metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­­(pyridazine-4-car­box­yl­ato-κO)magnesium(II) dihydrate

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 1 February 2011; accepted 3 February 2011; online 9 February 2011)

The crystal structure of the title compound, [Mg(C5H3N2O2)2(H2O)4]·2H2O, is composed of centrosymmetric monomers in which an MgII ion is coordinated by two carboxyl­ate O atoms from the two pyridazine-4-carboxylate ligands. The monomers linked by O—H⋯O and O—H⋯N hydrogen bonds into layers which are held together by hydrogen bonds in which solvent water O atoms act as donors and acceptors, resulting in a three-dimensional network.

Related literature

For the crystal structure of a Pb(II) complex with pyridazine-4-carboxyl­ate and water ligands, see: Starosta & Leciejewicz, (2009[Starosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.]). The structure of pyridazine-4-carb­oxy­lic acid hydro­chloride was determined earlier (Starosta & Leciejewicz, 2008[Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.]). The structure of a MgII complex with pyridazine-3-carboxyl­ate and water ligands has been also reported by Gryz et al. (2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123-m124.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C5H3N2O2)2(H2O)4]·2H2O

  • Mr = 378.59

  • Monoclinic, P 21 /c

  • a = 7.2571 (15) Å

  • b = 11.688 (2) Å

  • c = 10.550 (2) Å

  • β = 108.36 (3)°

  • V = 849.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.08 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.968, Tmax = 0.987

  • 2007 measured reflections

  • 1873 independent reflections

  • 1136 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.122

  • S = 1.04

  • 1873 reflections

  • 139 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O5 0.83 (2) 1.97 (2) 2.775 (3) 164 (3)
O4—H42⋯N1i 0.81 (2) 2.01 (2) 2.817 (2) 172 (3)
O5—H51⋯N2ii 0.82 (2) 1.98 (2) 2.798 (3) 179 (3)
O3—H32⋯O2iii 0.80 (2) 1.92 (2) 2.675 (2) 159 (3)
O5—H52⋯O2iv 0.81 (2) 1.97 (2) 2.765 (3) 168 (3)
O4—H41⋯O5v 0.80 (2) 1.97 (2) 2.766 (3) 175 (3)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound (I) is built of monomeric molecules in which the Mg+2 located in an inversion centre is chelated by two carboxylate atoms each donated by one of symmetry ralated ligand molecules and by two pairs of aqua O atoms resulting in a slightly distorted octahedral geometry. The carboxylate O1, O1(i) and aqua O3, O3(i) atoms form an equatorial plane, aqua O4 and O4(i) atoms are at the axial positions. The observed Mg—O bond lengths and bond angles are almost the same as reported for the complex with pyridazine-3-carboxylate and water ligands (Gryz et al., 2006). The pyridazine ring is planar with r.m.s. of 0.0046 (1) Å. The observed bond distances and angles are close to those reported for the parent acid (Starosta & Leciejewicz, 2008). The carboxylate group is rotated from the mean plane by 8.1 (1)°. Hydrogen bonds link the monomers to form molecular sheets. They operate between coordinated water O atoms as donors and uncoordinated carboxylate O atoms and pyridazine-N atoms in adjacent monomers as acceptors. The sheets are held together by hydrogen bonds in which crystal water molecules act as donors and acceptors resulting in a three-dimensional network. The coordination mode reported in the structure of a MgII complex with pyridazine-3-carboxylate and water ligands is also octahedral but the MgII ion is coordinated by a pair of symmetry related N,O-chelating groups of the ligands and a pair of water O atoms (Gryz et al., 2006). The Pb(II) complex with the title ligand shows entirely different coordination mode. Two symmetry related metal ions form a dimer in which they are bridged by hetero-ring N atoms of two symmetry related ligands amd two aqua-O atoms. Each Pb(II) ion is also coordinated by both carboxylate O atoms of another ligand whose hetero-ring N atoms do not coordinate to Pb(II). (Starosta & Leciejewicz, 2009).

Related literature top

For the crystal structure of a Pb(II) complex with pyridazine-4-carboxylate and water ligands, see: Starosta & Leciejewicz, (2009). The structure of pyridazine-4-carboxylic acid hydrochloride was determined earlier (Starosta & Leciejewicz, 2008). The structure of a MgII complex with pyridazine-3-carboxylate and water ligands has been also reported by Gryz et al. (2006).

Experimental top

The title compound was obtained by mixing boiling aqueous solutions, one containig 2 mmols of pyridazine-4-carboxylic acid (Aldrich), the other 1 mmol of magnesium diacetate tetrahydrate (Aldrich). The mixture was boiled under reflux for two h, then cooled to room temperature and left to crystallise. A few days latter, colourless crystalline plates were found after evaporation to dryness. They were recrystallised from water several times until well formed single crystals were obtained. Crystals were washed with cold ethanol and dried in the air.

Refinement top

Water hydrogen atoms were located in a difference map and were allowed to ride on the parent atom with Uiso(H)=1.5Ueq(O). H atoms attached to pyridazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.5Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (I) with atom labelling scheme and the 50% probability displacement ellipsoids. Symmetry code: (i) -x + 1,-y + 1,-z + 1. (ii) x, y, z + 1.
[Figure 2] Fig. 2. Crystal packing of I.
trans-Tetraaquabis(pyridazine-4-carboxylato-κO)magnesium(II) dihydrate top
Crystal data top
[Mg(C5H3N2O2)2(H2O)4]·2H2OF(000) = 396
Mr = 378.59Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2571 (15) ÅCell parameters from 25 reflections
b = 11.688 (2) Åθ = 6–15°
c = 10.550 (2) ŵ = 0.16 mm1
β = 108.36 (3)°T = 293 K
V = 849.3 (3) Å3Plate, colourless
Z = 20.24 × 0.22 × 0.08 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1136 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.7°, θmin = 2.7°
profile data from ω/2θ scansh = 90
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 015
Tmin = 0.968, Tmax = 0.987l = 1312
2007 measured reflections3 standard reflections every 200 reflections
1873 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.293P]
where P = (Fo2 + 2Fc2)/3
1873 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.28 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Mg(C5H3N2O2)2(H2O)4]·2H2OV = 849.3 (3) Å3
Mr = 378.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.2571 (15) ŵ = 0.16 mm1
b = 11.688 (2) ÅT = 293 K
c = 10.550 (2) Å0.24 × 0.22 × 0.08 mm
β = 108.36 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1136 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.023
Tmin = 0.968, Tmax = 0.9873 standard reflections every 200 reflections
2007 measured reflections intensity decay: 1.3%
1873 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
1873 reflectionsΔρmin = 0.21 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.50000.50000.0236 (3)
O10.3810 (2)0.54000 (14)0.29844 (14)0.0318 (4)
O20.2156 (3)0.38329 (15)0.20927 (16)0.0453 (5)
N10.2554 (3)0.58217 (18)0.19230 (18)0.0339 (5)
C70.2921 (3)0.47760 (19)0.2019 (2)0.0284 (5)
N20.1945 (3)0.47789 (17)0.16963 (18)0.0336 (5)
C50.3386 (3)0.62622 (19)0.0395 (2)0.0311 (5)
H50.38950.67820.10840.037*
C40.2765 (3)0.52021 (19)0.0639 (2)0.0260 (5)
C30.2036 (3)0.4491 (2)0.0472 (2)0.0312 (5)
H30.15870.37700.03380.037*
C60.3231 (4)0.6534 (2)0.0916 (2)0.0344 (5)
H60.36260.72570.10920.041*
O40.2870 (2)0.59132 (16)0.54856 (16)0.0347 (4)
O50.9316 (3)0.67116 (16)0.38743 (16)0.0358 (4)
O30.6662 (3)0.64863 (14)0.52618 (17)0.0338 (4)
H310.751 (4)0.642 (3)0.489 (3)0.056 (10)*
H420.267 (5)0.586 (3)0.620 (2)0.058 (10)*
H510.896 (4)0.628 (2)0.323 (2)0.041 (8)*
H320.711 (5)0.656 (3)0.6052 (19)0.062 (10)*
H520.905 (5)0.7357 (18)0.360 (3)0.065 (11)*
H410.187 (3)0.614 (2)0.498 (3)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0276 (5)0.0249 (5)0.0176 (5)0.0002 (4)0.0061 (4)0.0006 (4)
O10.0389 (9)0.0329 (8)0.0207 (7)0.0020 (7)0.0052 (6)0.0005 (6)
O20.0681 (13)0.0384 (10)0.0276 (8)0.0184 (9)0.0126 (8)0.0026 (7)
N10.0380 (11)0.0409 (11)0.0239 (9)0.0057 (9)0.0111 (8)0.0042 (8)
C70.0290 (11)0.0335 (12)0.0221 (10)0.0032 (9)0.0073 (9)0.0013 (8)
N20.0374 (11)0.0386 (11)0.0221 (9)0.0020 (8)0.0056 (8)0.0031 (7)
C50.0363 (12)0.0314 (12)0.0242 (10)0.0000 (9)0.0077 (9)0.0046 (9)
C40.0223 (10)0.0325 (12)0.0221 (10)0.0044 (8)0.0052 (8)0.0014 (8)
C30.0353 (12)0.0309 (12)0.0252 (11)0.0003 (10)0.0063 (9)0.0028 (9)
C60.0408 (13)0.0328 (12)0.0305 (11)0.0024 (10)0.0125 (10)0.0013 (10)
O40.0337 (9)0.0476 (10)0.0230 (8)0.0114 (8)0.0091 (7)0.0051 (7)
O50.0403 (10)0.0352 (10)0.0269 (8)0.0016 (8)0.0035 (7)0.0006 (7)
O30.0407 (10)0.0342 (9)0.0276 (9)0.0055 (7)0.0123 (8)0.0010 (7)
Geometric parameters (Å, º) top
Mg1—O4i2.0714 (17)C5—C41.370 (3)
Mg1—O42.0714 (17)C5—C61.389 (3)
Mg1—O1i2.0807 (16)C5—H50.9300
Mg1—O12.0807 (16)C4—C31.398 (3)
Mg1—O32.0829 (17)C3—H30.9300
Mg1—O3i2.0829 (17)C6—H60.9300
Mg1—H322.42 (3)O4—H420.809 (18)
O1—C71.254 (3)O4—H410.798 (18)
O2—C71.248 (3)O5—H510.819 (17)
N1—C61.317 (3)O5—H520.809 (18)
N1—N21.343 (3)O3—H310.828 (18)
C7—C41.509 (3)O3—H320.799 (18)
N2—C31.316 (3)
O4i—Mg1—O4180.00 (6)O2—C7—O1126.0 (2)
O4i—Mg1—O1i92.02 (7)O2—C7—C4116.88 (19)
O4—Mg1—O1i87.99 (7)O1—C7—C4117.1 (2)
O4i—Mg1—O187.98 (7)C3—N2—N1119.28 (19)
O4—Mg1—O192.02 (7)C4—C5—C6117.8 (2)
O1i—Mg1—O1180.0C4—C5—H5121.1
O4i—Mg1—O390.95 (7)C6—C5—H5121.1
O4—Mg1—O389.05 (7)C5—C4—C3116.1 (2)
O1i—Mg1—O390.88 (7)C5—C4—C7123.40 (19)
O1—Mg1—O389.12 (7)C3—C4—C7120.4 (2)
O4i—Mg1—O3i89.05 (7)N2—C3—C4124.0 (2)
O4—Mg1—O3i90.95 (7)N2—C3—H3118.0
O1i—Mg1—O3i89.12 (7)C4—C3—H3118.0
O1—Mg1—O3i90.88 (7)N1—C6—C5123.5 (2)
O3—Mg1—O3i180.000 (1)N1—C6—H6118.3
O4i—Mg1—H3295.0 (8)C5—C6—H6118.3
O4—Mg1—H3285.0 (8)Mg1—O4—H42123 (2)
O1i—Mg1—H3272.6 (6)Mg1—O4—H41127 (2)
O1—Mg1—H32107.4 (6)H42—O4—H41105 (3)
O3—Mg1—H3218.6 (6)H51—O5—H52108 (3)
O3i—Mg1—H32161.4 (6)Mg1—O3—H31110 (2)
C7—O1—Mg1129.89 (15)Mg1—O3—H32105 (2)
C6—N1—N2119.35 (19)H31—O3—H32112 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O50.83 (2)1.97 (2)2.775 (3)164 (3)
O4—H42···N1ii0.81 (2)2.01 (2)2.817 (2)172 (3)
O5—H51···N2iii0.82 (2)1.98 (2)2.798 (3)179 (3)
O3—H32···O2i0.80 (2)1.92 (2)2.675 (2)159 (3)
O5—H52···O2iv0.81 (2)1.97 (2)2.765 (3)168 (3)
O4—H41···O5v0.80 (2)1.97 (2)2.766 (3)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(C5H3N2O2)2(H2O)4]·2H2O
Mr378.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2571 (15), 11.688 (2), 10.550 (2)
β (°) 108.36 (3)
V3)849.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.24 × 0.22 × 0.08
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2007, 1873, 1136
Rint0.023
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.122, 1.04
No. of reflections1873
No. of parameters139
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O50.828 (18)1.97 (2)2.775 (3)164 (3)
O4—H42···N1i0.809 (18)2.013 (19)2.817 (2)172 (3)
O5—H51···N2ii0.819 (17)1.979 (18)2.798 (3)179 (3)
O3—H32···O2iii0.799 (18)1.92 (2)2.675 (2)159 (3)
O5—H52···O2iv0.809 (18)1.968 (19)2.765 (3)168 (3)
O4—H41···O5v0.798 (18)1.970 (18)2.766 (3)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x1, y, z.
 

References

First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123–m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds