metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)(nitrato-κO)copper(II) perchlorate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiejm391@sohu.com

(Received 10 January 2011; accepted 19 January 2011; online 5 February 2011)

In the title compound, [Cu(NO3)(C10H8N2)2]ClO4, the five-coordinated CuII atom has a distorted square-pyramidal CuN4O environment; the O atom is in the axial position whereas the N atoms from two bipyridine (bipy) ligands are in the equatorial plane. In the crystal, mol­ecules are assembled by C—H⋯O hydrogen bonding and ππ inter­actions between bipy groups [centroid–centroid distances = 3.7686 (16) and 3.7002 (16) Å] into a three-dimensional network. The nitrite anion is equally disordered over two sets of sites.

Related literature

For the applications of complexes with bipyridine and its derivatives in catalysis and visible-light-driven water oxidation, see: Morrow & Trogler (1989[Morrow, J. R. & Trogler, W. C. (1989). Inorg. Chem. 28, 1330-2333.]) and Duan et al. (2010[Duan, L. L., Xu, Y. H., Zhang, P., Wang, M. & Sun, L. C. (2010). Inorg. Chem. 49, 209-215.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)(C10H8N2)2]ClO4

  • Mr = 537.38

  • Triclinic, [P \overline 1]

  • a = 7.5882 (15) Å

  • b = 10.473 (2) Å

  • c = 14.041 (3) Å

  • α = 76.15 (3)°

  • β = 81.46 (4)°

  • γ = 78.86 (3)°

  • V = 1056.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 0.803

  • 10121 measured reflections

  • 4037 independent reflections

  • 3579 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.05

  • 4037 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.986 (2)
Cu1—N4 1.9890 (19)
Cu1—N2 2.0426 (19)
Cu1—N3 2.0534 (18)
Cu1—O3 2.38 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.58 3.276 (3) 132
C7—H7⋯O4ii 0.93 2.53 3.322 (4) 144
C13—H13⋯O7iii 0.93 2.43 3.249 (3) 147
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Complexes with bipyridine and its derivatives have been extensively studied because of their potential applications in catalysis (Morrow & Trogler, 1989) and visible light driven water oxidation (Duan et al., 2010). Herein we report the synthesis and structure of the title copper complex with 2, 2'-bipyridine.

The structure of the title complex (Fig. 1)consists of a discrete cation [Cu(bipy)2(NO3)]+ and an uncoordinated ClO4- anion which is in disorder. The Cu(II) atom is five coordinated by four nitrogen atoms from two bipy ligands and one oxygen atom from one nitrate anion, exhibiting a distorted square pyramidal coordination with the oxygen atom in the axial position (Fig. 1 and Table 1). The uncoordinated perchlorate anion displays the expected tetrahedral geometry. There are weak intermolecular C—H···O hydrogen bonds in the crystal structure(C3—H3···O5i, C7—H7···O4ii and C13—H13···O7iii; Table 2). Crystal packing is stabilised by the C—H···O hydrogen bonds and π-π interactions between two parallel bipy rings [centroid (N1, C1—C5)···centroid (N1, C1—C5)iv = 3.77 Å; centroid (N2, C6—C10) ···centroid (N2, C6—C10)v= 3.70 Å; centroid (N3, C16—C20)···centroid (N4, C11—C15)vi = 3.75 Å; symmetry codes: (iv)-x, 1 - y, -z; (v) 1 - x, -y, -z; (vi) -x, -y, 1 - z)](Fig. 2).

Related literature top

For the applications of complexes with bipyridine and its derivatives in catalysis and visible-light-driven water oxidation, see: Morrow & Trogler (1989) and Duan et al. (2010), respectively.

Experimental top

2, 2'-bipyridine (31.3 mg, 0.2 mmol), Cu(NO3)2.3H2O(42 mg, 0.2 mmol), NaClO4 (28 mg, 0.2 mmol), acetone (10 mL) and methanol (6 mL) were stirred for 8 h at 313 K. The solution was then filtered, evaporated in the air and prismatic blue crystals were formed after 2 days (yieled 78%).

Refinement top

All the H atoms were placed in calculated positions and refined using a riding model, with Uiso (H) =1.2Ueq(C, N) and C–H =0.93 and N–H=0.86 Å. The disorder of [NO3]- with two locations of O1, O2, and O3 led in the refinement to 1:1 ratio in occupancy for each oxygen atom. However, a slight disorder of [ClO4]- cannot be described geometrically.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex showing the labeling of the non-H atoms and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii. Disorders of the coordinated [NO3]- and uncoordinated [ClO4]-anions are not shown.
[Figure 2] Fig. 2. Three dimensional architecture constructed by intermolecular C—H···O hydrogen bonding (dashed lines) and π-π interactions.
Bis(2,2'-bipyridine-κ2N,N')(nitrato-κO)copper(II) perchlorate top
Crystal data top
[Cu(NO3)(C10H8N2)2]ClO4Z = 2
Mr = 537.38F(000) = 546
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5882 (15) ÅCell parameters from 4693 reflections
b = 10.473 (2) Åθ = 3.1–29.0°
c = 14.041 (3) ŵ = 1.22 mm1
α = 76.15 (3)°T = 295 K
β = 81.46 (4)°Prism, blue
γ = 78.86 (3)°0.24 × 0.20 × 0.18 mm
V = 1056.9 (4) Å3
Data collection top
Rigaku Saturn 724
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube3579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 89
Tmin = 0.747, Tmax = 0.803k = 1212
10121 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(NO3)(C10H8N2)2]ClO4γ = 78.86 (3)°
Mr = 537.38V = 1056.9 (4) Å3
Triclinic, P1Z = 2
a = 7.5882 (15) ÅMo Kα radiation
b = 10.473 (2) ŵ = 1.22 mm1
c = 14.041 (3) ÅT = 295 K
α = 76.15 (3)°0.24 × 0.20 × 0.18 mm
β = 81.46 (4)°
Data collection top
Rigaku Saturn 724
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3579 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.803Rint = 0.019
10121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
4037 reflectionsΔρmin = 0.48 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.13510 (4)0.14256 (3)0.229930 (18)0.04365 (11)
N10.0008 (3)0.26435 (18)0.12391 (13)0.0413 (4)
C10.1751 (3)0.3189 (2)0.13465 (18)0.0460 (5)
H10.23860.30470.19720.062 (8)*
O10.144 (6)0.025 (3)0.2791 (18)0.072 (5)0.42 (7)
O1'0.092 (3)0.0253 (18)0.2643 (12)0.054 (3)0.58 (7)
Cl10.40225 (9)0.48718 (7)0.29287 (4)0.05741 (18)
N20.3386 (2)0.15087 (18)0.11680 (13)0.0405 (4)
C20.2638 (4)0.3950 (2)0.05677 (19)0.0526 (6)
H20.38320.43580.06700.074 (9)*
O20.165 (6)0.127 (4)0.212 (3)0.093 (7)0.42 (7)
O2'0.171 (4)0.151 (2)0.2322 (14)0.071 (3)0.58 (7)
N30.0518 (2)0.23533 (17)0.34604 (13)0.0377 (4)
C30.1733 (4)0.4104 (3)0.03679 (19)0.0561 (7)
H30.23140.46050.09090.063 (8)*
O30.070 (2)0.033 (3)0.1678 (19)0.063 (5)0.42 (7)
O3'0.047 (3)0.0583 (17)0.1459 (15)0.082 (3)0.58 (7)
N40.2614 (2)0.00723 (18)0.33384 (13)0.0412 (4)
C40.0043 (4)0.3504 (2)0.04923 (17)0.0514 (6)
H40.06640.35710.11210.070 (9)*
O40.5696 (3)0.5366 (3)0.26537 (19)0.0918 (7)
N50.0741 (3)0.0584 (2)0.21550 (15)0.0465 (5)
C50.0898 (3)0.2800 (2)0.03288 (15)0.0406 (5)
O50.2613 (4)0.5915 (3)0.25784 (17)0.1054 (9)
C60.2824 (3)0.2197 (2)0.02926 (15)0.0398 (5)
O60.4111 (4)0.3772 (3)0.2508 (2)0.1198 (11)
C70.4017 (4)0.2356 (2)0.05599 (17)0.0496 (6)
H70.36140.28410.11560.055 (7)*
O70.3702 (4)0.4516 (2)0.39655 (15)0.0995 (9)
C80.5801 (4)0.1788 (3)0.05135 (19)0.0534 (6)
H80.66180.18820.10790.054 (7)*
C90.6372 (3)0.1078 (3)0.03760 (19)0.0516 (6)
H90.75720.06790.04200.075 (9)*
C100.5128 (3)0.0971 (2)0.11998 (18)0.0476 (5)
H100.55180.05050.18040.053 (7)*
C110.3604 (3)0.1094 (2)0.32214 (18)0.0510 (6)
H110.37820.12920.25990.062 (8)*
C120.4372 (3)0.2012 (2)0.3986 (2)0.0541 (6)
H120.50640.28120.38830.065 (8)*
C130.4095 (3)0.1719 (2)0.4905 (2)0.0532 (6)
H130.46160.23160.54320.059 (8)*
C140.3040 (3)0.0538 (2)0.50390 (17)0.0451 (5)
H140.28120.03420.56620.052 (7)*
C150.2321 (3)0.0353 (2)0.42427 (15)0.0363 (5)
C160.1165 (3)0.1643 (2)0.43096 (15)0.0356 (4)
C170.0741 (3)0.2098 (2)0.51762 (16)0.0452 (5)
H170.12250.16070.57500.055 (7)*
C180.0408 (4)0.3290 (3)0.51792 (19)0.0541 (6)
H180.07350.35990.57590.061 (8)*
C190.1059 (3)0.4013 (3)0.4320 (2)0.0541 (6)
H190.18380.48190.43080.062 (8)*
C200.0546 (3)0.3528 (2)0.34734 (18)0.0478 (6)
H200.09570.40390.28860.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04732 (18)0.04701 (18)0.02684 (15)0.00769 (13)0.00054 (11)0.00424 (11)
N10.0475 (10)0.0413 (10)0.0313 (9)0.0004 (8)0.0030 (8)0.0065 (8)
C10.0471 (13)0.0464 (13)0.0430 (13)0.0012 (11)0.0041 (10)0.0124 (10)
O10.103 (12)0.060 (5)0.036 (5)0.009 (7)0.021 (7)0.012 (4)
O1'0.068 (5)0.060 (3)0.031 (4)0.014 (4)0.014 (3)0.012 (3)
Cl10.0584 (4)0.0596 (4)0.0441 (3)0.0051 (3)0.0029 (3)0.0088 (3)
N20.0449 (10)0.0414 (10)0.0325 (9)0.0048 (8)0.0011 (8)0.0076 (8)
C20.0539 (15)0.0484 (14)0.0573 (15)0.0009 (12)0.0205 (12)0.0135 (12)
O20.088 (11)0.054 (8)0.136 (17)0.029 (5)0.030 (12)0.004 (9)
O2'0.079 (5)0.065 (8)0.074 (5)0.037 (6)0.002 (4)0.008 (5)
N30.0402 (9)0.0369 (9)0.0334 (9)0.0021 (8)0.0014 (7)0.0076 (7)
C30.0705 (17)0.0509 (15)0.0477 (14)0.0035 (13)0.0271 (13)0.0050 (11)
O30.047 (4)0.065 (7)0.064 (7)0.001 (4)0.004 (4)0.006 (4)
O3'0.065 (4)0.099 (5)0.084 (5)0.022 (4)0.030 (4)0.042 (5)
N40.0443 (10)0.0405 (10)0.0328 (9)0.0020 (8)0.0006 (8)0.0059 (8)
C40.0746 (17)0.0465 (13)0.0325 (12)0.0088 (12)0.0098 (12)0.0059 (10)
O40.0823 (16)0.0942 (17)0.0956 (17)0.0216 (13)0.0108 (13)0.0207 (14)
N50.0438 (12)0.0518 (13)0.0397 (11)0.0028 (11)0.0084 (9)0.0034 (10)
C50.0555 (13)0.0339 (11)0.0321 (11)0.0064 (10)0.0045 (10)0.0076 (9)
O50.1019 (18)0.125 (2)0.0643 (14)0.0473 (16)0.0261 (13)0.0138 (14)
C60.0537 (13)0.0335 (11)0.0323 (11)0.0077 (10)0.0013 (10)0.0106 (9)
O60.1064 (19)0.111 (2)0.157 (3)0.0352 (17)0.0496 (19)0.084 (2)
C70.0662 (16)0.0484 (13)0.0329 (12)0.0125 (12)0.0050 (11)0.0104 (10)
O70.1140 (19)0.0939 (16)0.0472 (11)0.0367 (14)0.0124 (12)0.0126 (11)
C80.0591 (15)0.0578 (15)0.0456 (14)0.0197 (13)0.0178 (12)0.0221 (12)
C90.0467 (14)0.0554 (15)0.0536 (15)0.0114 (12)0.0077 (11)0.0192 (12)
C100.0461 (13)0.0499 (13)0.0447 (13)0.0046 (11)0.0009 (11)0.0112 (11)
C110.0565 (14)0.0455 (13)0.0459 (14)0.0046 (11)0.0013 (11)0.0128 (11)
C120.0505 (14)0.0396 (13)0.0657 (17)0.0041 (11)0.0075 (12)0.0071 (11)
C130.0502 (14)0.0467 (14)0.0559 (15)0.0061 (11)0.0171 (12)0.0076 (11)
C140.0453 (13)0.0498 (13)0.0380 (12)0.0101 (11)0.0084 (10)0.0013 (10)
C150.0344 (10)0.0401 (11)0.0330 (11)0.0086 (9)0.0013 (9)0.0047 (9)
C160.0357 (11)0.0393 (11)0.0310 (10)0.0102 (9)0.0017 (8)0.0060 (8)
C170.0505 (13)0.0527 (13)0.0337 (12)0.0123 (11)0.0009 (10)0.0121 (10)
C180.0565 (15)0.0630 (16)0.0495 (14)0.0128 (13)0.0057 (12)0.0298 (13)
C190.0524 (14)0.0462 (14)0.0661 (17)0.0012 (12)0.0043 (12)0.0254 (12)
C200.0515 (13)0.0412 (12)0.0484 (13)0.0005 (11)0.0066 (11)0.0106 (10)
Geometric parameters (Å, º) top
Cu1—N11.986 (2)N4—C111.338 (3)
Cu1—N41.9890 (19)N4—C151.348 (3)
Cu1—N22.0426 (19)C4—C51.387 (3)
Cu1—N32.0534 (18)C4—H40.9301
Cu1—O1'2.233 (15)C5—C61.474 (3)
Cu1—O32.38 (4)C6—C71.386 (3)
Cu1—O12.57 (5)C7—C81.374 (4)
Cu1—O3'2.87 (3)C7—H70.9301
N1—C11.338 (3)C8—C91.375 (4)
N1—C51.347 (3)C8—H80.9300
C1—C21.370 (3)C9—C101.377 (3)
C1—H10.9299C9—H90.9300
O1—N51.38 (2)C10—H100.9299
O1'—N51.213 (19)C11—C121.375 (3)
Cl1—O61.402 (3)C11—H110.9300
Cl1—O71.410 (2)C12—C131.374 (4)
Cl1—O51.424 (2)C12—H120.9300
Cl1—O41.429 (2)C13—C141.375 (4)
N2—C101.336 (3)C13—H130.9300
N2—C61.351 (3)C14—C151.380 (3)
C2—C31.377 (4)C14—H140.9300
C2—H20.9301C15—C161.477 (3)
O2—N51.10 (4)C16—C171.383 (3)
O2'—N51.28 (2)C17—C181.378 (4)
N3—C201.337 (3)C17—H170.9300
N3—C161.350 (3)C18—C191.367 (4)
C3—C41.378 (4)C18—H180.9300
C3—H30.9299C19—C201.378 (3)
O3—N51.231 (16)C19—H190.9300
O3'—N51.238 (13)C20—H200.9300
N1—Cu1—N4174.76 (8)C5—C4—H4120.3
N1—Cu1—N281.03 (8)O2—N5—O1'130.3 (17)
N4—Cu1—N299.78 (8)O2—N5—O3133.1 (18)
N1—Cu1—N3101.94 (8)O1'—N5—O396.5 (13)
N4—Cu1—N381.12 (7)O2—N5—O3'109.6 (16)
N2—Cu1—N3135.94 (7)O1'—N5—O3'119.0 (9)
N1—Cu1—O1'87.4 (4)O1'—N5—O2'124.5 (11)
N4—Cu1—O1'88.2 (4)O3—N5—O2'138 (2)
N2—Cu1—O1'130.0 (5)O3'—N5—O2'116.5 (15)
N3—Cu1—O1'94.0 (5)O2—N5—O1113 (2)
N1—Cu1—O385.8 (4)O3—N5—O1113.3 (9)
N4—Cu1—O389.1 (4)O3'—N5—O1135.0 (10)
N2—Cu1—O384.1 (4)O2'—N5—O1108 (2)
N3—Cu1—O3139.8 (4)N1—C5—C4120.9 (2)
O1'—Cu1—O346.5 (6)N1—C5—C6114.93 (19)
N1—Cu1—O186.4 (5)C4—C5—C6124.1 (2)
N4—Cu1—O189.5 (5)N2—C6—C7121.3 (2)
N2—Cu1—O1135.3 (5)N2—C6—C5115.16 (18)
N3—Cu1—O188.6 (5)C7—C6—C5123.5 (2)
O1'—Cu1—O15.8 (7)C8—C7—C6119.2 (2)
O3—Cu1—O152.1 (6)C8—C7—H7120.4
N1—Cu1—O3'82.6 (3)C6—C7—H7120.4
N4—Cu1—O3'92.3 (3)C7—C8—C9119.5 (2)
N2—Cu1—O3'83.3 (2)C7—C8—H8120.3
N3—Cu1—O3'140.7 (3)C9—C8—H8120.2
O1'—Cu1—O3'46.9 (6)C8—C9—C10118.6 (2)
O3—Cu1—O3'3.3 (5)C8—C9—H9120.7
O1—Cu1—O3'52.5 (6)C10—C9—H9120.7
C1—N1—C5119.1 (2)N2—C10—C9122.8 (2)
C1—N1—Cu1125.44 (16)N2—C10—H10118.6
C5—N1—Cu1115.08 (15)C9—C10—H10118.6
N1—C1—C2122.4 (2)N4—C11—C12122.5 (2)
N1—C1—H1118.9N4—C11—H11118.8
C2—C1—H1118.8C12—C11—H11118.8
N5—O1—Cu190 (2)C13—C12—C11118.5 (2)
N5—O1'—Cu1113.1 (13)C13—C12—H12120.8
O6—Cl1—O7111.08 (19)C11—C12—H12120.7
O6—Cl1—O5111.0 (2)C12—C13—C14119.5 (2)
O7—Cl1—O5108.19 (14)C12—C13—H13120.2
O6—Cl1—O4108.65 (16)C14—C13—H13120.3
O7—Cl1—O4109.62 (17)C13—C14—C15119.5 (2)
O5—Cl1—O4108.20 (18)C13—C14—H14120.2
C10—N2—C6118.6 (2)C15—C14—H14120.2
C10—N2—Cu1128.24 (16)N4—C15—C14120.9 (2)
C6—N2—Cu1113.12 (15)N4—C15—C16115.32 (18)
C1—C2—C3119.0 (2)C14—C15—C16123.7 (2)
C1—C2—H2120.5N3—C16—C17121.7 (2)
C3—C2—H2120.5N3—C16—C15115.19 (18)
C20—N3—C16118.09 (19)C17—C16—C15123.1 (2)
C20—N3—Cu1128.80 (16)C18—C17—C16119.2 (2)
C16—N3—Cu1113.10 (14)C18—C17—H17120.3
C2—C3—C4119.1 (2)C16—C17—H17120.5
C2—C3—H3120.5C19—C18—C17119.3 (2)
C4—C3—H3120.4C19—C18—H18120.4
N5—O3—Cu1104 (2)C17—C18—H18120.4
N5—O3'—Cu180.4 (14)C18—C19—C20118.9 (2)
C11—N4—C15119.03 (19)C18—C19—H19120.5
C11—N4—Cu1125.60 (16)C20—C19—H19120.6
C15—N4—Cu1115.23 (14)N3—C20—C19122.8 (2)
C3—C4—C5119.4 (2)N3—C20—H20118.6
C3—C4—H4120.3C19—C20—H20118.6
N2—Cu1—N1—C1179.4 (2)O1—Cu1—N4—C1188.5 (5)
N3—Cu1—N1—C144.1 (2)O3'—Cu1—N4—C1136.1 (3)
O1'—Cu1—N1—C149.5 (6)N2—Cu1—N4—C15136.89 (16)
O3—Cu1—N1—C196.0 (4)N3—Cu1—N4—C151.56 (15)
O1—Cu1—N1—C143.7 (5)O1'—Cu1—N4—C1592.8 (6)
O3'—Cu1—N1—C196.3 (3)O3—Cu1—N4—C15139.3 (4)
N2—Cu1—N1—C57.62 (15)O1—Cu1—N4—C1587.1 (5)
N3—Cu1—N1—C5142.88 (15)O3'—Cu1—N4—C15139.5 (3)
O1'—Cu1—N1—C5123.6 (6)C2—C3—C4—C52.3 (4)
O3—Cu1—N1—C577.0 (4)Cu1—O1'—N5—O2176 (3)
O1—Cu1—N1—C5129.3 (5)Cu1—O1'—N5—O30.6 (10)
O3'—Cu1—N1—C576.7 (3)Cu1—O1'—N5—O3'9.5 (14)
C5—N1—C1—C22.7 (3)Cu1—O1'—N5—O2'168.7 (15)
Cu1—N1—C1—C2175.45 (18)Cu1—O1'—N5—O1172 (6)
N1—Cu1—O1—N589.4 (10)Cu1—O3—N5—O2176 (3)
N4—Cu1—O1—N587.4 (10)Cu1—O3—N5—O1'0.6 (9)
N2—Cu1—O1—N516.0 (15)Cu1—O3—N5—O3'161 (3)
N3—Cu1—O1—N5168.6 (10)Cu1—O3—N5—O2'166.3 (16)
O1'—Cu1—O1—N510 (8)Cu1—O3—N5—O13.4 (13)
O3—Cu1—O1—N51.8 (7)Cu1—O3'—N5—O2176 (2)
O3'—Cu1—O1—N55.9 (7)Cu1—O3'—N5—O1'6.9 (10)
N1—Cu1—O1'—N587.2 (10)Cu1—O3'—N5—O315 (3)
N4—Cu1—O1'—N590.1 (10)Cu1—O3'—N5—O2'171.4 (13)
N2—Cu1—O1'—N511.2 (14)Cu1—O3'—N5—O114.1 (15)
N3—Cu1—O1'—N5171.0 (10)Cu1—O1—N5—O2177 (2)
O3—Cu1—O1'—N50.4 (7)Cu1—O1—N5—O1'7 (5)
O1—Cu1—O1'—N5167 (10)Cu1—O1—N5—O33.1 (12)
O3'—Cu1—O1'—N54.9 (7)Cu1—O1—N5—O3'15.6 (17)
N1—Cu1—N2—C10175.1 (2)Cu1—O1—N5—O2'169.7 (13)
N4—Cu1—N2—C1010.2 (2)C1—N1—C5—C40.6 (3)
N3—Cu1—N2—C1077.1 (2)Cu1—N1—C5—C4172.88 (17)
O1'—Cu1—N2—C10106.0 (6)C1—N1—C5—C6178.16 (19)
O3—Cu1—N2—C1098.2 (4)Cu1—N1—C5—C68.3 (2)
O1—Cu1—N2—C10109.4 (8)C3—C4—C5—N13.1 (3)
O3'—Cu1—N2—C10101.4 (4)C3—C4—C5—C6175.6 (2)
N1—Cu1—N2—C65.48 (15)C10—N2—C6—C70.3 (3)
N4—Cu1—N2—C6169.28 (14)Cu1—N2—C6—C7179.83 (17)
N3—Cu1—N2—C6103.42 (16)C10—N2—C6—C5177.82 (19)
O1'—Cu1—N2—C673.4 (6)Cu1—N2—C6—C52.7 (2)
O3—Cu1—N2—C681.2 (4)N1—C5—C6—N23.6 (3)
O1—Cu1—N2—C670.1 (8)C4—C5—C6—N2177.6 (2)
O3'—Cu1—N2—C678.1 (4)N1—C5—C6—C7173.8 (2)
N1—C1—C2—C33.4 (4)C4—C5—C6—C74.9 (3)
N1—Cu1—N3—C204.9 (2)N2—C6—C7—C80.7 (3)
N4—Cu1—N3—C20179.4 (2)C5—C6—C7—C8178.0 (2)
N2—Cu1—N3—C2084.5 (2)C6—C7—C8—C90.2 (4)
O1'—Cu1—N3—C2093.1 (5)C7—C8—C9—C100.6 (4)
O3—Cu1—N3—C20102.7 (6)C6—N2—C10—C90.6 (3)
O1—Cu1—N3—C2090.9 (6)Cu1—N2—C10—C9178.80 (17)
O3'—Cu1—N3—C2097.8 (6)C8—C9—C10—N21.1 (4)
N1—Cu1—N3—C16175.01 (14)C15—N4—C11—C121.4 (4)
N4—Cu1—N3—C160.67 (14)Cu1—N4—C11—C12176.91 (19)
N2—Cu1—N3—C1695.60 (16)N4—C11—C12—C130.6 (4)
O1'—Cu1—N3—C1686.8 (5)C11—C12—C13—C141.1 (4)
O3—Cu1—N3—C1677.2 (5)C12—C13—C14—C152.0 (4)
O1—Cu1—N3—C1689.0 (6)C11—N4—C15—C140.5 (3)
O3'—Cu1—N3—C1682.1 (6)Cu1—N4—C15—C14176.48 (16)
C1—C2—C3—C40.8 (4)C11—N4—C15—C16178.1 (2)
N1—Cu1—O3—N590.8 (8)Cu1—N4—C15—C162.1 (2)
N4—Cu1—O3—N587.9 (8)C13—C14—C15—N41.1 (3)
N2—Cu1—O3—N5172.2 (8)C13—C14—C15—C16179.6 (2)
N3—Cu1—O3—N512.8 (12)C20—N3—C16—C170.5 (3)
O1'—Cu1—O3—N50.4 (7)Cu1—N3—C16—C17179.47 (16)
O1—Cu1—O3—N52.1 (8)C20—N3—C16—C15179.68 (19)
O3'—Cu1—O3—N596 (11)Cu1—N3—C16—C150.3 (2)
N1—Cu1—O3'—N597.8 (7)N4—C15—C16—N31.6 (3)
N4—Cu1—O3'—N580.8 (7)C14—C15—C16—N3177.00 (19)
N2—Cu1—O3'—N5179.6 (8)N4—C15—C16—C17179.2 (2)
N3—Cu1—O3'—N52.0 (11)C14—C15—C16—C172.2 (3)
O1'—Cu1—O3'—N54.5 (7)N3—C16—C17—C181.7 (3)
O3—Cu1—O3'—N577 (11)C15—C16—C17—C18177.4 (2)
O1—Cu1—O3'—N56.7 (8)C16—C17—C18—C191.9 (4)
N2—Cu1—N4—C1147.5 (2)C17—C18—C19—C200.1 (4)
N3—Cu1—N4—C11177.2 (2)C16—N3—C20—C192.6 (3)
O1'—Cu1—N4—C1182.8 (6)Cu1—N3—C20—C19177.36 (18)
O3—Cu1—N4—C1136.4 (4)C18—C19—C20—N32.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.583.276 (3)132
C7—H7···O4ii0.932.533.322 (4)144
C13—H13···O7iii0.932.433.249 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C10H8N2)2]ClO4
Mr537.38
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.5882 (15), 10.473 (2), 14.041 (3)
α, β, γ (°)76.15 (3), 81.46 (4), 78.86 (3)
V3)1056.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn 724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.747, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
10121, 4037, 3579
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections4037
No. of parameters351
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.48

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.986 (2)Cu1—N32.0534 (18)
Cu1—N41.9890 (19)Cu1—O32.38 (4)
Cu1—N22.0426 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.583.276 (3)132
C7—H7···O4ii0.932.533.322 (4)144
C13—H13···O7iii0.932.433.249 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Social Development Foundation of Jiangsu Province of China (BS2006038) and the Industry High Technology Foundation of Jiangsu (BG2007025).

References

First citationDuan, L. L., Xu, Y. H., Zhang, P., Wang, M. & Sun, L. C. (2010). Inorg. Chem. 49, 209–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorrow, J. R. & Trogler, W. C. (1989). Inorg. Chem. 28, 1330–2333.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds