organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Tri­decyl­amine chloride monohydrate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: diyouying@126.com

(Received 11 January 2011; accepted 18 February 2011; online 26 February 2011)

In the title compound, C13H30N+·Cl·H2O, the C13H27 alkyl chain is in an all-trans conformation. In the crystal, inter­molecular N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds connect the components into layers parallel to (010), with the alkyl chains oriented approximately perpendicular to these layers.

Related literature

For applications of long-chain n-alkyl­ammonium halides, see: Aratono et al. (1998[Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161-171.]); Tornblom et al. (2000[Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529-1538.]); Ringsdorf et al. (1988[Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113-158.]). For details of phase transitions in n-alkyl­ammonium chlorides, see: Terreros et al. (2000[Terreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341-350.]). For related structures, see: Rademeyer et al. (2009[Rademeyer, M., Kruger, G. J. & Billing, D. G. (2009). CrystEngComm, 11, 1926-1933.]); Lundén (1974[Lundén, B.-M. (1974). Acta Cryst. B30, 1756-1760.]); Clark & Hudgens (1950[Clark, G. L. & Hudgens, C. R. (1950). Science, 112, 309.]).

[Scheme 1]

Experimental

Crystal data
  • C13H30N+·Cl·H2O

  • Mr = 253.85

  • Monoclinic, P 21 /c

  • a = 4.7420 (5) Å

  • b = 45.250 (3) Å

  • c = 7.8191 (9) Å

  • β = 106.332 (2)°

  • V = 1610.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.34 × 0.33 × 0.03 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.993

  • 8230 measured reflections

  • 2845 independent reflections

  • 1379 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.124

  • S = 1.03

  • 2845 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.44 3.303 (3) 162
N1—H1B⋯Cl1i 0.89 2.36 3.236 (2) 170
N1—H1C⋯O1ii 0.89 2.05 2.901 (4) 159
O1—H1H⋯Cl1 0.85 2.45 3.290 (3) 170
O1—H1I⋯Cl1iii 0.85 2.39 3.228 (2) 170
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). It has been shown that phase transitions occur in n-alkylammonium chlorides (Terreros et al., 2000). As a part of our studies on novel potential phase transition materials with thermochemical properties, we report herein the crystal structure of the title compound (Fig. 1).

Atoms C2–C13 are essentially co-planar with a maximum deviation of 0.048 (3)Å for atom C2. The alkyl chain in related compounds is typically in the extended conformation e.g. in the isostructural n-tridecylamine bromide monohydrate compound (Rademeyer et al., 2009), n–dodecylammonium bromide (Lundén, 1974) and n–tridecylamine chloride (Clark & Hudgens, 1950). Although the methylene chain has the extended all–trans conformation, it is slightly bent in the vicinity of the ammonium group possibly to accommodate the hydrogen–bonding interactions. Only the C1–C2–C3–C4 torsion angle deviates significantly from 180 °, with a value of 169.84 (3)°. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1 and Fig.2).

Related literature top

For applications of long-chain n-alkylammonium halides, see: Aratono et al. (1998); Tornblom et al. (2000); Ringsdorf et al. (1988). For details of phase transitions in n-alkylammonium chlorides, see: Terreros et al. (2000). For related structures, see: Rademeyer et al. (2009); Lundén (1974); Clark & Hudgens (1950).

Experimental top

n–Tridecylamine chloride monohydrate was prepared by the addition of hydrochloric acid to an ethanolic solution of n–tridecylamine. The mixture was heated and stirred under reflux for 6 h. Single crystals suitable for X–ray diffraction were prepared by evaporation of the resulting solution at room temperature. Analysis, calculated for C13H32ClNO (Mr =253.85): C 61.51, H 12.71, N 5.52, Cl 13.96%; found: C 61.50, H 12.72, N 5.51, Cl 13.95%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with methylene C—H = 0.97 Å, methyl C—H = 0.96 Å, N—H = 0.89 Å, O-H = 0.85 Å and refined as riding on their parent atoms. TheUiso(H) values were set at 1.2Ueq(Cmethylene, O) at 1.5Ueq(Cmethyl,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
n-Tridecylamine chloride monohydrate top
Crystal data top
C13H30N+·Cl·H2OF(000) = 568
Mr = 253.85Dx = 1.047 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 817 reflections
a = 4.7420 (5) Åθ = 2.7–20.8°
b = 45.250 (3) ŵ = 0.22 mm1
c = 7.8191 (9) ÅT = 298 K
β = 106.332 (2)°Acicular, colourless
V = 1610.1 (3) Å30.34 × 0.33 × 0.03 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2845 independent reflections
Radiation source: fine-focus sealed tube1379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 2.7°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 5346
Tmin = 0.928, Tmax = 0.993l = 79
8230 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
2845 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H30N+·Cl·H2OV = 1610.1 (3) Å3
Mr = 253.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7420 (5) ŵ = 0.22 mm1
b = 45.250 (3) ÅT = 298 K
c = 7.8191 (9) Å0.34 × 0.33 × 0.03 mm
β = 106.332 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2845 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1379 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.993Rint = 0.077
8230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2845 reflectionsΔρmin = 0.18 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77004 (19)0.727389 (19)0.54882 (12)0.0578 (3)
N10.2908 (5)0.72396 (5)0.1504 (4)0.0486 (8)
H1A0.43780.72810.24660.073*
H1B0.16480.73900.12700.073*
H1C0.36180.72100.05780.073*
O10.3848 (5)0.70538 (5)0.8156 (3)0.0690 (8)
H1H0.50340.71020.75660.083*
H1I0.21250.71030.75540.083*
C10.1369 (7)0.69683 (6)0.1834 (4)0.0462 (9)
H1D0.03960.69410.08560.055*
H1E0.07790.69940.29150.055*
C20.3263 (7)0.66944 (6)0.2017 (4)0.0445 (9)
H2A0.50280.67220.29950.053*
H2B0.38520.66680.09350.053*
C30.1677 (7)0.64186 (6)0.2355 (4)0.0467 (9)
H3A0.02510.64120.14980.056*
H3B0.13970.64310.35340.056*
C40.3305 (7)0.61334 (6)0.2221 (4)0.0444 (9)
H4A0.52220.61400.30900.053*
H4B0.36160.61230.10490.053*
C50.1730 (7)0.58533 (6)0.2526 (4)0.0471 (9)
H5A0.14950.58600.37180.056*
H5B0.02190.58510.16910.056*
C60.3292 (7)0.55675 (6)0.2317 (4)0.0440 (9)
H6A0.35430.55620.11280.053*
H6B0.52340.55690.31590.053*
C70.1722 (7)0.52882 (6)0.2603 (4)0.0450 (9)
H7A0.02310.52880.17730.054*
H7B0.14960.52920.37980.054*
C80.3260 (6)0.50019 (6)0.2369 (4)0.0440 (9)
H8A0.34730.49970.11710.053*
H8B0.52180.50030.31930.053*
C90.1705 (7)0.47222 (6)0.2666 (4)0.0448 (9)
H9A0.02510.47210.18390.054*
H9B0.14850.47270.38620.054*
C100.3245 (7)0.44364 (6)0.2439 (4)0.0438 (9)
H10A0.34580.44310.12420.053*
H10B0.52040.44380.32630.053*
C110.1702 (7)0.41561 (6)0.2745 (4)0.0448 (9)
H11A0.14790.41620.39400.054*
H11B0.02530.41540.19170.054*
C120.3236 (7)0.38729 (6)0.2530 (5)0.0522 (10)
H12A0.51940.38760.33550.063*
H12B0.34520.38670.13330.063*
C130.1688 (8)0.35920 (7)0.2844 (5)0.0703 (12)
H13A0.15320.35910.40420.105*
H13B0.27980.34230.26680.105*
H13C0.02420.35840.20210.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0520 (5)0.0590 (6)0.0612 (6)0.0052 (5)0.0137 (4)0.0036 (5)
N10.0485 (16)0.0358 (17)0.061 (2)0.0041 (15)0.0145 (14)0.0002 (14)
O10.0659 (17)0.0752 (17)0.0683 (19)0.0036 (15)0.0230 (13)0.0100 (14)
C10.044 (2)0.034 (2)0.062 (3)0.0005 (18)0.0178 (17)0.0039 (16)
C20.046 (2)0.035 (2)0.053 (2)0.0022 (18)0.0152 (17)0.0021 (16)
C30.052 (2)0.039 (2)0.053 (2)0.0043 (19)0.0209 (18)0.0011 (17)
C40.050 (2)0.036 (2)0.050 (2)0.0033 (18)0.0191 (18)0.0020 (16)
C50.053 (2)0.041 (2)0.049 (2)0.005 (2)0.0189 (18)0.0004 (17)
C60.048 (2)0.039 (2)0.048 (2)0.0014 (19)0.0177 (17)0.0012 (16)
C70.048 (2)0.039 (2)0.050 (2)0.0024 (19)0.0178 (17)0.0029 (17)
C80.047 (2)0.040 (2)0.047 (2)0.003 (2)0.0170 (17)0.0042 (16)
C90.051 (2)0.037 (2)0.049 (2)0.0035 (19)0.0190 (18)0.0009 (16)
C100.048 (2)0.040 (2)0.047 (2)0.0014 (19)0.0194 (17)0.0011 (16)
C110.050 (2)0.039 (2)0.048 (2)0.0033 (19)0.0167 (17)0.0026 (16)
C120.062 (2)0.041 (2)0.054 (3)0.004 (2)0.0163 (19)0.0000 (17)
C130.094 (3)0.043 (2)0.076 (3)0.005 (2)0.026 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C11.487 (3)C6—H6B0.9700
N1—H1A0.8900C7—C81.523 (4)
N1—H1B0.8900C7—H7A0.9700
N1—H1C0.8900C7—H7B0.9700
O1—H1H0.8499C8—C91.515 (4)
O1—H1I0.8499C8—H8A0.9700
C1—C21.513 (4)C8—H8B0.9700
C1—H1D0.9700C9—C101.520 (4)
C1—H1E0.9700C9—H9A0.9700
C2—C31.518 (4)C9—H9B0.9700
C2—H2A0.9700C10—C111.517 (4)
C2—H2B0.9700C10—H10A0.9700
C3—C41.523 (4)C10—H10B0.9700
C3—H3A0.9700C11—C121.506 (4)
C3—H3B0.9700C11—H11A0.9700
C4—C51.524 (4)C11—H11B0.9700
C4—H4A0.9700C12—C131.522 (4)
C4—H4B0.9700C12—H12A0.9700
C5—C61.522 (4)C12—H12B0.9700
C5—H5A0.9700C13—H13A0.9600
C5—H5B0.9700C13—H13B0.9600
C6—C71.515 (4)C13—H13C0.9600
C6—H6A0.9700
C1—N1—H1A109.5C6—C7—C8114.8 (3)
C1—N1—H1B109.5C6—C7—H7A108.6
H1A—N1—H1B109.5C8—C7—H7A108.6
C1—N1—H1C109.5C6—C7—H7B108.6
H1A—N1—H1C109.5C8—C7—H7B108.6
H1B—N1—H1C109.5H7A—C7—H7B107.5
H1H—O1—H1I108.1C9—C8—C7114.9 (2)
N1—C1—C2112.7 (3)C9—C8—H8A108.5
N1—C1—H1D109.1C7—C8—H8A108.5
C2—C1—H1D109.1C9—C8—H8B108.5
N1—C1—H1E109.1C7—C8—H8B108.5
C2—C1—H1E109.1H8A—C8—H8B107.5
H1D—C1—H1E107.8C8—C9—C10115.0 (3)
C1—C2—C3112.3 (3)C8—C9—H9A108.5
C1—C2—H2A109.1C10—C9—H9A108.5
C3—C2—H2A109.1C8—C9—H9B108.5
C1—C2—H2B109.1C10—C9—H9B108.5
C3—C2—H2B109.1H9A—C9—H9B107.5
H2A—C2—H2B107.9C11—C10—C9115.1 (3)
C2—C3—C4113.5 (3)C11—C10—H10A108.5
C2—C3—H3A108.9C9—C10—H10A108.5
C4—C3—H3A108.9C11—C10—H10B108.5
C2—C3—H3B108.9C9—C10—H10B108.5
C4—C3—H3B108.9H10A—C10—H10B107.5
H3A—C3—H3B107.7C12—C11—C10115.1 (3)
C3—C4—C5114.5 (3)C12—C11—H11A108.5
C3—C4—H4A108.6C10—C11—H11A108.5
C5—C4—H4A108.6C12—C11—H11B108.5
C3—C4—H4B108.6C10—C11—H11B108.5
C5—C4—H4B108.6H11A—C11—H11B107.5
H4A—C4—H4B107.6C11—C12—C13115.0 (3)
C6—C5—C4114.5 (3)C11—C12—H12A108.5
C6—C5—H5A108.6C13—C12—H12A108.5
C4—C5—H5A108.6C11—C12—H12B108.5
C6—C5—H5B108.6C13—C12—H12B108.5
C4—C5—H5B108.6H12A—C12—H12B107.5
H5A—C5—H5B107.6C12—C13—H13A109.5
C7—C6—C5114.8 (3)C12—C13—H13B109.5
C7—C6—H6A108.6H13A—C13—H13B109.5
C5—C6—H6A108.6C12—C13—H13C109.5
C7—C6—H6B108.6H13A—C13—H13C109.5
C5—C6—H6B108.6H13B—C13—H13C109.5
H6A—C6—H6B107.6
N1—C1—C2—C3180.0 (3)C6—C7—C8—C9179.6 (3)
C1—C2—C3—C4169.9 (3)C7—C8—C9—C10179.8 (3)
C2—C3—C4—C5179.1 (3)C8—C9—C10—C11179.7 (3)
C3—C4—C5—C6177.6 (3)C9—C10—C11—C12179.7 (3)
C4—C5—C6—C7179.5 (3)C10—C11—C12—C13179.8 (3)
C5—C6—C7—C8179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.443.303 (3)162
N1—H1B···Cl1i0.892.363.236 (2)170
N1—H1C···O1ii0.892.052.901 (4)159
O1—H1H···Cl10.852.453.290 (3)170
O1—H1I···Cl1iii0.852.393.228 (2)170
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y, z1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H30N+·Cl·H2O
Mr253.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.7420 (5), 45.250 (3), 7.8191 (9)
β (°) 106.332 (2)
V3)1610.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.33 × 0.03
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8230, 2845, 1379
Rint0.077
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.124, 1.03
No. of reflections2845
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.443.303 (3)162
N1—H1B···Cl1i0.892.363.236 (2)170
N1—H1C···O1ii0.892.052.901 (4)159
O1—H1H···Cl10.852.453.290 (3)170
O1—H1I···Cl1iii0.852.393.228 (2)170
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y, z1; (iii) x1, y, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20973089) for financial support.

References

First citationAratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.  Web of Science CrossRef CAS Google Scholar
First citationClark, G. L. & Hudgens, C. R. (1950). Science, 112, 309.  CSD CrossRef PubMed Web of Science Google Scholar
First citationLundén, B.-M. (1974). Acta Cryst. B30, 1756–1760.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRademeyer, M., Kruger, G. J. & Billing, D. G. (2009). CrystEngComm, 11, 1926–1933.  Web of Science CSD CrossRef CAS Google Scholar
First citationRingsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTerreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.  Web of Science CrossRef CAS Google Scholar
First citationTornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds