organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-diaminium 2-(meth­­oxy­carbon­yl)benzoate dihydrate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 23 January 2011; accepted 28 January 2011; online 9 February 2011)

In the title compound, C4H14N2+·2C9H7O4·2H2O, the butane-1,4-diaminium cation lies on an inversion center. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the components into layers parallel to (100). Addtional stabilization within these layers is provided by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the appications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). J. Bioorg. Med. Chem. 10, 3067-3073.]). For a related structure, see: Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·2C9H7O4·2H2O

  • Mr = 484.50

  • Monoclinic, P 21 /c

  • a = 14.0344 (15) Å

  • b = 8.6746 (9) Å

  • c = 10.2304 (11) Å

  • β = 95.620 (1)°

  • V = 1239.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.47 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.953

  • 6001 measured reflections

  • 2178 independent reflections

  • 1601 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.07

  • 2178 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.95 2.815 (2) 164
N1—H1B⋯O3 0.89 2.00 2.823 (2) 154
N1—H1C⋯O5 0.89 1.99 2.876 (2) 172
O5—H5C⋯O3ii 0.85 2.03 2.873 (2) 172
O5—H5D⋯O4iii 0.85 1.96 2.808 (2) 172
C11—H11A⋯O2i 0.97 2.46 3.346 (2) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalimides and N-substituted phthalimides are animportant class of compounds because of their interesting biological activities (Lima et al., 2002). 2-(Methoxycarbonyl)benzoic acid is an intermediate in the preparation of N-substituted phthalimides. In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound (I) contains one half a butane-1,4-diaminium cation, a 2-(methoxycarbonyl)benzoate anion and a solvent water molecule (Fig. 1). The bond lengths and angles agree with those in ethane-1,2-diaminium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Liang, 2008). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the components of the structure into two-dimensional layers parallel to (100) (Fig. 2 and Table 1). Addtional stabilization within these layers is provided by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For the appications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002). For a related structure, see: Liang (2008).

Experimental top

A mixture of phthalic anhydride (1.52 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. 1,4-Butanediamine (0.44 g, 0.005 mol) was added to the above solution and mixed for 10 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located in difference maps and then refined in a riding-model approximation with C—H = 0.93–0.97 Å, N—H = 0.89 Å, O—H = 0.82Å and Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
Butane-1,4-diaminium 2-(methoxycarbonyl)benzoate dihydrate top
Crystal data top
C4H14N22+·2C9H7O4·2H2OF(000) = 516
Mr = 484.50Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2198 reflections
a = 14.0344 (15) Åθ = 2.8–27.5°
b = 8.6746 (9) ŵ = 0.10 mm1
c = 10.2304 (11) ÅT = 298 K
β = 95.620 (1)°Block, colorless
V = 1239.5 (2) Å30.50 × 0.48 × 0.47 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2178 independent reflections
Radiation source: fine-focus sealed tube1601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1216
Tmin = 0.950, Tmax = 0.953k = 1010
6001 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.314P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2178 reflectionsΔρmax = 0.17 e Å3
157 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.118 (8)
Crystal data top
C4H14N22+·2C9H7O4·2H2OV = 1239.5 (2) Å3
Mr = 484.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.0344 (15) ŵ = 0.10 mm1
b = 8.6746 (9) ÅT = 298 K
c = 10.2304 (11) Å0.50 × 0.48 × 0.47 mm
β = 95.620 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2178 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1601 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.953Rint = 0.037
6001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2178 reflectionsΔρmin = 0.20 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44862 (11)0.25834 (17)0.79462 (15)0.0369 (4)
H1A0.50610.25970.76470.055*
H1B0.42520.35370.79440.055*
H1C0.40940.19860.74320.055*
O10.13265 (10)0.39089 (19)0.54038 (16)0.0622 (5)
O20.28346 (10)0.43510 (19)0.61583 (16)0.0596 (5)
O30.37929 (10)0.54277 (15)0.88018 (14)0.0458 (4)
O40.35667 (9)0.74614 (15)0.74950 (14)0.0479 (4)
O50.33244 (12)0.04093 (17)0.63792 (15)0.0628 (5)
H5C0.34530.02560.55950.075*
H5D0.33820.04430.67900.075*
C10.19982 (14)0.4525 (2)0.62583 (19)0.0376 (5)
C20.32751 (13)0.6373 (2)0.81441 (18)0.0342 (4)
C30.15919 (12)0.5400 (2)0.73169 (18)0.0351 (5)
C40.22064 (13)0.6245 (2)0.82091 (18)0.0344 (5)
C50.18168 (15)0.7007 (2)0.9231 (2)0.0490 (6)
H50.22160.75700.98330.059*
C60.08535 (16)0.6941 (3)0.9366 (2)0.0587 (6)
H60.06080.74571.00560.070*
C70.02511 (16)0.6117 (3)0.8485 (2)0.0565 (6)
H70.04010.60750.85790.068*
C80.06155 (14)0.5354 (2)0.7462 (2)0.0469 (5)
H80.02060.48040.68630.056*
C90.16701 (18)0.2992 (4)0.4371 (3)0.0783 (9)
H9A0.20480.36250.38510.117*
H9B0.11350.25800.38250.117*
H9C0.20550.21610.47510.117*
C100.45726 (13)0.1967 (2)0.93045 (17)0.0337 (4)
H10A0.39550.20140.96540.040*
H10B0.50200.25920.98600.040*
C110.49175 (14)0.0324 (2)0.93138 (17)0.0353 (5)
H11A0.55100.02740.89010.042*
H11B0.44470.03060.88010.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0428 (9)0.0320 (8)0.0361 (9)0.0064 (7)0.0048 (7)0.0075 (7)
O10.0412 (8)0.0820 (12)0.0614 (11)0.0001 (8)0.0048 (7)0.0318 (9)
O20.0391 (9)0.0752 (11)0.0644 (11)0.0021 (7)0.0052 (7)0.0322 (9)
O30.0441 (8)0.0439 (8)0.0481 (9)0.0115 (6)0.0026 (6)0.0025 (7)
O40.0462 (9)0.0374 (8)0.0612 (10)0.0023 (6)0.0106 (7)0.0063 (7)
O50.0936 (13)0.0428 (8)0.0488 (10)0.0037 (8)0.0094 (8)0.0011 (7)
C10.0365 (11)0.0357 (10)0.0398 (11)0.0011 (8)0.0001 (8)0.0013 (8)
C20.0391 (10)0.0279 (9)0.0351 (10)0.0004 (8)0.0008 (8)0.0071 (8)
C30.0352 (10)0.0325 (10)0.0374 (11)0.0026 (8)0.0023 (8)0.0043 (8)
C40.0382 (10)0.0275 (9)0.0372 (11)0.0038 (8)0.0024 (8)0.0037 (8)
C50.0479 (13)0.0505 (12)0.0486 (13)0.0046 (10)0.0041 (10)0.0111 (10)
C60.0530 (14)0.0701 (15)0.0548 (15)0.0104 (12)0.0146 (11)0.0149 (12)
C70.0386 (12)0.0694 (15)0.0634 (15)0.0079 (11)0.0144 (10)0.0010 (13)
C80.0378 (11)0.0493 (12)0.0530 (14)0.0004 (9)0.0014 (9)0.0017 (10)
C90.0604 (16)0.101 (2)0.0702 (19)0.0054 (14)0.0111 (13)0.0481 (16)
C100.0425 (11)0.0302 (9)0.0286 (10)0.0033 (8)0.0044 (8)0.0020 (8)
C110.0457 (11)0.0307 (9)0.0295 (10)0.0041 (8)0.0035 (8)0.0007 (8)
Geometric parameters (Å, º) top
N1—C101.483 (2)C5—C61.373 (3)
N1—H1A0.8900C5—H50.9300
N1—H1B0.8900C6—C71.374 (3)
N1—H1C0.8900C6—H60.9300
O1—C11.333 (2)C7—C81.378 (3)
O1—C91.443 (3)C7—H70.9300
O2—C11.198 (2)C8—H80.9300
O3—C21.248 (2)C9—H9A0.9600
O4—C21.246 (2)C9—H9B0.9600
O5—H5C0.8500C9—H9C0.9600
O5—H5D0.8500C10—C111.505 (2)
C1—C31.481 (3)C10—H10A0.9700
C2—C41.512 (3)C10—H10B0.9700
C3—C81.393 (3)C11—C11i1.509 (3)
C3—C41.400 (3)C11—H11A0.9700
C4—C51.393 (3)C11—H11B0.9700
C10—N1—H1A109.5C7—C6—H6119.9
C10—N1—H1B109.5C6—C7—C8119.8 (2)
H1A—N1—H1B109.5C6—C7—H7120.1
C10—N1—H1C109.5C8—C7—H7120.1
H1A—N1—H1C109.5C7—C8—C3120.6 (2)
H1B—N1—H1C109.5C7—C8—H8119.7
C1—O1—C9115.83 (17)C3—C8—H8119.7
H5C—O5—H5D108.2O1—C9—H9A109.5
O2—C1—O1121.97 (18)O1—C9—H9B109.5
O2—C1—C3125.28 (17)H9A—C9—H9B109.5
O1—C1—C3112.75 (16)O1—C9—H9C109.5
O4—C2—O3125.51 (18)H9A—C9—H9C109.5
O4—C2—C4117.28 (16)H9B—C9—H9C109.5
O3—C2—C4117.10 (16)N1—C10—C11110.12 (14)
C8—C3—C4119.66 (18)N1—C10—H10A109.6
C8—C3—C1121.09 (17)C11—C10—H10A109.6
C4—C3—C1119.22 (16)N1—C10—H10B109.6
C5—C4—C3118.40 (17)C11—C10—H10B109.6
C5—C4—C2117.51 (17)H10A—C10—H10B108.2
C3—C4—C2124.08 (16)C10—C11—C11i112.22 (19)
C6—C5—C4121.2 (2)C10—C11—H11A109.2
C6—C5—H5119.4C11i—C11—H11A109.2
C4—C5—H5119.4C10—C11—H11B109.2
C5—C6—C7120.3 (2)C11i—C11—H11B109.2
C5—C6—H6119.9H11A—C11—H11B107.9
C9—O1—C1—O21.4 (3)O3—C2—C4—C586.2 (2)
C9—O1—C1—C3177.8 (2)O4—C2—C4—C390.4 (2)
O2—C1—C3—C8170.6 (2)O3—C2—C4—C393.2 (2)
O1—C1—C3—C88.6 (3)C3—C4—C5—C60.2 (3)
O2—C1—C3—C47.4 (3)C2—C4—C5—C6179.6 (2)
O1—C1—C3—C4173.44 (17)C4—C5—C6—C70.1 (4)
C8—C3—C4—C50.7 (3)C5—C6—C7—C80.0 (4)
C1—C3—C4—C5177.31 (17)C6—C7—C8—C30.5 (3)
C8—C3—C4—C2179.96 (17)C4—C3—C8—C70.8 (3)
C1—C3—C4—C22.1 (3)C1—C3—C8—C7177.12 (19)
O4—C2—C4—C590.2 (2)N1—C10—C11—C11i176.08 (19)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.891.952.815 (2)164
N1—H1B···O30.892.002.823 (2)154
N1—H1C···O50.891.992.876 (2)172
O5—H5C···O3iii0.852.032.873 (2)172
O5—H5D···O4iv0.851.962.808 (2)172
C11—H11A···O2ii0.972.463.346 (2)151
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC4H14N22+·2C9H7O4·2H2O
Mr484.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.0344 (15), 8.6746 (9), 10.2304 (11)
β (°) 95.620 (1)
V3)1239.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.48 × 0.47
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.950, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
6001, 2178, 1601
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.07
No. of reflections2178
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.952.815 (2)164
N1—H1B···O30.892.002.823 (2)154
N1—H1C···O50.891.992.876 (2)172
O5—H5C···O3ii0.852.032.873 (2)172
O5—H5D···O4iii0.851.962.808 (2)172
C11—H11A···O2i0.972.463.346 (2)151
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x, y1, z.
 

Acknowledgements

The author thanks the Shandong Provincial Natural Science Foundation, China (ZR2009BL027).

References

First citationBruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). J. Bioorg. Med. Chem. 10, 3067–3073.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds