organic compounds
1,4-Bis{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}butane
aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn
In the centrosymmetric title compound, C18H16N6O2S2, the 1,3,4-oxadiazole and the attached pyridinyl ring are twisted by 5.3 (3)°.
Related literature
For applications of heterocyclic derivatives, see: Al-Talib et al. (1990); Nakagawa et al. (1996); Zhang et al. (2007). For related structuresbn,, see: Wang et al. (2010, 2011); Zhao et al. (2010).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811006805/kp2310sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006805/kp2310Isup2.hkl
A suspension of 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 mL) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light-yellow solid in 87% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).
All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of (I) showing the atom-labelling scheme [symmetry code: (A)-x, -y + 1, -z + 1]. Displacement ellipsoids are drawn at the 50% probability level. |
C18H16N6O2S2 | F(000) = 428 |
Mr = 412.49 | Dx = 1.534 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2798 reflections |
a = 4.9780 (6) Å | θ = 2.6–27.9° |
b = 5.7933 (7) Å | µ = 0.33 mm−1 |
c = 31.003 (4) Å | T = 113 K |
β = 92.588 (5)° | Prism, light-yellow |
V = 893.20 (18) Å3 | 0.20 × 0.18 × 0.10 mm |
Z = 2 |
Rigaku Saturn CCD area-detector diffractometer | 2128 independent reflections |
Radiation source: rotating anode | 1811 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.035 |
Detector resolution: 14.63 pixels mm-1 | θmax = 27.9°, θmin = 2.6° |
ϕ and ω scans | h = −4→6 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −7→7 |
Tmin = 0.937, Tmax = 0.962 | l = −38→40 |
8437 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0531P)2 + 0.054P] where P = (Fo2 + 2Fc2)/3 |
2128 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C18H16N6O2S2 | V = 893.20 (18) Å3 |
Mr = 412.49 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.9780 (6) Å | µ = 0.33 mm−1 |
b = 5.7933 (7) Å | T = 113 K |
c = 31.003 (4) Å | 0.20 × 0.18 × 0.10 mm |
β = 92.588 (5)° |
Rigaku Saturn CCD area-detector diffractometer | 2128 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1811 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.962 | Rint = 0.035 |
8437 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.40 e Å−3 |
2128 reflections | Δρmin = −0.19 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.25227 (6) | 0.35176 (5) | 0.422550 (9) | 0.01776 (12) | |
O1 | 0.61211 (17) | 0.17771 (15) | 0.37253 (3) | 0.0163 (2) | |
N1 | 1.3455 (2) | −0.0526 (2) | 0.27364 (3) | 0.0197 (2) | |
N2 | 0.7346 (2) | −0.15583 (19) | 0.40229 (3) | 0.0186 (2) | |
N3 | 0.5348 (2) | −0.05632 (19) | 0.42735 (3) | 0.0189 (2) | |
C1 | 1.1858 (3) | 0.1307 (2) | 0.27715 (4) | 0.0190 (3) | |
H1 | 1.2063 | 0.2551 | 0.2576 | 0.023* | |
C2 | 0.9910 (3) | 0.1507 (2) | 0.30774 (4) | 0.0179 (3) | |
H2 | 0.8797 | 0.2836 | 0.3086 | 0.021* | |
C3 | 0.9634 (2) | −0.0287 (2) | 0.33688 (4) | 0.0155 (3) | |
C4 | 1.1268 (3) | −0.2220 (2) | 0.33375 (4) | 0.0185 (3) | |
H4 | 1.1125 | −0.3479 | 0.3531 | 0.022* | |
C5 | 1.3118 (3) | −0.2262 (2) | 0.30146 (4) | 0.0199 (3) | |
H5 | 1.4206 | −0.3598 | 0.2990 | 0.024* | |
C6 | 0.7718 (2) | −0.0138 (2) | 0.37112 (4) | 0.0153 (3) | |
C7 | 0.4729 (2) | 0.1379 (2) | 0.40882 (4) | 0.0152 (3) | |
C8 | 0.1260 (3) | 0.2236 (2) | 0.47114 (4) | 0.0177 (3) | |
H8A | 0.0331 | 0.0764 | 0.4640 | 0.021* | |
H8B | 0.2770 | 0.1908 | 0.4921 | 0.021* | |
C9 | −0.0695 (3) | 0.3927 (2) | 0.49063 (4) | 0.0178 (3) | |
H9A | −0.2052 | 0.4403 | 0.4680 | 0.021* | |
H9B | −0.1652 | 0.3137 | 0.5137 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0216 (2) | 0.01715 (19) | 0.01492 (18) | 0.00366 (11) | 0.00549 (12) | 0.00101 (11) |
O1 | 0.0174 (4) | 0.0179 (5) | 0.0140 (4) | 0.0017 (3) | 0.0045 (3) | 0.0003 (3) |
N1 | 0.0180 (5) | 0.0223 (6) | 0.0191 (5) | −0.0024 (4) | 0.0030 (4) | −0.0030 (4) |
N2 | 0.0208 (6) | 0.0179 (6) | 0.0176 (5) | 0.0020 (4) | 0.0053 (4) | −0.0002 (4) |
N3 | 0.0201 (5) | 0.0193 (6) | 0.0177 (5) | 0.0022 (4) | 0.0053 (4) | −0.0003 (4) |
C1 | 0.0194 (7) | 0.0202 (7) | 0.0176 (6) | −0.0024 (5) | 0.0037 (5) | 0.0011 (5) |
C2 | 0.0178 (6) | 0.0173 (6) | 0.0186 (6) | 0.0012 (5) | 0.0023 (5) | −0.0005 (5) |
C3 | 0.0146 (6) | 0.0185 (6) | 0.0132 (5) | −0.0014 (5) | −0.0001 (4) | −0.0016 (4) |
C4 | 0.0205 (6) | 0.0185 (6) | 0.0166 (6) | 0.0009 (5) | 0.0022 (5) | 0.0009 (5) |
C5 | 0.0193 (6) | 0.0200 (6) | 0.0207 (6) | 0.0025 (5) | 0.0029 (5) | −0.0026 (5) |
C6 | 0.0142 (6) | 0.0160 (6) | 0.0158 (6) | 0.0011 (4) | 0.0003 (4) | −0.0017 (4) |
C7 | 0.0155 (6) | 0.0188 (6) | 0.0114 (5) | −0.0013 (4) | 0.0028 (4) | −0.0014 (4) |
C8 | 0.0215 (6) | 0.0162 (6) | 0.0158 (6) | −0.0010 (5) | 0.0055 (5) | −0.0007 (5) |
C9 | 0.0173 (6) | 0.0182 (6) | 0.0183 (6) | −0.0013 (5) | 0.0042 (5) | −0.0030 (5) |
S1—C7 | 1.7218 (13) | C2—H2 | 0.9500 |
S1—C8 | 1.8171 (12) | C3—C4 | 1.3902 (17) |
O1—C6 | 1.3669 (14) | C3—C6 | 1.4615 (16) |
O1—C7 | 1.3675 (14) | C4—C5 | 1.3906 (17) |
N1—C1 | 1.3337 (17) | C4—H4 | 0.9500 |
N1—C5 | 1.3404 (17) | C5—H5 | 0.9500 |
N2—C6 | 1.2888 (16) | C8—C9 | 1.5251 (17) |
N2—N3 | 1.4121 (15) | C8—H8A | 0.9900 |
N3—C7 | 1.2941 (16) | C8—H8B | 0.9900 |
C1—C2 | 1.3914 (18) | C9—C9i | 1.525 (2) |
C1—H1 | 0.9500 | C9—H9A | 0.9900 |
C2—C3 | 1.3878 (17) | C9—H9B | 0.9900 |
C7—S1—C8 | 99.16 (6) | C4—C5—H5 | 118.1 |
C6—O1—C7 | 101.91 (9) | N2—C6—O1 | 113.00 (10) |
C1—N1—C5 | 116.91 (11) | N2—C6—C3 | 128.89 (11) |
C6—N2—N3 | 106.29 (10) | O1—C6—C3 | 118.07 (10) |
C7—N3—N2 | 105.69 (10) | N3—C7—O1 | 113.10 (11) |
N1—C1—C2 | 123.91 (12) | N3—C7—S1 | 131.13 (10) |
N1—C1—H1 | 118.0 | O1—C7—S1 | 115.76 (9) |
C2—C1—H1 | 118.0 | C9—C8—S1 | 108.47 (9) |
C3—C2—C1 | 118.29 (12) | C9—C8—H8A | 110.0 |
C3—C2—H2 | 120.9 | S1—C8—H8A | 110.0 |
C1—C2—H2 | 120.9 | C9—C8—H8B | 110.0 |
C2—C3—C4 | 118.84 (11) | S1—C8—H8B | 110.0 |
C2—C3—C6 | 121.06 (11) | H8A—C8—H8B | 108.4 |
C4—C3—C6 | 120.08 (11) | C9i—C9—C8 | 112.82 (13) |
C3—C4—C5 | 118.21 (12) | C9i—C9—H9A | 109.0 |
C3—C4—H4 | 120.9 | C8—C9—H9A | 109.0 |
C5—C4—H4 | 120.9 | C9i—C9—H9B | 109.0 |
N1—C5—C4 | 123.80 (12) | C8—C9—H9B | 109.0 |
N1—C5—H5 | 118.1 | H9A—C9—H9B | 107.8 |
C6—N2—N3—C7 | −0.50 (14) | C2—C3—C6—N2 | −174.70 (13) |
C5—N1—C1—C2 | 0.29 (19) | C4—C3—C6—N2 | 3.7 (2) |
N1—C1—C2—C3 | 1.2 (2) | C2—C3—C6—O1 | 2.71 (17) |
C1—C2—C3—C4 | −1.37 (19) | C4—C3—C6—O1 | −178.93 (11) |
C1—C2—C3—C6 | 177.01 (11) | N2—N3—C7—O1 | 0.93 (14) |
C2—C3—C4—C5 | 0.23 (18) | N2—N3—C7—S1 | −177.95 (10) |
C6—C3—C4—C5 | −178.17 (11) | C6—O1—C7—N3 | −0.96 (13) |
C1—N1—C5—C4 | −1.56 (19) | C6—O1—C7—S1 | 178.10 (8) |
C3—C4—C5—N1 | 1.3 (2) | C8—S1—C7—N3 | −0.56 (14) |
N3—N2—C6—O1 | −0.09 (14) | C8—S1—C7—O1 | −179.42 (9) |
N3—N2—C6—C3 | 177.42 (12) | C7—S1—C8—C9 | 177.46 (9) |
C7—O1—C6—N2 | 0.61 (13) | S1—C8—C9—C9i | −69.35 (15) |
C7—O1—C6—C3 | −177.20 (11) |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H16N6O2S2 |
Mr | 412.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 4.9780 (6), 5.7933 (7), 31.003 (4) |
β (°) | 92.588 (5) |
V (Å3) | 893.20 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.20 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.937, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8437, 2128, 1811 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.089, 1.10 |
No. of reflections | 2128 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.19 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We gratefully acknowledge support of this project by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).
References
Al-Talib, M., Tashtoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1817. CrossRef CAS Web of Science Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Z.-H., Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2007). Acta Cryst. E63, m3044. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocycle derivatives containing N, O and S atoms are under intensive studies due to their wide applications in medicine, industry and coordination chemistry (Al-Talib et al., 1990; Nakagawa et al., 1996; Zhang et al., 2007). We are focusing the synthetic and structural studies on the novel thio-based ligands (Wang et al., 2010, 2011; Zhao et al., 2010). Here we present the synthesis and the crystal structure of the title compound (I), namely, 1,4-bis[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylsulfanyl]butane.
The molecular structure of title compound (I) (Fig. 1)reveals a twofold rotational axis through the mid of the C-C bond of butane group. Therefore, an asymmetric unit comprises a half of the molecule. 1,3,4-Oxadiazole moiety is planar with an r.m.s. deviation of 0.0033 (2)Å and maximum deviation of 0.0052 (2)Å for the atom C7. The dihedral angle between the oxadiazole and its attached pyridinyl ring [r.m.s. deviation = 0.0062 (2) Å] of 5.3 (3)° indicates that they are almost coplanar. As a result of π-π conjugation, the Csp2-S bond [S1—C7 = 1.722 (13) Å] is significantly shorter than the Csp3-S bond [S1—C8 = 1.817 (12) Å].