organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o663-o664

N,N′-Di­benzyl-N′′-(2-chloro-2,2-di­fluoro­acet­yl)-N,N′-di­methyl­phospho­ric tri­amide

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 2 February 2011; accepted 14 February 2011; online 19 February 2011)

In the title mol­ecule, C18H21ClF2N3O2P, the P=O and N—H groups are syn to each other. The P atom adopts a slightly distorted tetra­hedral environment and the N atoms of the tertiary amine groups are bonded in an essentially planar geometry. In the crystal, pairs of inter­molecular N—H⋯O(P) hydrogen bonds form centrosymmetric dimers.

Related literature

For metal complexes with phosphoryl donor ligands, see: Gholivand et al. (2010[Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318-2324.]). For a polyoxometalate-based inorganic–organic compound containing a phosphoryl ligand, see: Niu et al. (1996[Niu, J.-Y., You, X.-Z., Duan, C.-Y., Fun, H.-K. & Zhou, Z.-Y. (1996). Inorg. Chem. 35, 4211-4217.]). For phospho­ric triamide compounds having a C(=O)NHP(=O) skeleton, see: Pourayoubi & Sabbaghi (2009[Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874-880.]) and references cited therein. For bond lengths in related structures, see: Sabbaghi et al. (2010[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the starting material, CClF2C(O)NHP(O)Cl2, see: Iriarte et al. (2008[Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66-71.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21ClF2N3O2P

  • Mr = 415.80

  • Triclinic, [P \overline 1]

  • a = 10.3059 (9) Å

  • b = 10.5030 (9) Å

  • c = 10.9473 (9) Å

  • α = 71.743 (2)°

  • β = 67.294 (2)°

  • γ = 63.265 (2)°

  • V = 962.15 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 K

  • 0.28 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Uinversity of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.954

  • 9258 measured reflections

  • 4148 independent reflections

  • 3359 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.111

  • S = 1.00

  • 4148 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond angles (°)

O1—P1—N2 112.34 (9)
O1—P1—N1 117.13 (9)
N2—P1—N1 107.02 (9)
O1—P1—N3 105.06 (9)
N2—P1—N3 110.57 (9)
N1—P1—N3 104.38 (9)
C1—N1—C2 114.36 (17)
C1—N1—P1 126.21 (15)
C2—N1—P1 119.42 (14)
C9—N2—C10 115.45 (17)
C9—N2—P1 121.56 (14)
C10—N2—P1 122.42 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.87 1.91 2.772 (3) 174
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phosphoryl donor ligands have been used to prepare coordination complexes (Gholivand et al., 2010) and polyoxometalate-based inorganic-organic hybrid compounds (Niu et al., 1996). The structure determination of title compound was performed as a part of a project on the synthesis of new potential phosphoric triamide ligands having a C(O)NHP(O) skeleton (Pourayoubi & Sabbaghi, 2009).

In the title compound, C18H21ClF2N3O2P, the phosphoryl group and NH unit are syn to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The P atom adopts a slightly distorted tetrahedral environment and the N atoms of the tertiary amine groups are bonded in an essentially planar geometry (see Table 1). The PO bond length is comparable to those in similar compounds e.g. in P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010). In the (CClF2)C(O) unit, the O—C—C—F dihedral angles showing the orientation of flourine atoms relative to carbonyl group are 17.7 (3) and 137.1 (2)° and the O—C—C—Cl dihedral angle is -101.9 (2)°.

The phosphoryl is a better H-acceptor relative to the carbonyl counterpart (Pourayoubi & Sabbaghi, 2009); so, the hydrogen atom of the C( O)NHP( O) group is involved in an intermolecular –PO···H—N– hydrogen bond (see Table 2) to form a centrosymmetric dimeric aggregate [graph set: R22(8) (Etter et al., 1990; Bernstein et al., 1995)], Fig. 2.

Related literature top

For metal complexes with phosphoryl donor ligands, see: Gholivand et al. (2010). For a polyoxometalate-based inorganic–organic compound containing a phosphoryl ligand, see: Niu et al. (1996). For phosphoric triamide compounds having a C(O)NHP(O) skeleton, see: Pourayoubi & Sabbaghi (2009) and references cited therein. For bond lengths in related structures, see: Sabbaghi et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the starting material, CClF2C(O)NHP(O)Cl2, see: Iriarte et al. (2008).

Experimental top

Synthesis of CClF2C(O)NHP(O)Cl2: CClF2C(O)NHP(O)Cl2 was prepared according to procedure reported by Iriarte et al. (2008) from a reaction between phosphorus pentachloride (16.91 mmol) and CClF2C(O)NH2 (16.91 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature; then removing of solvent in vacuum to yield CClF2C(O)NHP(O)Cl2.

Synthesis of title compound: To a solution of CClF2C(O)NHP(O)Cl2 (1.04 mmol) in dry CHCl3, a solution of N-methylbenzylamine (4.16 mmol) in dry CHCl3 was added dropwise and stirred at 273 K. After 4 h, the solvent was removed at room temperature. The solid was washed with H2O. The product was obtained after recrystallization from a methanol/n-heptane mixture (4:1) after a slow evaporation at room temperature. IR (KBr, cm-1): 3066, 2886, 1729 (CO), 1592, 1481, 1359, 1286, 1218, 1150, 1009, 965, 863, 809, 698. 19F NMR (470.59 MHz, DMSO-d6, 300 K, CFCl3): -63.69 p.p.m. (s). 31P{1H} NMR (202.46 MHz, DMSO-d6, 300 K, 85% H3PO4): 12.80 p.p.m. (s). 1H NMR (500.13 MHz, DMSO-d6, 300 K, TMS): 2.48 (s, 3H, CH3), 2.50 (s, 3H, CH3), 4.16 (m, 4H, CH2), 7.25–7.38 (m, 10H, Ar–H), 10.60 p.p.m. (s, 1H, NH). 13C NMR (125.76 MHz, DMSO-d6, 300 K, TMS): 33.16 (d, 2J(P,C) = 4.6 Hz, 2 C, CH3), 51.78 (d, 2J(P,C) = 5.1 Hz, 2 C, CH2), 118.08 (dt, 1C, CClF2), 127.17 (s), 127.96 (s), 128.32 (s), 137.68 (d, 3J(P,C) = 3.9 Hz, 2 C, Cipso), 159.81 p.p.m. (t, 2J(F,C) = 35.0 Hz, 1 C, CO).

Refinement top

H atoms were placed in calculated postions with C—H = 0.95 - 0.99Å and N—H = 0.87Å and were included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The Uiso(H) value of the H atom bonded to N3 was refined.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the H-bonded (dashed lines) centrosymmetric dimer (symmetry code: (A) 1-x, 1-y, -z).
N,N'-Dibenzyl-N''-(2-chloro-2,2-difluoroacetyl)- N,N'-dimethylphosphoric triamide top
Crystal data top
C18H21ClF2N3O2PZ = 2
Mr = 415.80F(000) = 432
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3059 (9) ÅCell parameters from 3946 reflections
b = 10.5030 (9) Åθ = 2.3–29.1°
c = 10.9473 (9) ŵ = 0.32 mm1
α = 71.743 (2)°T = 120 K
β = 67.294 (2)°Prism, colourless
γ = 63.265 (2)°0.28 × 0.22 × 0.15 mm
V = 962.15 (14) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4148 independent reflections
Radiation source: fine-focus sealed tube3359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.916, Tmax = 0.954k = 1313
9258 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.6759P]
where P = (Fo2 + 2Fc2)/3
4148 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H21ClF2N3O2Pγ = 63.265 (2)°
Mr = 415.80V = 962.15 (14) Å3
Triclinic, P1Z = 2
a = 10.3059 (9) ÅMo Kα radiation
b = 10.5030 (9) ŵ = 0.32 mm1
c = 10.9473 (9) ÅT = 120 K
α = 71.743 (2)°0.28 × 0.22 × 0.15 mm
β = 67.294 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3359 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.954Rint = 0.025
9258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
4148 reflectionsΔρmin = 0.37 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.24133 (6)0.55399 (6)0.07097 (5)0.01766 (13)
Cl10.40224 (7)0.93801 (7)0.06620 (6)0.03255 (16)
F10.45008 (15)0.79512 (15)0.15810 (14)0.0304 (3)
F20.25207 (16)0.99322 (15)0.16926 (15)0.0346 (3)
O10.37544 (16)0.44767 (15)0.00684 (15)0.0207 (3)
O20.09472 (17)0.85802 (17)0.16326 (17)0.0290 (4)
N10.11179 (19)0.66717 (19)0.00324 (17)0.0194 (4)
N20.1560 (2)0.47741 (19)0.21311 (17)0.0205 (4)
N30.3102 (2)0.66075 (19)0.09736 (18)0.0197 (4)
H3N0.40880.62970.07310.039 (8)*
C10.0432 (3)0.6755 (3)0.0358 (2)0.0300 (5)
H1A0.06780.67910.04350.045*
H1B0.11290.76300.07510.045*
H1C0.05340.59020.10210.045*
C20.1497 (3)0.7723 (2)0.1223 (2)0.0232 (4)
H2A0.24360.77950.12570.028*
H2B0.06710.86850.11250.028*
C30.1726 (2)0.7347 (2)0.2540 (2)0.0215 (4)
C40.1249 (2)0.8454 (2)0.3561 (2)0.0241 (5)
H4A0.06930.94200.33960.029*
C50.1583 (3)0.8152 (3)0.4825 (2)0.0281 (5)
H5A0.12650.89120.55210.034*
C60.2378 (3)0.6744 (3)0.5067 (2)0.0299 (5)
H6A0.26120.65370.59290.036*
C70.2835 (3)0.5633 (3)0.4041 (2)0.0293 (5)
H7A0.33710.46660.42040.035*
C80.2511 (3)0.5929 (2)0.2784 (2)0.0254 (5)
H8A0.28250.51650.20880.030*
C90.0398 (3)0.5614 (2)0.3182 (2)0.0254 (5)
H9A0.04500.52820.35730.038*
H9B0.00310.66410.27900.038*
H9C0.08390.54780.38850.038*
C100.2044 (3)0.3195 (2)0.2526 (2)0.0235 (4)
H10A0.27790.27380.17360.028*
H10B0.11510.29270.28080.028*
C110.2766 (2)0.2604 (2)0.3657 (2)0.0217 (4)
C120.4040 (3)0.2854 (2)0.3528 (2)0.0249 (5)
H12A0.44650.33910.27200.030*
C130.4683 (3)0.2321 (2)0.4577 (2)0.0263 (5)
H13A0.55470.24970.44850.032*
C140.4077 (3)0.1535 (2)0.5757 (2)0.0267 (5)
H14A0.45210.11770.64730.032*
C150.2827 (3)0.1271 (2)0.5896 (2)0.0279 (5)
H15A0.24150.07230.67020.034*
C160.2175 (3)0.1812 (2)0.4847 (2)0.0250 (5)
H16A0.13090.16350.49480.030*
C170.2317 (2)0.7958 (2)0.1275 (2)0.0213 (4)
C180.3323 (3)0.8782 (2)0.1073 (2)0.0242 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0166 (3)0.0174 (3)0.0179 (3)0.0063 (2)0.0047 (2)0.0021 (2)
Cl10.0383 (3)0.0335 (3)0.0279 (3)0.0217 (3)0.0053 (2)0.0007 (2)
F10.0315 (7)0.0306 (7)0.0366 (8)0.0135 (6)0.0154 (6)0.0052 (6)
F20.0362 (8)0.0289 (7)0.0408 (8)0.0132 (6)0.0024 (6)0.0182 (6)
O10.0184 (7)0.0203 (7)0.0230 (8)0.0061 (6)0.0055 (6)0.0059 (6)
O20.0209 (8)0.0242 (8)0.0371 (9)0.0052 (7)0.0030 (7)0.0108 (7)
N10.0179 (8)0.0201 (9)0.0189 (9)0.0076 (7)0.0057 (7)0.0004 (7)
N20.0197 (9)0.0193 (9)0.0186 (8)0.0077 (7)0.0038 (7)0.0002 (7)
N30.0167 (8)0.0188 (9)0.0237 (9)0.0056 (7)0.0065 (7)0.0044 (7)
C10.0195 (11)0.0406 (14)0.0272 (12)0.0104 (10)0.0092 (9)0.0002 (10)
C20.0294 (11)0.0194 (10)0.0213 (11)0.0098 (9)0.0103 (9)0.0008 (8)
C30.0211 (10)0.0259 (11)0.0195 (10)0.0124 (9)0.0057 (8)0.0013 (8)
C40.0208 (10)0.0270 (11)0.0239 (11)0.0105 (9)0.0070 (9)0.0005 (9)
C50.0277 (12)0.0373 (13)0.0210 (11)0.0146 (10)0.0114 (9)0.0023 (9)
C60.0314 (12)0.0449 (14)0.0208 (11)0.0212 (11)0.0062 (9)0.0060 (10)
C70.0321 (12)0.0300 (12)0.0285 (12)0.0155 (10)0.0046 (10)0.0079 (10)
C80.0282 (11)0.0242 (11)0.0246 (11)0.0125 (9)0.0084 (9)0.0001 (9)
C90.0250 (11)0.0295 (12)0.0173 (10)0.0114 (9)0.0016 (9)0.0023 (9)
C100.0275 (11)0.0203 (10)0.0243 (11)0.0116 (9)0.0102 (9)0.0016 (8)
C110.0236 (10)0.0171 (10)0.0237 (11)0.0063 (8)0.0084 (9)0.0025 (8)
C120.0253 (11)0.0253 (11)0.0236 (11)0.0119 (9)0.0055 (9)0.0020 (9)
C130.0222 (11)0.0258 (11)0.0317 (12)0.0078 (9)0.0096 (9)0.0054 (9)
C140.0273 (11)0.0249 (11)0.0264 (11)0.0042 (9)0.0125 (9)0.0051 (9)
C150.0308 (12)0.0236 (11)0.0241 (11)0.0102 (10)0.0080 (9)0.0026 (9)
C160.0242 (11)0.0245 (11)0.0268 (11)0.0116 (9)0.0092 (9)0.0013 (9)
C170.0235 (11)0.0205 (10)0.0192 (10)0.0088 (9)0.0054 (8)0.0025 (8)
C180.0249 (11)0.0205 (10)0.0261 (11)0.0072 (9)0.0055 (9)0.0068 (9)
Geometric parameters (Å, º) top
P1—O11.4769 (15)C5—H5A0.9500
P1—N21.6241 (18)C6—C71.391 (3)
P1—N11.6308 (18)C6—H6A0.9500
P1—N31.7093 (18)C7—C81.387 (3)
Cl1—C181.768 (2)C7—H7A0.9500
F1—C181.345 (3)C8—H8A0.9500
F2—C181.336 (2)C9—H9A0.9800
O2—C171.215 (3)C9—H9B0.9800
N1—C11.453 (3)C9—H9C0.9800
N1—C21.471 (3)C10—C111.512 (3)
N2—C91.469 (3)C10—H10A0.9900
N2—C101.469 (3)C10—H10B0.9900
N3—C171.353 (3)C11—C161.387 (3)
N3—H3N0.8700C11—C121.399 (3)
C1—H1A0.9800C12—C131.387 (3)
C1—H1B0.9800C12—H12A0.9500
C1—H1C0.9800C13—C141.383 (3)
C2—C31.517 (3)C13—H13A0.9500
C2—H2A0.9900C14—C151.379 (3)
C2—H2B0.9900C14—H14A0.9500
C3—C41.393 (3)C15—C161.391 (3)
C3—C81.394 (3)C15—H15A0.9500
C4—C51.394 (3)C16—H16A0.9500
C4—H4A0.9500C17—C181.543 (3)
C5—C61.384 (4)
O1—P1—N2112.34 (9)C7—C8—C3120.0 (2)
O1—P1—N1117.13 (9)C7—C8—H8A120.0
N2—P1—N1107.02 (9)C3—C8—H8A120.0
O1—P1—N3105.06 (9)N2—C9—H9A109.5
N2—P1—N3110.57 (9)N2—C9—H9B109.5
N1—P1—N3104.38 (9)H9A—C9—H9B109.5
C1—N1—C2114.36 (17)N2—C9—H9C109.5
C1—N1—P1126.21 (15)H9A—C9—H9C109.5
C2—N1—P1119.42 (14)H9B—C9—H9C109.5
C9—N2—C10115.45 (17)N2—C10—C11113.28 (18)
C9—N2—P1121.56 (14)N2—C10—H10A108.9
C10—N2—P1122.42 (15)C11—C10—H10A108.9
C17—N3—P1127.29 (15)N2—C10—H10B108.9
C17—N3—H3N117.5C11—C10—H10B108.9
P1—N3—H3N114.0H10A—C10—H10B107.7
N1—C1—H1A109.5C16—C11—C12118.6 (2)
N1—C1—H1B109.5C16—C11—C10120.9 (2)
H1A—C1—H1B109.5C12—C11—C10120.59 (19)
N1—C1—H1C109.5C13—C12—C11120.2 (2)
H1A—C1—H1C109.5C13—C12—H12A119.9
H1B—C1—H1C109.5C11—C12—H12A119.9
N1—C2—C3114.05 (17)C14—C13—C12120.4 (2)
N1—C2—H2A108.7C14—C13—H13A119.8
C3—C2—H2A108.7C12—C13—H13A119.8
N1—C2—H2B108.7C15—C14—C13120.1 (2)
C3—C2—H2B108.7C15—C14—H14A120.0
H2A—C2—H2B107.6C13—C14—H14A120.0
C4—C3—C8119.4 (2)C14—C15—C16119.6 (2)
C4—C3—C2119.3 (2)C14—C15—H15A120.2
C8—C3—C2121.15 (19)C16—C15—H15A120.2
C3—C4—C5120.3 (2)C11—C16—C15121.2 (2)
C3—C4—H4A119.8C11—C16—H16A119.4
C5—C4—H4A119.8C15—C16—H16A119.4
C6—C5—C4120.1 (2)O2—C17—N3127.4 (2)
C6—C5—H5A120.0O2—C17—C18118.39 (19)
C4—C5—H5A120.0N3—C17—C18114.16 (18)
C5—C6—C7119.7 (2)F2—C18—F1107.18 (18)
C5—C6—H6A120.1F2—C18—C17110.49 (18)
C7—C6—H6A120.1F1—C18—C17111.98 (17)
C8—C7—C6120.5 (2)F2—C18—Cl1108.70 (15)
C8—C7—H7A119.8F1—C18—Cl1109.06 (15)
C6—C7—H7A119.8C17—C18—Cl1109.35 (15)
O1—P1—N1—C1115.12 (19)C6—C7—C8—C30.1 (3)
N2—P1—N1—C112.0 (2)C4—C3—C8—C71.2 (3)
N3—P1—N1—C1129.24 (19)C2—C3—C8—C7173.7 (2)
O1—P1—N1—C264.27 (18)C9—N2—C10—C1161.8 (2)
N2—P1—N1—C2168.61 (15)P1—N2—C10—C11109.64 (19)
N3—P1—N1—C251.38 (17)N2—C10—C11—C16122.1 (2)
O1—P1—N2—C9167.42 (16)N2—C10—C11—C1257.4 (3)
N1—P1—N2—C962.69 (18)C16—C11—C12—C130.2 (3)
N3—P1—N2—C950.40 (19)C10—C11—C12—C13179.2 (2)
O1—P1—N2—C103.55 (19)C11—C12—C13—C140.2 (3)
N1—P1—N2—C10126.34 (17)C12—C13—C14—C150.3 (3)
N3—P1—N2—C10120.57 (16)C13—C14—C15—C160.6 (3)
O1—P1—N3—C17158.89 (18)C12—C11—C16—C150.1 (3)
N2—P1—N3—C1779.68 (19)C10—C11—C16—C15179.6 (2)
N1—P1—N3—C1735.1 (2)C14—C15—C16—C110.6 (4)
C1—N1—C2—C375.1 (2)P1—N3—C17—O213.3 (3)
P1—N1—C2—C3104.32 (19)P1—N3—C17—C18164.20 (15)
N1—C2—C3—C4143.87 (19)O2—C17—C18—F217.7 (3)
N1—C2—C3—C841.2 (3)N3—C17—C18—F2164.59 (18)
C8—C3—C4—C51.5 (3)O2—C17—C18—F1137.1 (2)
C2—C3—C4—C5173.5 (2)N3—C17—C18—F145.2 (2)
C3—C4—C5—C60.7 (3)O2—C17—C18—Cl1101.9 (2)
C4—C5—C6—C70.4 (3)N3—C17—C18—Cl175.8 (2)
C5—C6—C7—C80.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.871.912.772 (3)174
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H21ClF2N3O2P
Mr415.80
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.3059 (9), 10.5030 (9), 10.9473 (9)
α, β, γ (°)71.743 (2), 67.294 (2), 63.265 (2)
V3)962.15 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.916, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
9258, 4148, 3359
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.111, 1.00
No. of reflections4148
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O1—P1—N2112.34 (9)C1—N1—C2114.36 (17)
O1—P1—N1117.13 (9)C1—N1—P1126.21 (15)
N2—P1—N1107.02 (9)C2—N1—P1119.42 (14)
O1—P1—N3105.06 (9)C9—N2—C10115.45 (17)
N2—P1—N3110.57 (9)C9—N2—P1121.56 (14)
N1—P1—N3104.38 (9)C10—N2—P1122.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.871.912.772 (3)174
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by Islamic Azad University–North Tehran Branch is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SAINT-Plus and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.  Web of Science CSD CrossRef CAS Google Scholar
First citationIriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66–71.  Web of Science CrossRef CAS Google Scholar
First citationNiu, J.-Y., You, X.-Z., Duan, C.-Y., Fun, H.-K. & Zhou, Z.-Y. (1996). Inorg. Chem. 35, 4211–4217.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationPourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874–880.  Web of Science CSD CrossRef CAS Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Uinversity of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o663-o664
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds