organic compounds
n-Tridecylamine chloride monohydrate
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: diyouying@126.com
In the title compound, C13H30N+·Cl−·H2O, the C13H27 alkyl chain is in an all-trans conformation. In the crystal, intermolecular N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds connect the components into layers parallel to (010), with the alkyl chains oriented approximately perpendicular to these layers.
Related literature
For applications of long-chain n-alkylammonium halides, see: Aratono et al. (1998); Tornblom et al. (2000); Ringsdorf et al. (1988). For details of phase transitions in n-alkylammonium chlorides, see: Terreros et al. (2000). For related structures, see: Rademeyer et al. (2009); Lundén (1974); Clark & Hudgens (1950).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811006246/lh5197sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006246/lh5197Isup2.hkl
n–Tridecylamine chloride monohydrate was prepared by the addition of hydrochloric acid to an ethanolic solution of n–tridecylamine. The mixture was heated and stirred under reflux for 6 h. Single crystals suitable for X–ray diffraction were prepared by evaporation of the resulting solution at room temperature. Analysis, calculated for C13H32ClNO (Mr =253.85): C 61.51, H 12.71, N 5.52, Cl 13.96%; found: C 61.50, H 12.72, N 5.51, Cl 13.95%.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with methylene C—H = 0.97 Å, methyl C—H = 0.96 Å, N—H = 0.89 Å, O-H = 0.85 Å and refined as riding on their parent atoms. TheUiso(H) values were set at 1.2Ueq(Cmethylene, O) at 1.5Ueq(Cmethyl,N).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H30N+·Cl−·H2O | F(000) = 568 |
Mr = 253.85 | Dx = 1.047 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 817 reflections |
a = 4.7420 (5) Å | θ = 2.7–20.8° |
b = 45.250 (3) Å | µ = 0.22 mm−1 |
c = 7.8191 (9) Å | T = 298 K |
β = 106.332 (2)° | Acicular, colourless |
V = 1610.1 (3) Å3 | 0.34 × 0.33 × 0.03 mm |
Z = 4 |
Siemens SMART CCD area-detector diffractometer | 2845 independent reflections |
Radiation source: fine-focus sealed tube | 1379 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
Detector resolution: 10 pixels mm-1 | θmax = 25.0°, θmin = 2.7° |
ϕ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −53→46 |
Tmin = 0.928, Tmax = 0.993 | l = −7→9 |
8230 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3 |
2845 reflections | (Δ/σ)max = 0.001 |
147 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C13H30N+·Cl−·H2O | V = 1610.1 (3) Å3 |
Mr = 253.85 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.7420 (5) Å | µ = 0.22 mm−1 |
b = 45.250 (3) Å | T = 298 K |
c = 7.8191 (9) Å | 0.34 × 0.33 × 0.03 mm |
β = 106.332 (2)° |
Siemens SMART CCD area-detector diffractometer | 2845 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1379 reflections with I > 2σ(I) |
Tmin = 0.928, Tmax = 0.993 | Rint = 0.077 |
8230 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.25 e Å−3 |
2845 reflections | Δρmin = −0.18 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.77004 (19) | 0.727389 (19) | 0.54882 (12) | 0.0578 (3) | |
N1 | 0.2908 (5) | 0.72396 (5) | 0.1504 (4) | 0.0486 (8) | |
H1A | 0.4378 | 0.7281 | 0.2466 | 0.073* | |
H1B | 0.1648 | 0.7390 | 0.1270 | 0.073* | |
H1C | 0.3618 | 0.7210 | 0.0578 | 0.073* | |
O1 | 0.3848 (5) | 0.70538 (5) | 0.8156 (3) | 0.0690 (8) | |
H1H | 0.5034 | 0.7102 | 0.7566 | 0.083* | |
H1I | 0.2125 | 0.7103 | 0.7554 | 0.083* | |
C1 | 0.1369 (7) | 0.69683 (6) | 0.1834 (4) | 0.0462 (9) | |
H1D | −0.0396 | 0.6941 | 0.0856 | 0.055* | |
H1E | 0.0779 | 0.6994 | 0.2915 | 0.055* | |
C2 | 0.3263 (7) | 0.66944 (6) | 0.2017 (4) | 0.0445 (9) | |
H2A | 0.5028 | 0.6722 | 0.2995 | 0.053* | |
H2B | 0.3852 | 0.6668 | 0.0935 | 0.053* | |
C3 | 0.1677 (7) | 0.64186 (6) | 0.2355 (4) | 0.0467 (9) | |
H3A | −0.0251 | 0.6412 | 0.1498 | 0.056* | |
H3B | 0.1397 | 0.6431 | 0.3534 | 0.056* | |
C4 | 0.3305 (7) | 0.61334 (6) | 0.2221 (4) | 0.0444 (9) | |
H4A | 0.5222 | 0.6140 | 0.3090 | 0.053* | |
H4B | 0.3616 | 0.6123 | 0.1049 | 0.053* | |
C5 | 0.1730 (7) | 0.58533 (6) | 0.2526 (4) | 0.0471 (9) | |
H5A | 0.1495 | 0.5860 | 0.3718 | 0.056* | |
H5B | −0.0219 | 0.5851 | 0.1691 | 0.056* | |
C6 | 0.3292 (7) | 0.55675 (6) | 0.2317 (4) | 0.0440 (9) | |
H6A | 0.3543 | 0.5562 | 0.1128 | 0.053* | |
H6B | 0.5234 | 0.5569 | 0.3159 | 0.053* | |
C7 | 0.1722 (7) | 0.52882 (6) | 0.2603 (4) | 0.0450 (9) | |
H7A | −0.0231 | 0.5288 | 0.1773 | 0.054* | |
H7B | 0.1496 | 0.5292 | 0.3798 | 0.054* | |
C8 | 0.3260 (6) | 0.50019 (6) | 0.2369 (4) | 0.0440 (9) | |
H8A | 0.3473 | 0.4997 | 0.1171 | 0.053* | |
H8B | 0.5218 | 0.5003 | 0.3193 | 0.053* | |
C9 | 0.1705 (7) | 0.47222 (6) | 0.2666 (4) | 0.0448 (9) | |
H9A | −0.0251 | 0.4721 | 0.1839 | 0.054* | |
H9B | 0.1485 | 0.4727 | 0.3862 | 0.054* | |
C10 | 0.3245 (7) | 0.44364 (6) | 0.2439 (4) | 0.0438 (9) | |
H10A | 0.3458 | 0.4431 | 0.1242 | 0.053* | |
H10B | 0.5204 | 0.4438 | 0.3263 | 0.053* | |
C11 | 0.1702 (7) | 0.41561 (6) | 0.2745 (4) | 0.0448 (9) | |
H11A | 0.1479 | 0.4162 | 0.3940 | 0.054* | |
H11B | −0.0253 | 0.4154 | 0.1917 | 0.054* | |
C12 | 0.3236 (7) | 0.38729 (6) | 0.2530 (5) | 0.0522 (10) | |
H12A | 0.5194 | 0.3876 | 0.3355 | 0.063* | |
H12B | 0.3452 | 0.3867 | 0.1333 | 0.063* | |
C13 | 0.1688 (8) | 0.35920 (7) | 0.2844 (5) | 0.0703 (12) | |
H13A | 0.1532 | 0.3591 | 0.4042 | 0.105* | |
H13B | 0.2798 | 0.3423 | 0.2668 | 0.105* | |
H13C | −0.0242 | 0.3584 | 0.2021 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0520 (5) | 0.0590 (6) | 0.0612 (6) | −0.0052 (5) | 0.0137 (4) | −0.0036 (5) |
N1 | 0.0485 (16) | 0.0358 (17) | 0.061 (2) | 0.0041 (15) | 0.0145 (14) | 0.0002 (14) |
O1 | 0.0659 (17) | 0.0752 (17) | 0.0683 (19) | 0.0036 (15) | 0.0230 (13) | 0.0100 (14) |
C1 | 0.044 (2) | 0.034 (2) | 0.062 (3) | 0.0005 (18) | 0.0178 (17) | 0.0039 (16) |
C2 | 0.046 (2) | 0.035 (2) | 0.053 (2) | −0.0022 (18) | 0.0152 (17) | −0.0021 (16) |
C3 | 0.052 (2) | 0.039 (2) | 0.053 (2) | −0.0043 (19) | 0.0209 (18) | 0.0011 (17) |
C4 | 0.050 (2) | 0.036 (2) | 0.050 (2) | −0.0033 (18) | 0.0191 (18) | 0.0020 (16) |
C5 | 0.053 (2) | 0.041 (2) | 0.049 (2) | −0.005 (2) | 0.0189 (18) | 0.0004 (17) |
C6 | 0.048 (2) | 0.039 (2) | 0.048 (2) | −0.0014 (19) | 0.0177 (17) | 0.0012 (16) |
C7 | 0.048 (2) | 0.039 (2) | 0.050 (2) | −0.0024 (19) | 0.0178 (17) | 0.0029 (17) |
C8 | 0.047 (2) | 0.040 (2) | 0.047 (2) | −0.003 (2) | 0.0170 (17) | 0.0042 (16) |
C9 | 0.051 (2) | 0.037 (2) | 0.049 (2) | −0.0035 (19) | 0.0190 (18) | −0.0009 (16) |
C10 | 0.048 (2) | 0.040 (2) | 0.047 (2) | −0.0014 (19) | 0.0194 (17) | −0.0011 (16) |
C11 | 0.050 (2) | 0.039 (2) | 0.048 (2) | −0.0033 (19) | 0.0167 (17) | 0.0026 (16) |
C12 | 0.062 (2) | 0.041 (2) | 0.054 (3) | 0.004 (2) | 0.0163 (19) | 0.0000 (17) |
C13 | 0.094 (3) | 0.043 (2) | 0.076 (3) | −0.005 (2) | 0.026 (2) | 0.001 (2) |
N1—C1 | 1.487 (3) | C6—H6B | 0.9700 |
N1—H1A | 0.8900 | C7—C8 | 1.523 (4) |
N1—H1B | 0.8900 | C7—H7A | 0.9700 |
N1—H1C | 0.8900 | C7—H7B | 0.9700 |
O1—H1H | 0.8499 | C8—C9 | 1.515 (4) |
O1—H1I | 0.8499 | C8—H8A | 0.9700 |
C1—C2 | 1.513 (4) | C8—H8B | 0.9700 |
C1—H1D | 0.9700 | C9—C10 | 1.520 (4) |
C1—H1E | 0.9700 | C9—H9A | 0.9700 |
C2—C3 | 1.518 (4) | C9—H9B | 0.9700 |
C2—H2A | 0.9700 | C10—C11 | 1.517 (4) |
C2—H2B | 0.9700 | C10—H10A | 0.9700 |
C3—C4 | 1.523 (4) | C10—H10B | 0.9700 |
C3—H3A | 0.9700 | C11—C12 | 1.506 (4) |
C3—H3B | 0.9700 | C11—H11A | 0.9700 |
C4—C5 | 1.524 (4) | C11—H11B | 0.9700 |
C4—H4A | 0.9700 | C12—C13 | 1.522 (4) |
C4—H4B | 0.9700 | C12—H12A | 0.9700 |
C5—C6 | 1.522 (4) | C12—H12B | 0.9700 |
C5—H5A | 0.9700 | C13—H13A | 0.9600 |
C5—H5B | 0.9700 | C13—H13B | 0.9600 |
C6—C7 | 1.515 (4) | C13—H13C | 0.9600 |
C6—H6A | 0.9700 | ||
C1—N1—H1A | 109.5 | C6—C7—C8 | 114.8 (3) |
C1—N1—H1B | 109.5 | C6—C7—H7A | 108.6 |
H1A—N1—H1B | 109.5 | C8—C7—H7A | 108.6 |
C1—N1—H1C | 109.5 | C6—C7—H7B | 108.6 |
H1A—N1—H1C | 109.5 | C8—C7—H7B | 108.6 |
H1B—N1—H1C | 109.5 | H7A—C7—H7B | 107.5 |
H1H—O1—H1I | 108.1 | C9—C8—C7 | 114.9 (2) |
N1—C1—C2 | 112.7 (3) | C9—C8—H8A | 108.5 |
N1—C1—H1D | 109.1 | C7—C8—H8A | 108.5 |
C2—C1—H1D | 109.1 | C9—C8—H8B | 108.5 |
N1—C1—H1E | 109.1 | C7—C8—H8B | 108.5 |
C2—C1—H1E | 109.1 | H8A—C8—H8B | 107.5 |
H1D—C1—H1E | 107.8 | C8—C9—C10 | 115.0 (3) |
C1—C2—C3 | 112.3 (3) | C8—C9—H9A | 108.5 |
C1—C2—H2A | 109.1 | C10—C9—H9A | 108.5 |
C3—C2—H2A | 109.1 | C8—C9—H9B | 108.5 |
C1—C2—H2B | 109.1 | C10—C9—H9B | 108.5 |
C3—C2—H2B | 109.1 | H9A—C9—H9B | 107.5 |
H2A—C2—H2B | 107.9 | C11—C10—C9 | 115.1 (3) |
C2—C3—C4 | 113.5 (3) | C11—C10—H10A | 108.5 |
C2—C3—H3A | 108.9 | C9—C10—H10A | 108.5 |
C4—C3—H3A | 108.9 | C11—C10—H10B | 108.5 |
C2—C3—H3B | 108.9 | C9—C10—H10B | 108.5 |
C4—C3—H3B | 108.9 | H10A—C10—H10B | 107.5 |
H3A—C3—H3B | 107.7 | C12—C11—C10 | 115.1 (3) |
C3—C4—C5 | 114.5 (3) | C12—C11—H11A | 108.5 |
C3—C4—H4A | 108.6 | C10—C11—H11A | 108.5 |
C5—C4—H4A | 108.6 | C12—C11—H11B | 108.5 |
C3—C4—H4B | 108.6 | C10—C11—H11B | 108.5 |
C5—C4—H4B | 108.6 | H11A—C11—H11B | 107.5 |
H4A—C4—H4B | 107.6 | C11—C12—C13 | 115.0 (3) |
C6—C5—C4 | 114.5 (3) | C11—C12—H12A | 108.5 |
C6—C5—H5A | 108.6 | C13—C12—H12A | 108.5 |
C4—C5—H5A | 108.6 | C11—C12—H12B | 108.5 |
C6—C5—H5B | 108.6 | C13—C12—H12B | 108.5 |
C4—C5—H5B | 108.6 | H12A—C12—H12B | 107.5 |
H5A—C5—H5B | 107.6 | C12—C13—H13A | 109.5 |
C7—C6—C5 | 114.8 (3) | C12—C13—H13B | 109.5 |
C7—C6—H6A | 108.6 | H13A—C13—H13B | 109.5 |
C5—C6—H6A | 108.6 | C12—C13—H13C | 109.5 |
C7—C6—H6B | 108.6 | H13A—C13—H13C | 109.5 |
C5—C6—H6B | 108.6 | H13B—C13—H13C | 109.5 |
H6A—C6—H6B | 107.6 | ||
N1—C1—C2—C3 | 180.0 (3) | C6—C7—C8—C9 | 179.6 (3) |
C1—C2—C3—C4 | 169.9 (3) | C7—C8—C9—C10 | −179.8 (3) |
C2—C3—C4—C5 | −179.1 (3) | C8—C9—C10—C11 | 179.7 (3) |
C3—C4—C5—C6 | 177.6 (3) | C9—C10—C11—C12 | −179.7 (3) |
C4—C5—C6—C7 | −179.5 (3) | C10—C11—C12—C13 | 179.8 (3) |
C5—C6—C7—C8 | 179.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.89 | 2.44 | 3.303 (3) | 162 |
N1—H1B···Cl1i | 0.89 | 2.36 | 3.236 (2) | 170 |
N1—H1C···O1ii | 0.89 | 2.05 | 2.901 (4) | 159 |
O1—H1H···Cl1 | 0.85 | 2.45 | 3.290 (3) | 170 |
O1—H1I···Cl1iii | 0.85 | 2.39 | 3.228 (2) | 170 |
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H30N+·Cl−·H2O |
Mr | 253.85 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 4.7420 (5), 45.250 (3), 7.8191 (9) |
β (°) | 106.332 (2) |
V (Å3) | 1610.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.34 × 0.33 × 0.03 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.928, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8230, 2845, 1379 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.124, 1.03 |
No. of reflections | 2845 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.18 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.89 | 2.44 | 3.303 (3) | 162 |
N1—H1B···Cl1i | 0.89 | 2.36 | 3.236 (2) | 170 |
N1—H1C···O1ii | 0.89 | 2.05 | 2.901 (4) | 159 |
O1—H1H···Cl1 | 0.85 | 2.45 | 3.290 (3) | 170 |
O1—H1I···Cl1iii | 0.85 | 2.39 | 3.228 (2) | 170 |
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x−1, y, z. |
Acknowledgements
We acknowledge the National Natural Science Foundation of China (20973089) for financial support.
References
Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171. Web of Science CrossRef CAS Google Scholar
Clark, G. L. & Hudgens, C. R. (1950). Science, 112, 309. CSD CrossRef PubMed Web of Science Google Scholar
Lundén, B.-M. (1974). Acta Cryst. B30, 1756–1760. CSD CrossRef IUCr Journals Web of Science Google Scholar
Rademeyer, M., Kruger, G. J. & Billing, D. G. (2009). CrystEngComm, 11, 1926–1933. Web of Science CSD CrossRef CAS Google Scholar
Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Terreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350. Web of Science CrossRef CAS Google Scholar
Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). It has been shown that phase transitions occur in n-alkylammonium chlorides (Terreros et al., 2000). As a part of our studies on novel potential phase transition materials with thermochemical properties, we report herein the crystal structure of the title compound (Fig. 1).
Atoms C2–C13 are essentially co-planar with a maximum deviation of 0.048 (3)Å for atom C2. The alkyl chain in related compounds is typically in the extended conformation e.g. in the isostructural n-tridecylamine bromide monohydrate compound (Rademeyer et al., 2009), n–dodecylammonium bromide (Lundén, 1974) and n–tridecylamine chloride (Clark & Hudgens, 1950). Although the methylene chain has the extended all–trans conformation, it is slightly bent in the vicinity of the ammonium group possibly to accommodate the hydrogen–bonding interactions. Only the C1–C2–C3–C4 torsion angle deviates significantly from 180 °, with a value of 169.84 (3)°. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1 and Fig.2).