metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,9-Bis(3,5-di­methyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′](methanol-κO)(nitrito-κ2O,O′)cadmium(II) perchlorate

aCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@gmail.com

(Received 26 January 2011; accepted 30 January 2011; online 12 February 2011)

In the title complex, [Cd(NO2)(C22H20N6)(CH3OH)]ClO4, the CdII ion is in a distorted penta­gonal–bipyramidal CdN4O3 coordination geometry. The dihedral angles formed between the mean planes of the pyrazole rings and the phenanthroline ring system are 4.37 (19) and 5.84 (21)°. In the crystal, the anions and cations are connected by inter­molecular O—H⋯O hydrogen bonding, while pairs of weak inter­molecular C—H⋯O hydrogen bonds connect the cations into centrosymmetric dimers. In addition, there is a ππ stacking inter­action involving two symmetry-related benzene rings, with a centroid–centroid distance of 3.437 (3) Å.

Related literature

For a related structure, see: Zheng & Chi (2011[Zheng, L. Y. & Chi, Y. H. (2011). Acta Cryst. E67, m68.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO2)(C22H20N6)(CH4O)]ClO4

  • Mr = 658.34

  • Triclinic, [P \overline 1]

  • a = 8.0241 (17) Å

  • b = 11.580 (2) Å

  • c = 15.842 (3) Å

  • α = 68.595 (2)°

  • β = 75.578 (2)°

  • γ = 73.616 (3)°

  • V = 1297.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 298 K

  • 0.32 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.740, Tmax = 0.961

  • 6780 measured reflections

  • 4712 independent reflections

  • 3966 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.02

  • 4712 reflections

  • 357 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H9⋯O2i 0.87 2.02 2.892 (7) 172
C8—H8⋯O6ii 0.93 2.47 3.291 (6) 148
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands [see e.g. Zheng & Chi (2011) for a closely related Cd complex]. To the best of our knowledge, the above cited structure is the only other complex reported to date containing a 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand. Herein we report the crystal of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The CdII ion is in a distorted pentagonal bipyramidal coordination geometry, which may be attributed to the chelation modes of the 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand and nitrite anion ligand. The dihedral angles between the planes that consist of the non-hydrogen atoms of the 1,10-phenanthroline ring system and the pyrazole rings are 4.37 (19)° (involving the pyrazole ring containing atoms N1 and N2) and 5.84 (21)° (involving the pyrazole ring containing atoms N5 and N6), respectively. In the crystal, the anion and cation are connected by an intermolecular O—H···O hydrogen bond, while pairs of weak intermolecular C—H···O hydrogen bonds connect cations into centrosymmetric dimers. In addition, there is a ππ stacking interaction involving symmetry-related complexes, the relevant distance being Cg1···Cg1i 3.437 (3) Å and Cg1···Cg1iperp = 3.378 Å (symmetry code: (i) 2-x, 1-y, 2-z; Cg1 is the centroid of the C9-C14 benzene ring; Cg1···Cg1iperp is the perpendicular distance from Cg1 ring to Cg1i ring).

Related literature top

For a related structure, see: Zheng & Chi (2011).

Experimental top

A 5 ml H2O solution of NaNO2 (0.0310 g, 0.449 mmol) was added into 8 ml methanol solution of Cd(ClO4).6H2O (0.0939 g,0.224 mmol) and the solution was mixed with a 10 ml dichloromethane solution of 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0353 g, 0.112 mmol), and stirred for a few minutes. Colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about two week.

Refinement top

The position of the H atom of the hydroxyl group was located in a difference Fourier map and other H atoms were placed in calculated positions. All H atoms were refined as riding with O—H = 0.87 Å, Uiso = 1.5Ueq(O) for hydroxyl H, C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl H, and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids shown at the 30% probability level.
[2,9-Bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2)-1,10- phenanthroline-κ2N,N'](methanol-κO)(nitrito- κ2O,O')cadmium(II) perchlorate top
Crystal data top
[Cd(NO2)(C22H20N6)(CH4O)]ClO4Z = 2
Mr = 658.34F(000) = 664
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0241 (17) ÅCell parameters from 2645 reflections
b = 11.580 (2) Åθ = 2.7–26.3°
c = 15.842 (3) ŵ = 1.00 mm1
α = 68.595 (2)°T = 298 K
β = 75.578 (2)°Prism, colorless
γ = 73.616 (3)°0.32 × 0.08 × 0.04 mm
V = 1297.1 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed tube3966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.740, Tmax = 0.961k = 1412
6780 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
4712 reflections(Δ/σ)max = 0.006
357 parametersΔρmax = 0.88 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
[Cd(NO2)(C22H20N6)(CH4O)]ClO4γ = 73.616 (3)°
Mr = 658.34V = 1297.1 (5) Å3
Triclinic, P1Z = 2
a = 8.0241 (17) ÅMo Kα radiation
b = 11.580 (2) ŵ = 1.00 mm1
c = 15.842 (3) ÅT = 298 K
α = 68.595 (2)°0.32 × 0.08 × 0.04 mm
β = 75.578 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4712 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3966 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.961Rint = 0.025
6780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.88 e Å3
4712 reflectionsΔρmin = 0.51 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4749 (8)1.0095 (5)0.6046 (3)0.0670 (16)
H1A0.38871.08400.58070.101*
H1B0.47780.94570.57870.101*
H1C0.58871.03050.58870.101*
C20.4278 (6)0.9603 (4)0.7065 (3)0.0425 (11)
C30.2868 (6)1.0116 (4)0.7631 (3)0.0397 (10)
H30.19891.08300.74450.048*
C40.3026 (5)0.9373 (4)0.8502 (3)0.0346 (9)
C50.1895 (7)0.9562 (4)0.9363 (3)0.0490 (12)
H5A0.25610.97720.96920.073*
H5B0.15010.87950.97400.073*
H5C0.08941.02400.92120.073*
C60.5272 (5)0.7363 (4)0.9123 (3)0.0314 (9)
C70.4706 (6)0.7157 (4)1.0073 (3)0.0388 (10)
H70.38180.77491.02860.047*
C80.5485 (6)0.6075 (4)1.0668 (3)0.0386 (10)
H80.51040.59101.12970.046*
C90.7363 (5)0.5504 (4)0.9394 (3)0.0322 (9)
C100.6865 (6)0.5200 (4)1.0343 (3)0.0358 (10)
C110.8843 (6)0.4699 (4)0.9010 (3)0.0353 (9)
C120.7791 (6)0.4061 (4)1.0927 (3)0.0432 (11)
H120.74350.38411.15600.052*
C130.9732 (6)0.3602 (4)0.9608 (3)0.0386 (10)
C140.9175 (6)0.3300 (4)1.0570 (3)0.0457 (12)
H140.97700.25701.09620.055*
C151.1213 (6)0.2898 (4)0.9176 (4)0.0488 (12)
H151.18660.21630.95350.059*
C161.1701 (6)0.3275 (4)0.8248 (4)0.0497 (12)
H161.26760.28040.79700.060*
C171.0714 (6)0.4380 (4)0.7719 (3)0.0410 (11)
C181.3989 (8)0.3383 (5)0.6335 (4)0.0791 (19)
H18A1.48000.33560.57800.119*
H18B1.35710.26070.66100.119*
H18C1.45720.34840.67560.119*
C191.2475 (7)0.4470 (5)0.6118 (4)0.0532 (13)
C201.2191 (7)0.5289 (5)0.5292 (4)0.0585 (15)
H201.28910.52640.47320.070*
C211.0657 (7)0.6189 (5)0.5418 (3)0.0518 (13)
C220.9811 (8)0.7316 (6)0.4720 (4)0.0719 (17)
H22A0.85550.74520.49000.108*
H22B1.01270.71750.41350.108*
H22C1.02040.80500.46750.108*
C231.0818 (8)0.8475 (7)0.6558 (5)0.092 (2)
H23A1.14780.76590.65180.138*
H23B1.12110.86760.70030.138*
H23C1.09940.91080.59690.138*
Cd10.74780 (4)0.68545 (3)0.72015 (2)0.03683 (13)
Cl10.73701 (17)0.08191 (12)0.81116 (9)0.0547 (3)
N10.5259 (5)0.8567 (3)0.7550 (2)0.0380 (8)
N20.4505 (4)0.8424 (3)0.8447 (2)0.0319 (8)
N30.6559 (4)0.6565 (3)0.8799 (2)0.0314 (7)
N40.9316 (5)0.5065 (3)0.8091 (2)0.0370 (8)
N51.1118 (5)0.4859 (3)0.6750 (3)0.0431 (9)
N60.9995 (5)0.5936 (4)0.6303 (3)0.0482 (10)
N70.5172 (6)0.6276 (5)0.6397 (3)0.0642 (13)
O10.8368 (6)0.1605 (4)0.8171 (4)0.0963 (15)
O20.7550 (7)0.0832 (5)0.7196 (3)0.1006 (16)
O30.5589 (6)0.1235 (5)0.8444 (4)0.1071 (17)
O40.7972 (8)0.0435 (4)0.8643 (4)0.1132 (18)
O50.5944 (5)0.7160 (4)0.6005 (2)0.0651 (10)
O60.5487 (6)0.5674 (4)0.7184 (3)0.0741 (12)
O70.9035 (5)0.8448 (4)0.6826 (3)0.0770 (13)
H90.85130.91320.69770.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (5)0.059 (3)0.036 (3)0.006 (3)0.008 (3)0.013 (3)
C20.050 (3)0.039 (2)0.034 (2)0.005 (2)0.006 (2)0.011 (2)
C30.033 (2)0.036 (2)0.047 (3)0.0013 (19)0.0084 (19)0.014 (2)
C40.028 (2)0.033 (2)0.045 (2)0.0069 (18)0.0017 (18)0.017 (2)
C50.049 (3)0.039 (3)0.047 (3)0.003 (2)0.007 (2)0.015 (2)
C60.032 (2)0.034 (2)0.033 (2)0.0123 (18)0.0036 (17)0.0124 (18)
C70.036 (3)0.046 (3)0.035 (2)0.008 (2)0.0034 (18)0.017 (2)
C80.042 (3)0.050 (3)0.027 (2)0.018 (2)0.0015 (18)0.013 (2)
C90.031 (2)0.033 (2)0.037 (2)0.0123 (18)0.0056 (17)0.0115 (19)
C100.038 (3)0.038 (2)0.036 (2)0.019 (2)0.0091 (18)0.0070 (19)
C110.032 (2)0.034 (2)0.045 (2)0.0085 (18)0.0090 (19)0.015 (2)
C120.050 (3)0.041 (3)0.039 (2)0.020 (2)0.014 (2)0.002 (2)
C130.036 (3)0.027 (2)0.057 (3)0.0088 (18)0.017 (2)0.011 (2)
C140.052 (3)0.035 (2)0.052 (3)0.013 (2)0.025 (2)0.002 (2)
C150.044 (3)0.032 (2)0.073 (4)0.001 (2)0.025 (2)0.015 (2)
C160.039 (3)0.040 (3)0.074 (4)0.001 (2)0.010 (2)0.028 (3)
C170.035 (3)0.034 (2)0.060 (3)0.0072 (19)0.007 (2)0.022 (2)
C180.061 (4)0.062 (4)0.096 (5)0.009 (3)0.030 (3)0.036 (3)
C190.043 (3)0.051 (3)0.072 (4)0.020 (2)0.016 (2)0.037 (3)
C200.058 (4)0.064 (3)0.060 (3)0.028 (3)0.022 (3)0.037 (3)
C210.053 (3)0.057 (3)0.047 (3)0.021 (3)0.007 (2)0.021 (3)
C220.081 (5)0.076 (4)0.049 (3)0.023 (3)0.006 (3)0.015 (3)
C230.057 (4)0.104 (5)0.134 (6)0.033 (4)0.002 (4)0.058 (5)
Cd10.0373 (2)0.0375 (2)0.03387 (19)0.00520 (13)0.00153 (13)0.01417 (14)
Cl10.0500 (8)0.0585 (8)0.0617 (8)0.0005 (6)0.0168 (6)0.0302 (7)
N10.039 (2)0.040 (2)0.0287 (18)0.0008 (16)0.0027 (15)0.0106 (16)
N20.033 (2)0.0301 (18)0.0301 (18)0.0057 (15)0.0016 (14)0.0102 (15)
N30.0303 (19)0.0292 (18)0.0362 (18)0.0068 (15)0.0036 (14)0.0128 (15)
N40.034 (2)0.0342 (19)0.044 (2)0.0069 (16)0.0034 (16)0.0162 (17)
N50.039 (2)0.040 (2)0.052 (2)0.0075 (17)0.0034 (18)0.0238 (19)
N60.049 (3)0.049 (2)0.044 (2)0.007 (2)0.0004 (18)0.020 (2)
N70.066 (3)0.085 (4)0.055 (3)0.027 (3)0.008 (2)0.032 (3)
O10.082 (3)0.093 (3)0.142 (4)0.022 (3)0.035 (3)0.056 (3)
O20.142 (5)0.103 (4)0.068 (3)0.031 (3)0.011 (3)0.040 (3)
O30.048 (3)0.138 (4)0.155 (5)0.006 (3)0.012 (3)0.091 (4)
O40.141 (5)0.061 (3)0.127 (4)0.006 (3)0.062 (4)0.012 (3)
O50.078 (3)0.068 (2)0.047 (2)0.016 (2)0.0138 (19)0.0128 (19)
O60.094 (3)0.086 (3)0.053 (2)0.049 (3)0.010 (2)0.013 (2)
O70.056 (3)0.068 (3)0.121 (3)0.027 (2)0.023 (2)0.060 (3)
Geometric parameters (Å, º) top
C1—C21.490 (6)C17—N41.320 (5)
C1—H1A0.9600C17—N51.415 (6)
C1—H1B0.9600C18—C191.486 (8)
C1—H1C0.9600C18—H18A0.9600
C2—N11.320 (6)C18—H18B0.9600
C2—C31.393 (6)C18—H18C0.9600
C3—C41.348 (6)C19—C201.336 (8)
C3—H30.9300C19—N51.379 (6)
C4—N21.381 (5)C20—C211.395 (7)
C4—C51.491 (6)C20—H200.9300
C5—H5A0.9600C21—N61.323 (6)
C5—H5B0.9600C21—C221.485 (8)
C5—H5C0.9600C22—H22A0.9600
C6—N31.315 (5)C22—H22B0.9600
C6—N21.406 (5)C22—H22C0.9600
C6—C71.409 (6)C23—O71.393 (7)
C7—C81.356 (6)C23—H23A0.9600
C7—H70.9300C23—H23B0.9600
C8—C101.408 (6)C23—H23C0.9600
C8—H80.9300Cd1—O72.334 (3)
C9—N31.350 (5)Cd1—N42.374 (4)
C9—C101.393 (6)Cd1—N32.377 (3)
C9—C111.442 (6)Cd1—O52.379 (4)
C10—C121.430 (6)Cd1—N62.387 (4)
C11—N41.345 (5)Cd1—O62.389 (4)
C11—C131.402 (6)Cd1—N12.393 (3)
C12—C141.352 (7)Cl1—O41.402 (4)
C12—H120.9300Cl1—O31.405 (5)
C13—C151.415 (7)Cl1—O11.410 (4)
C13—C141.416 (6)Cl1—O21.416 (4)
C14—H140.9300N1—N21.368 (4)
C15—C161.360 (7)N5—N61.382 (5)
C15—H150.9300N7—O51.233 (5)
C16—C171.394 (6)N7—O61.236 (5)
C16—H160.9300O7—H90.8724
C2—C1—H1A109.5C21—C20—H20126.0
C2—C1—H1B109.5N6—C21—C20110.0 (5)
H1A—C1—H1B109.5N6—C21—C22121.1 (5)
C2—C1—H1C109.5C20—C21—C22128.9 (5)
H1A—C1—H1C109.5C21—C22—H22A109.5
H1B—C1—H1C109.5C21—C22—H22B109.5
N1—C2—C3111.3 (4)H22A—C22—H22B109.5
N1—C2—C1120.7 (4)C21—C22—H22C109.5
C3—C2—C1128.1 (4)H22A—C22—H22C109.5
C4—C3—C2106.5 (4)H22B—C22—H22C109.5
C4—C3—H3126.7O7—C23—H23A109.5
C2—C3—H3126.7O7—C23—H23B109.5
C3—C4—N2106.5 (4)H23A—C23—H23B109.5
C3—C4—C5127.3 (4)O7—C23—H23C109.5
N2—C4—C5126.1 (4)H23A—C23—H23C109.5
C4—C5—H5A109.5H23B—C23—H23C109.5
C4—C5—H5B109.5O7—Cd1—N4102.12 (14)
H5A—C5—H5B109.5O7—Cd1—N399.06 (13)
C4—C5—H5C109.5N4—Cd1—N368.71 (11)
H5A—C5—H5C109.5O7—Cd1—O5111.48 (15)
H5B—C5—H5C109.5N4—Cd1—O5133.19 (12)
N3—C6—N2114.6 (3)N3—Cd1—O5132.70 (13)
N3—C6—C7122.3 (4)O7—Cd1—N683.66 (13)
N2—C6—C7123.1 (4)N4—Cd1—N666.38 (13)
C8—C7—C6118.4 (4)N3—Cd1—N6134.51 (13)
C8—C7—H7120.8O5—Cd1—N685.54 (14)
C6—C7—H7120.8O7—Cd1—O6162.24 (16)
C7—C8—C10120.7 (4)N4—Cd1—O694.55 (14)
C7—C8—H8119.7N3—Cd1—O692.62 (12)
C10—C8—H8119.7O5—Cd1—O651.28 (13)
N3—C9—C10122.8 (4)N6—Cd1—O697.66 (14)
N3—C9—C11117.2 (4)O7—Cd1—N177.01 (13)
C10—C9—C11119.9 (4)N4—Cd1—N1133.55 (11)
C9—C10—C8116.6 (4)N3—Cd1—N165.71 (11)
C9—C10—C12119.4 (4)O5—Cd1—N186.45 (13)
C8—C10—C12124.0 (4)N6—Cd1—N1154.67 (13)
N4—C11—C13123.7 (4)O6—Cd1—N195.94 (14)
N4—C11—C9117.5 (4)O4—Cl1—O3109.7 (4)
C13—C11—C9118.8 (4)O4—Cl1—O1109.2 (3)
C14—C12—C10120.9 (4)O3—Cl1—O1109.2 (3)
C14—C12—H12119.6O4—Cl1—O2107.7 (3)
C10—C12—H12119.6O3—Cl1—O2109.6 (3)
C11—C13—C15115.0 (4)O1—Cl1—O2111.5 (3)
C11—C13—C14120.1 (4)C2—N1—N2105.3 (3)
C15—C13—C14124.8 (4)C2—N1—Cd1135.0 (3)
C12—C14—C13120.8 (4)N2—N1—Cd1118.4 (2)
C12—C14—H14119.6N1—N2—C4110.4 (3)
C13—C14—H14119.6N1—N2—C6117.5 (3)
C16—C15—C13121.3 (4)C4—N2—C6132.0 (3)
C16—C15—H15119.4C6—N3—C9119.1 (3)
C13—C15—H15119.4C6—N3—Cd1123.0 (3)
C15—C16—C17118.8 (5)C9—N3—Cd1117.8 (3)
C15—C16—H16120.6C17—N4—C11119.1 (4)
C17—C16—H16120.6C17—N4—Cd1122.8 (3)
N4—C17—C16122.2 (4)C11—N4—Cd1118.0 (3)
N4—C17—N5114.7 (4)C19—N5—N6109.7 (4)
C16—C17—N5123.2 (4)C19—N5—C17132.7 (4)
C19—C18—H18A109.5N6—N5—C17117.6 (3)
C19—C18—H18B109.5C21—N6—N5105.9 (4)
H18A—C18—H18B109.5C21—N6—Cd1135.8 (4)
C19—C18—H18C109.5N5—N6—Cd1118.4 (3)
H18A—C18—H18C109.5O5—N7—O6113.4 (4)
H18B—C18—H18C109.5N7—O5—Cd197.9 (3)
C20—C19—N5106.6 (5)N7—O6—Cd197.4 (3)
C20—C19—C18127.6 (5)C23—O7—Cd1133.0 (4)
N5—C19—C18125.7 (5)C23—O7—H9106.8
C19—C20—C21107.9 (4)Cd1—O7—H9118.9
C19—C20—H20126.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H9···O2i0.872.022.892 (7)172
C8—H8···O6ii0.932.473.291 (6)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(NO2)(C22H20N6)(CH4O)]ClO4
Mr658.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0241 (17), 11.580 (2), 15.842 (3)
α, β, γ (°)68.595 (2), 75.578 (2), 73.616 (3)
V3)1297.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.32 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.740, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
6780, 4712, 3966
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.02
No. of reflections4712
No. of parameters357
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.51

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H9···O2i0.872.022.892 (7)172
C8—H8···O6ii0.932.473.291 (6)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China (No. ZR2009BM026).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, L. Y. & Chi, Y. H. (2011). Acta Cryst. E67, m68.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds