organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis{[5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}butane

aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 17 February 2011; accepted 22 February 2011; online 26 February 2011)

In the centrosymmetric title compound, C18H16N6O2S2, the 1,3,4-oxadiazole and the attached pyridinyl ring are twisted by 5.3 (3)°.

Related literature

For applications of heterocyclic derivatives, see: Al-Talib et al. (1990[Al-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811-1817.]); Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Zhang et al. (2007[Zhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.]). For related structuresbn,, see: Wang et al. (2010[Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.], 2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]); Zhao et al. (2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N6O2S2

  • Mr = 412.49

  • Monoclinic, P 21 /c

  • a = 4.9780 (6) Å

  • b = 5.7933 (7) Å

  • c = 31.003 (4) Å

  • β = 92.588 (5)°

  • V = 893.20 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.937, Tmax = 0.962

  • 8437 measured reflections

  • 2128 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.10

  • 2128 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocycle derivatives containing N, O and S atoms are under intensive studies due to their wide applications in medicine, industry and coordination chemistry (Al-Talib et al., 1990; Nakagawa et al., 1996; Zhang et al., 2007). We are focusing the synthetic and structural studies on the novel thio-based ligands (Wang et al., 2010, 2011; Zhao et al., 2010). Here we present the synthesis and the crystal structure of the title compound (I), namely, 1,4-bis[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylsulfanyl]butane.

The molecular structure of title compound (I) (Fig. 1)reveals a twofold rotational axis through the mid of the C-C bond of butane group. Therefore, an asymmetric unit comprises a half of the molecule. 1,3,4-Oxadiazole moiety is planar with an r.m.s. deviation of 0.0033 (2)Å and maximum deviation of 0.0052 (2)Å for the atom C7. The dihedral angle between the oxadiazole and its attached pyridinyl ring [r.m.s. deviation = 0.0062 (2) Å] of 5.3 (3)° indicates that they are almost coplanar. As a result of π-π conjugation, the Csp2-S bond [S1—C7 = 1.722 (13) Å] is significantly shorter than the Csp3-S bond [S1—C8 = 1.817 (12) Å].

Related literature top

For applications of heterocyclic derivatives, see: Al-Talib et al. (1990); Nakagawa et al. (1996); Zhang et al. (2007). For related structuresbn,, see: Wang et al. (2010, 2011); Zhao et al. (2010).

Experimental top

A suspension of 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 mL) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light-yellow solid in 87% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme [symmetry code: (A)-x, -y + 1, -z + 1]. Displacement ellipsoids are drawn at the 50% probability level.
4-{5-[(4-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}butyl)sulfanyl]- 1,3,4-oxadiazol-2-yl}pyridine top
Crystal data top
C18H16N6O2S2F(000) = 428
Mr = 412.49Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2798 reflections
a = 4.9780 (6) Åθ = 2.6–27.9°
b = 5.7933 (7) ŵ = 0.33 mm1
c = 31.003 (4) ÅT = 113 K
β = 92.588 (5)°Prism, light-yellow
V = 893.20 (18) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2128 independent reflections
Radiation source: rotating anode1811 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.035
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.6°
ϕ and ω scansh = 46
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 77
Tmin = 0.937, Tmax = 0.962l = 3840
8437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.054P]
where P = (Fo2 + 2Fc2)/3
2128 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H16N6O2S2V = 893.20 (18) Å3
Mr = 412.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9780 (6) ŵ = 0.33 mm1
b = 5.7933 (7) ÅT = 113 K
c = 31.003 (4) Å0.20 × 0.18 × 0.10 mm
β = 92.588 (5)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2128 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1811 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.962Rint = 0.035
8437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.10Δρmax = 0.40 e Å3
2128 reflectionsΔρmin = 0.19 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25227 (6)0.35176 (5)0.422550 (9)0.01776 (12)
O10.61211 (17)0.17771 (15)0.37253 (3)0.0163 (2)
N11.3455 (2)0.0526 (2)0.27364 (3)0.0197 (2)
N20.7346 (2)0.15583 (19)0.40229 (3)0.0186 (2)
N30.5348 (2)0.05632 (19)0.42735 (3)0.0189 (2)
C11.1858 (3)0.1307 (2)0.27715 (4)0.0190 (3)
H11.20630.25510.25760.023*
C20.9910 (3)0.1507 (2)0.30774 (4)0.0179 (3)
H20.87970.28360.30860.021*
C30.9634 (2)0.0287 (2)0.33688 (4)0.0155 (3)
C41.1268 (3)0.2220 (2)0.33375 (4)0.0185 (3)
H41.11250.34790.35310.022*
C51.3118 (3)0.2262 (2)0.30146 (4)0.0199 (3)
H51.42060.35980.29900.024*
C60.7718 (2)0.0138 (2)0.37112 (4)0.0153 (3)
C70.4729 (2)0.1379 (2)0.40882 (4)0.0152 (3)
C80.1260 (3)0.2236 (2)0.47114 (4)0.0177 (3)
H8A0.03310.07640.46400.021*
H8B0.27700.19080.49210.021*
C90.0695 (3)0.3927 (2)0.49063 (4)0.0178 (3)
H9A0.20520.44030.46800.021*
H9B0.16520.31370.51370.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0216 (2)0.01715 (19)0.01492 (18)0.00366 (11)0.00549 (12)0.00101 (11)
O10.0174 (4)0.0179 (5)0.0140 (4)0.0017 (3)0.0045 (3)0.0003 (3)
N10.0180 (5)0.0223 (6)0.0191 (5)0.0024 (4)0.0030 (4)0.0030 (4)
N20.0208 (6)0.0179 (6)0.0176 (5)0.0020 (4)0.0053 (4)0.0002 (4)
N30.0201 (5)0.0193 (6)0.0177 (5)0.0022 (4)0.0053 (4)0.0003 (4)
C10.0194 (7)0.0202 (7)0.0176 (6)0.0024 (5)0.0037 (5)0.0011 (5)
C20.0178 (6)0.0173 (6)0.0186 (6)0.0012 (5)0.0023 (5)0.0005 (5)
C30.0146 (6)0.0185 (6)0.0132 (5)0.0014 (5)0.0001 (4)0.0016 (4)
C40.0205 (6)0.0185 (6)0.0166 (6)0.0009 (5)0.0022 (5)0.0009 (5)
C50.0193 (6)0.0200 (6)0.0207 (6)0.0025 (5)0.0029 (5)0.0026 (5)
C60.0142 (6)0.0160 (6)0.0158 (6)0.0011 (4)0.0003 (4)0.0017 (4)
C70.0155 (6)0.0188 (6)0.0114 (5)0.0013 (4)0.0028 (4)0.0014 (4)
C80.0215 (6)0.0162 (6)0.0158 (6)0.0010 (5)0.0055 (5)0.0007 (5)
C90.0173 (6)0.0182 (6)0.0183 (6)0.0013 (5)0.0042 (5)0.0030 (5)
Geometric parameters (Å, º) top
S1—C71.7218 (13)C2—H20.9500
S1—C81.8171 (12)C3—C41.3902 (17)
O1—C61.3669 (14)C3—C61.4615 (16)
O1—C71.3675 (14)C4—C51.3906 (17)
N1—C11.3337 (17)C4—H40.9500
N1—C51.3404 (17)C5—H50.9500
N2—C61.2888 (16)C8—C91.5251 (17)
N2—N31.4121 (15)C8—H8A0.9900
N3—C71.2941 (16)C8—H8B0.9900
C1—C21.3914 (18)C9—C9i1.525 (2)
C1—H10.9500C9—H9A0.9900
C2—C31.3878 (17)C9—H9B0.9900
C7—S1—C899.16 (6)C4—C5—H5118.1
C6—O1—C7101.91 (9)N2—C6—O1113.00 (10)
C1—N1—C5116.91 (11)N2—C6—C3128.89 (11)
C6—N2—N3106.29 (10)O1—C6—C3118.07 (10)
C7—N3—N2105.69 (10)N3—C7—O1113.10 (11)
N1—C1—C2123.91 (12)N3—C7—S1131.13 (10)
N1—C1—H1118.0O1—C7—S1115.76 (9)
C2—C1—H1118.0C9—C8—S1108.47 (9)
C3—C2—C1118.29 (12)C9—C8—H8A110.0
C3—C2—H2120.9S1—C8—H8A110.0
C1—C2—H2120.9C9—C8—H8B110.0
C2—C3—C4118.84 (11)S1—C8—H8B110.0
C2—C3—C6121.06 (11)H8A—C8—H8B108.4
C4—C3—C6120.08 (11)C9i—C9—C8112.82 (13)
C3—C4—C5118.21 (12)C9i—C9—H9A109.0
C3—C4—H4120.9C8—C9—H9A109.0
C5—C4—H4120.9C9i—C9—H9B109.0
N1—C5—C4123.80 (12)C8—C9—H9B109.0
N1—C5—H5118.1H9A—C9—H9B107.8
C6—N2—N3—C70.50 (14)C2—C3—C6—N2174.70 (13)
C5—N1—C1—C20.29 (19)C4—C3—C6—N23.7 (2)
N1—C1—C2—C31.2 (2)C2—C3—C6—O12.71 (17)
C1—C2—C3—C41.37 (19)C4—C3—C6—O1178.93 (11)
C1—C2—C3—C6177.01 (11)N2—N3—C7—O10.93 (14)
C2—C3—C4—C50.23 (18)N2—N3—C7—S1177.95 (10)
C6—C3—C4—C5178.17 (11)C6—O1—C7—N30.96 (13)
C1—N1—C5—C41.56 (19)C6—O1—C7—S1178.10 (8)
C3—C4—C5—N11.3 (2)C8—S1—C7—N30.56 (14)
N3—N2—C6—O10.09 (14)C8—S1—C7—O1179.42 (9)
N3—N2—C6—C3177.42 (12)C7—S1—C8—C9177.46 (9)
C7—O1—C6—N20.61 (13)S1—C8—C9—C9i69.35 (15)
C7—O1—C6—C3177.20 (11)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N6O2S2
Mr412.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)4.9780 (6), 5.7933 (7), 31.003 (4)
β (°) 92.588 (5)
V3)893.20 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.937, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8437, 2128, 1811
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.10
No. of reflections2128
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support of this project by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

References

First citationAl-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1817.  CrossRef CAS Web of Science Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds