organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o603-o604

2,5-Di­methyl-3-[4-(tri­fluoro­meth­­oxy)anilino]­cyclo­hex-2-enone

aDepartment of Pharmaceutical Sciences, Howard University, 2300 4th Street NW, Washington, DC 20059, USA, bBowie High School, Bowie, MD 20715, USA, cFork Union Military Academy, Fork Union, VA 23055, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 February 2011; accepted 4 February 2011; online 12 February 2011)

In the title compound, C15H16F3NO2, the dihedral angle between the benzene ring and the conjugated part of the cyclo­hexene ring is 60.00 (8)°. The non-conjugated part of the cyclohexene ring and the trifluoro­methyl group are both disordered over two sets of sites with occupancies of 0.835 (2) and 0.165 (2). In the crystal, mol­ecules are linked into chains along [010] by inter­molecular N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O inter­actions also occur.

Related literature

For the anti­convulsant properties of enamino­nes, see: Alexander et al. (2010[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229.], 2011[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224.]); Edafiogho et al. (1992[Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798-2805.]); Eddington et al. (2003[Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49-64.]); North et al. (2011[North, H., Wutoh, K., Odoom, M. K., Karla, P., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67. Submitted. [HG2794]]); Scott et al. (1993[Scott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947-1955.], 1995[Scott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem. 38, 4033-4043.]). For related structures see: Alexander et al. (2010[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229.], 2011[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224.]); North et al. (2011[North, H., Wutoh, K., Odoom, M. K., Karla, P., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67. Submitted. [HG2794]]); Scott et al. (2006a[Scott, K. R., Butcher, R. J. & Hanson, C. D. (2006a). Acta Cryst. E62, o218-o220.],b[Scott, K. R., Butcher, R. J. & Hanson, C. D. (2006b). Acta Cryst. E62, o215-o217.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16F3NO2

  • Mr = 299.29

  • Monoclinic, P 21 /n

  • a = 6.10302 (11) Å

  • b = 8.39246 (16) Å

  • c = 28.2487 (5) Å

  • β = 93.6941 (16)°

  • V = 1443.88 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.01 mm−1

  • T = 123 K

  • 0.52 × 0.36 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.697, Tmax = 1.000

  • 5270 measured reflections

  • 2843 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.138

  • S = 1.05

  • 2843 reflections

  • 219 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.03 2.8538 (18) 156
C9A—H9AA⋯O2ii 0.99 2.58 3.428 (3) 144
C10B—H10B⋯O2ii 1.00 2.59 3.494 (11) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho et al., 1992; Eddington et al., 2003; Scott et al., 1993, 1995, 2006a,b; Alexander et al., 2010, 2011; North et al., 2011). Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. We recently synthesized a series of methyl-substituted enaminones. The title compound, 3-(4-(trifluoromethoxy)phenylamino)-2,5-dimethylcyclohex-2-enone was exclusively active in the maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans. The MES test with mice revealed no activity at the 30 mg kg-1 dose, however in the 100 mg kg-1 dose, 1/3 of the animals were protected at 30 minutes and 3/3 of the animals were protected at 4 h. At a dose of 300 mg kg-1, 1/1 animals were protected at 30 min and 4 h. In the rat (po) MES study, at a dose of 30 mg kg-1, 2/4 of the animals were protected at 4 h with no toxicity. In the 6 Hz seizure study in mice, at a dose of 75 mg kg-1, 1/4 animals were protected at 30 min, 1 h, and 2 h.

Since the shape of the molecule is important in determining binding to the receptor sites it is of interest to note that the dihedral angle between the phenyl ring and the conjugated part of the cyclohexene ring is 60.00 (8)°. The backbone of the cyclohexene and the trifluoromethyl groups are disordered over two conformations with occupancies of 0.835 (2) and 0.165 (2), respectively. The geometry of the trifluoromethyl groups are idealized. The molecules are linked into chains along [010] by intermolecular N—H···O hydrogen bonds (see Fig. 2). In addition there are weak intermolecular C—H···O interactions.

Related literature top

For the anticonvulsant properties of enaminones, see: Alexander et al. (2010, 2011); Edafiogho et al. (1992); Eddington et al. (2003); North et al. (2011); Scott et al. (1993, 1995). For related structures see: Alexander et al. (2010, 2011); North et al. (2011); Scott et al. (2006a,b).

Experimental top

Iodomethane (11.2 ml, 0.18 mol, 1.5 equiv) was added to a solution of 5-methyl-1,3-cyclohexanedione (15.0 g, 0.119 mol) in 4 N aqueous sodium hydroxide (30 mL, 1.0 equiv of NaOH) in a two-neck 250 ml round bottom flask fitted with a magnetic stirrer and condenser. The solution was refluxed for 20 h and cooled to room temperature, then refrigerated at 273K overnight. Vacuum filtration of the reaction mixture gave a crystalline mass dried to yield 9.24 g (54%). The crystalline mass, 2,5-dimethyl-1,3-cyclohexadione (2.10 g, 15 mmol), mp 443-445K (lit. mp 403-404.5K), 4-trifluromethoxyaniline (2.412 g, 18 mmol), and toluene (60 ml) was added to a 150 ml single neck round bottom flask containing a stir bar. The solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. After standing overnight, crystals appeared. Evaporation under reduced pressure yielded crystals that were recrystallized from EtOAc, 23.6% yield (mp 446-448K).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 and 0.98 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to N were idealized with an N–H distance of 0.86 Å. The backbone of the cyclohexene and the trifluoromethyl groups were disordered over two conformations with occupancies of 0.835 (2) and 0.165 (2), respectively. The trifluoromethyl groups were idealized.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellipsoids drawn at the 30% probability level. The disorder is not shown.
[Figure 2] Fig. 2. The crystal packing for 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines.
2,5-Dimethyl-3-[4-(trifluoromethoxy)anilino]cyclohex-2-enone top
Crystal data top
C15H16F3NO2F(000) = 624
Mr = 299.29Dx = 1.377 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 4019 reflections
a = 6.10302 (11) Åθ = 4.7–74.0°
b = 8.39246 (16) ŵ = 1.01 mm1
c = 28.2487 (5) ÅT = 123 K
β = 93.6941 (16)°Plate, colorless
V = 1443.88 (5) Å30.52 × 0.36 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2843 independent reflections
Radiation source: Enhance (Cu) X-ray Source2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 5.5°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 910
Tmin = 0.697, Tmax = 1.000l = 3434
5270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.9652P]
where P = (Fo2 + 2Fc2)/3
2843 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.65 e Å3
48 restraintsΔρmin = 0.50 e Å3
Crystal data top
C15H16F3NO2V = 1443.88 (5) Å3
Mr = 299.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.10302 (11) ŵ = 1.01 mm1
b = 8.39246 (16) ÅT = 123 K
c = 28.2487 (5) Å0.52 × 0.36 × 0.12 mm
β = 93.6941 (16)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2843 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2624 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 1.000Rint = 0.016
5270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05248 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
2843 reflectionsΔρmin = 0.50 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C7A0.7405 (3)1.2972 (3)0.48394 (6)0.0462 (7)0.835 (2)
F1A0.7047 (3)1.3585 (5)0.52573 (7)0.0656 (5)0.835 (2)
F2A0.6311 (4)1.3805 (3)0.45056 (7)0.0799 (8)0.835 (2)
F3A0.9521 (3)1.3054 (2)0.47731 (6)0.0656 (6)0.835 (2)
C7B0.6407 (12)1.2885 (12)0.4867 (3)0.0462 (7)0.165 (2)
F1B0.4247 (12)1.2958 (11)0.4830 (3)0.0656 (5)0.165 (2)
F2B0.7200 (17)1.3625 (17)0.4504 (4)0.0799 (8)0.165 (2)
F3B0.7146 (16)1.358 (3)0.5264 (3)0.0656 (6)0.165 (2)
O10.6742 (2)1.14194 (17)0.48572 (4)0.0373 (3)
O20.41421 (19)0.38222 (15)0.21250 (4)0.0293 (3)
N10.6984 (2)0.75651 (17)0.32496 (5)0.0257 (3)
H10.80760.77460.30680.031*
C10.6876 (3)0.85474 (19)0.36566 (6)0.0240 (4)
C20.4982 (3)0.9395 (2)0.37426 (6)0.0266 (4)
H2A0.37180.93090.35300.032*
C30.4944 (3)1.0364 (2)0.41394 (6)0.0284 (4)
H3A0.36411.09160.42070.034*
C40.6822 (3)1.0518 (2)0.44349 (6)0.0275 (4)
C50.8737 (3)0.9724 (2)0.43486 (6)0.0319 (4)
H5A1.00200.98590.45530.038*
C60.8753 (3)0.8729 (2)0.39589 (6)0.0300 (4)
H6A1.00540.81640.38970.036*
C80.5578 (3)0.63770 (19)0.31118 (6)0.0223 (3)
C9A0.3906 (7)0.5897 (3)0.34518 (15)0.0240 (7)0.835 (2)
H9AA0.25920.65840.34020.029*0.835 (2)
H9AB0.45230.60600.37810.029*0.835 (2)
C10A0.3226 (3)0.4141 (2)0.33854 (7)0.0262 (4)0.835 (2)
H10A0.45190.34550.34810.031*0.835 (2)
C11A0.1365 (5)0.3730 (3)0.37008 (10)0.0351 (6)0.835 (2)
H11A0.09790.26030.36610.053*0.835 (2)
H11B0.00810.43900.36110.053*0.835 (2)
H11C0.18420.39340.40330.053*0.835 (2)
C12A0.2560 (7)0.3828 (6)0.28575 (9)0.0241 (7)0.835 (2)
H12A0.23670.26670.28090.029*0.835 (2)
H12B0.11260.43450.27760.029*0.835 (2)
C9B0.412 (5)0.555 (3)0.3486 (10)0.0240 (7)0.165 (2)
H9BA0.49550.46480.36380.029*0.165 (2)
H9BB0.38130.63220.37370.029*0.165 (2)
C10B0.2094 (17)0.4962 (13)0.3272 (4)0.0262 (4)0.165 (2)
H10B0.12850.58300.30910.031*0.165 (2)
C11B0.065 (3)0.4229 (19)0.3647 (6)0.0351 (6)0.165 (2)
H11D0.07310.38420.34900.053*0.165 (2)
H11E0.03270.50430.38810.053*0.165 (2)
H11F0.14300.33400.38060.053*0.165 (2)
C12B0.275 (5)0.380 (3)0.2968 (7)0.0241 (7)0.165 (2)
H12C0.14240.32470.28310.029*0.165 (2)
H12D0.36380.30090.31560.029*0.165 (2)
C130.4186 (3)0.4425 (2)0.25288 (6)0.0234 (3)
C140.5677 (3)0.56830 (19)0.26727 (5)0.0221 (3)
C150.7221 (3)0.6296 (2)0.23177 (6)0.0266 (4)
H15A0.71600.74630.23090.040*
H15B0.67820.58710.20030.040*
H15C0.87220.59530.24110.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C7A0.067 (2)0.0396 (13)0.0315 (11)0.0034 (14)0.0007 (13)0.0097 (10)
F1A0.0878 (13)0.0630 (11)0.0457 (9)0.0048 (10)0.0030 (9)0.0356 (8)
F2A0.133 (2)0.0381 (10)0.0634 (10)0.0262 (13)0.0302 (13)0.0070 (8)
F3A0.0776 (12)0.0588 (11)0.0630 (11)0.0308 (9)0.0239 (9)0.0170 (9)
C7B0.067 (2)0.0396 (13)0.0315 (11)0.0034 (14)0.0007 (13)0.0097 (10)
F1B0.0878 (13)0.0630 (11)0.0457 (9)0.0048 (10)0.0030 (9)0.0356 (8)
F2B0.133 (2)0.0381 (10)0.0634 (10)0.0262 (13)0.0302 (13)0.0070 (8)
F3B0.0776 (12)0.0588 (11)0.0630 (11)0.0308 (9)0.0239 (9)0.0170 (9)
O10.0491 (8)0.0401 (8)0.0232 (6)0.0027 (6)0.0052 (5)0.0094 (5)
O20.0263 (6)0.0351 (7)0.0261 (6)0.0009 (5)0.0013 (5)0.0081 (5)
N10.0273 (7)0.0290 (7)0.0215 (7)0.0044 (6)0.0060 (5)0.0033 (6)
C10.0286 (8)0.0242 (8)0.0195 (7)0.0043 (6)0.0033 (6)0.0003 (6)
C20.0276 (8)0.0274 (8)0.0243 (8)0.0016 (7)0.0018 (6)0.0003 (6)
C30.0291 (8)0.0280 (8)0.0286 (8)0.0027 (7)0.0039 (7)0.0010 (7)
C40.0350 (9)0.0301 (9)0.0177 (7)0.0026 (7)0.0047 (6)0.0028 (6)
C50.0295 (9)0.0416 (10)0.0239 (8)0.0011 (8)0.0025 (6)0.0037 (7)
C60.0263 (8)0.0366 (10)0.0272 (9)0.0019 (7)0.0026 (6)0.0034 (7)
C80.0229 (7)0.0214 (8)0.0222 (8)0.0019 (6)0.0002 (6)0.0024 (6)
C9A0.0312 (14)0.0200 (19)0.0214 (11)0.0004 (13)0.0053 (10)0.0006 (14)
C10A0.0271 (10)0.0247 (10)0.0267 (10)0.0009 (7)0.0015 (8)0.0021 (8)
C11A0.0386 (15)0.0365 (15)0.0309 (11)0.0095 (10)0.0069 (11)0.0020 (10)
C12A0.0236 (12)0.0291 (9)0.0190 (18)0.0039 (8)0.0029 (13)0.0022 (15)
C9B0.0312 (14)0.0200 (19)0.0214 (11)0.0004 (13)0.0053 (10)0.0006 (14)
C10B0.0271 (10)0.0247 (10)0.0267 (10)0.0009 (7)0.0015 (8)0.0021 (8)
C11B0.0386 (15)0.0365 (15)0.0309 (11)0.0095 (10)0.0069 (11)0.0020 (10)
C12B0.0236 (12)0.0291 (9)0.0190 (18)0.0039 (8)0.0029 (13)0.0022 (15)
C130.0211 (7)0.0247 (8)0.0239 (8)0.0058 (6)0.0020 (6)0.0013 (6)
C140.0222 (7)0.0229 (8)0.0210 (7)0.0032 (6)0.0003 (6)0.0024 (6)
C150.0297 (8)0.0272 (8)0.0231 (8)0.0004 (7)0.0050 (6)0.0016 (6)
Geometric parameters (Å, º) top
C7A—F3A1.3189 (15)C9A—H9AB0.9900
C7A—F1A1.3189 (14)C10A—C11A1.527 (3)
C7A—F2A1.3195 (15)C10A—C12A1.543 (3)
C7A—O11.366 (3)C10A—H10A1.0000
C7B—O11.248 (10)C11A—H11A0.9800
C7B—F2B1.3169 (16)C11A—H11B0.9800
C7B—F1B1.3170 (16)C11A—H11C0.9800
C7B—F3B1.3171 (16)C12A—C131.489 (4)
O1—C41.416 (2)C12A—H12A0.9900
O2—C131.246 (2)C12A—H12B0.9900
N1—C81.356 (2)C9B—C10B1.43 (3)
N1—C11.420 (2)C9B—H9BA0.9900
N1—H10.8800C9B—H9BB0.9900
C1—C21.392 (2)C10B—C12B1.37 (3)
C1—C61.392 (2)C10B—C11B1.550 (18)
C2—C31.386 (2)C10B—H10B1.0000
C2—H2A0.9500C11B—H11D0.9800
C3—C41.380 (2)C11B—H11E0.9800
C3—H3A0.9500C11B—H11F0.9800
C4—C51.381 (3)C12B—C131.65 (3)
C5—C61.382 (2)C12B—H12C0.9900
C5—H5A0.9500C12B—H12D0.9900
C6—H6A0.9500C13—C141.436 (2)
C8—C141.375 (2)C14—C151.510 (2)
C8—C9A1.501 (5)C15—H15A0.9800
C8—C9B1.59 (3)C15—H15B0.9800
C9A—C10A1.539 (4)C15—H15C0.9800
C9A—H9AA0.9900
F3A—C7A—F1A109.09 (11)C9A—C10A—C12A109.5 (3)
F3A—C7A—F2A109.02 (11)C11A—C10A—H10A108.4
F1A—C7A—F2A109.13 (11)C9A—C10A—H10A108.4
F3A—C7A—O1110.47 (16)C12A—C10A—H10A108.4
F1A—C7A—O1105.8 (2)C13—C12A—C10A113.6 (3)
F2A—C7A—O1113.21 (16)C13—C12A—H12A108.8
O1—C7B—F2B112.3 (8)C10A—C12A—H12A108.8
O1—C7B—F1B102.0 (7)C13—C12A—H12B108.8
F2B—C7B—F1B109.45 (12)C10A—C12A—H12B108.8
O1—C7B—F3B113.9 (10)H12A—C12A—H12B107.7
F2B—C7B—F3B109.41 (13)C10B—C9B—C8112.0 (18)
F1B—C7B—F3B109.45 (12)C10B—C9B—H9BA109.2
C7B—O1—C4124.0 (4)C8—C9B—H9BA109.2
C7A—O1—C4116.88 (13)C10B—C9B—H9BB109.2
C8—N1—C1126.71 (14)C8—C9B—H9BB109.2
C8—N1—H1116.6H9BA—C9B—H9BB107.9
C1—N1—H1116.6C12B—C10B—C9B103.2 (17)
C2—C1—C6119.79 (15)C12B—C10B—C11B110.3 (15)
C2—C1—N1121.37 (15)C9B—C10B—C11B111.2 (14)
C6—C1—N1118.73 (15)C12B—C10B—H10B110.6
C3—C2—C1119.91 (15)C9B—C10B—H10B110.6
C3—C2—H2A120.0C11B—C10B—H10B110.6
C1—C2—H2A120.0C10B—C11B—H11D109.5
C4—C3—C2119.17 (16)C10B—C11B—H11E109.5
C4—C3—H3A120.4H11D—C11B—H11E109.5
C2—C3—H3A120.4C10B—C11B—H11F109.5
C3—C4—C5121.83 (16)H11D—C11B—H11F109.5
C3—C4—O1119.18 (15)H11E—C11B—H11F109.5
C5—C4—O1118.82 (16)C10B—C12B—C13116 (2)
C4—C5—C6118.81 (16)C10B—C12B—H12C108.3
C4—C5—H5A120.6C13—C12B—H12C108.3
C6—C5—H5A120.6C10B—C12B—H12D108.3
C5—C6—C1120.43 (16)C13—C12B—H12D108.3
C5—C6—H6A119.8H12C—C12B—H12D107.4
C1—C6—H6A119.8O2—C13—C14122.25 (15)
N1—C8—C14120.43 (15)O2—C13—C12A117.27 (19)
N1—C8—C9A117.2 (2)C14—C13—C12A120.44 (18)
C14—C8—C9A122.3 (2)O2—C13—C12B125.3 (9)
N1—C8—C9B120.2 (10)C14—C13—C12B112.2 (9)
C14—C8—C9B118.3 (10)C8—C14—C13120.20 (15)
C8—C9A—C10A111.6 (3)C8—C14—C15121.35 (15)
C8—C9A—H9AA109.3C13—C14—C15118.29 (14)
C10A—C9A—H9AA109.3C14—C15—H15A109.5
C8—C9A—H9AB109.3C14—C15—H15B109.5
C10A—C9A—H9AB109.3H15A—C15—H15B109.5
H9AA—C9A—H9AB108.0C14—C15—H15C109.5
C11A—C10A—C9A110.5 (2)H15A—C15—H15C109.5
C11A—C10A—C12A111.5 (2)H15B—C15—H15C109.5
F2B—C7B—O1—C7A51.0 (9)C14—C8—C9A—C10A29.3 (3)
F1B—C7B—O1—C7A168.1 (11)C9B—C8—C9A—C10A45 (6)
F3B—C7B—O1—C7A74.1 (10)C8—C9A—C10A—C11A174.4 (2)
F2B—C7B—O1—C432.0 (7)C8—C9A—C10A—C12A51.3 (3)
F1B—C7B—O1—C485.1 (5)C11A—C10A—C12A—C13171.7 (3)
F3B—C7B—O1—C4157.1 (4)C9A—C10A—C12A—C1349.2 (4)
F3A—C7A—O1—C7B178.9 (9)N1—C8—C9B—C10B150.8 (11)
F1A—C7A—O1—C7B63.1 (9)C14—C8—C9B—C10B40.8 (17)
F2A—C7A—O1—C7B56.3 (9)C9A—C8—C9B—C10B72 (5)
F3A—C7A—O1—C466.21 (18)C8—C9B—C10B—C12B64.6 (18)
F1A—C7A—O1—C4175.85 (15)C8—C9B—C10B—C11B177.2 (12)
F2A—C7A—O1—C456.4 (2)C9B—C10B—C12B—C1364.6 (19)
C8—N1—C1—C254.0 (2)C11B—C10B—C12B—C13176.6 (13)
C8—N1—C1—C6129.73 (18)C10A—C12A—C13—O2158.8 (2)
C6—C1—C2—C32.7 (3)C10A—C12A—C13—C1423.4 (4)
N1—C1—C2—C3178.93 (15)C10A—C12A—C13—C12B16 (6)
C1—C2—C3—C42.4 (3)C10B—C12B—C13—O2147.1 (11)
C2—C3—C4—C50.5 (3)C10B—C12B—C13—C1437.9 (19)
C2—C3—C4—O1175.70 (15)C10B—C12B—C13—C12A106 (7)
C7B—O1—C4—C365.7 (5)N1—C8—C14—C13179.94 (14)
C7A—O1—C4—C396.11 (19)C9A—C8—C14—C131.6 (3)
C7B—O1—C4—C5119.0 (5)C9B—C8—C14—C1311.6 (10)
C7A—O1—C4—C588.5 (2)N1—C8—C14—C154.7 (2)
C3—C4—C5—C61.1 (3)C9A—C8—C14—C15173.77 (17)
O1—C4—C5—C6174.17 (16)C9B—C8—C14—C15173.0 (10)
C4—C5—C6—C10.7 (3)O2—C13—C14—C8176.07 (15)
C2—C1—C6—C51.1 (3)C12A—C13—C14—C81.7 (3)
N1—C1—C6—C5177.47 (16)C12B—C13—C14—C88.8 (10)
C1—N1—C8—C14169.97 (15)O2—C13—C14—C150.6 (2)
C1—N1—C8—C9A8.6 (3)C12A—C13—C14—C15177.2 (2)
C1—N1—C8—C9B21.9 (10)C12B—C13—C14—C15175.7 (10)
N1—C8—C9A—C10A152.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.032.8538 (18)156
C9A—H9AA···O2ii0.992.583.428 (3)144
C10B—H10B···O2ii1.002.593.494 (11)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16F3NO2
Mr299.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)6.10302 (11), 8.39246 (16), 28.2487 (5)
β (°) 93.6941 (16)
V3)1443.88 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.01
Crystal size (mm)0.52 × 0.36 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.697, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5270, 2843, 2624
Rint0.016
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.05
No. of reflections2843
No. of parameters219
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.032.8538 (18)156
C9A—H9AA···O2ii0.992.583.428 (3)144
C10B—H10B···O2ii1.002.593.494 (11)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD., Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAlexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEdafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798–2805.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, H., Wutoh, K., Odoom, M. K., Karla, P., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67. Submitted. [HG2794]  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScott, K. R., Butcher, R. J. & Hanson, C. D. (2006a). Acta Cryst. E62, o218–o220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, K. R., Butcher, R. J. & Hanson, C. D. (2006b). Acta Cryst. E62, o215–o217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947–1955.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem. 38, 4033–4043.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o603-o604
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds