Tetrahedron Lett. 36, 3469–3472  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds