organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o705-o706

4,5-Bis(2,4-di-tert-butyl­phen­­oxy)phthalo­nitrile

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: Muller.theunis@gmail.com

(Received 3 February 2011; accepted 17 February 2011; online 26 February 2011)

In the title compound, C36H44N2O2, the dihedral angles between the phthalonitrile ring and the two di-tert-butyl­benzene rings are 68.134 (8) and 70.637 (11)°. The two nitrile groups are almost coplanar with the phthalonitrile ring except for one of the N atoms which deviates from the plane by 0.125 (4) Å. One of the tert-butyl groups is disordered over two orientations, with refined occupancies of 0.814 (6) and 0.186 (6). Intra­molecular C—H⋯O inter­actions stabilize the molecular structure. The crystal packing is stabilized by inter­molecular C—H⋯N inter­actions.

Related literature

For similar structures, see: Kartal et al. (2006[Kartal, A., Albayrak, Ç., Ağar, A., Ocak Ískeleli, N. & Erdönmez, A. (2006). Acta Cryst. E62, o2720-o2721.]); Petek et al. (2004[Petek, H., Akdemir, N., Ağar, E., Özil, M. & Şenel, İ. (2004). Acta Cryst. E60, o1105-o1106.]); Dinçer et al. (2004[Dinçer, M., Özdemir, N., Akdemir, N., Özdil, M., Ağar, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o896-o898.]). For other related structures, see: Şahin, et al. (2007[Şahin, O., Büyükgüngör, O., Şaşmaz, S. & Kantar, C. (2007). Acta Cryst. E63, o4205.]); Wu et al. (2010[Wu, X., Jiang, J. & Zhang, X. (2010). Acta Cryst. E66, o795.]); Yazıcı et al. (2004[Yazıcı, S., Akdemir, N., Ağar, E., Özil, M., Şenel, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1119-o1120.]). For general background to phthalocyanines and metallophthalocyanines, see: Lenznoff & Lever (1989–1996[Lenznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanine: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim, New York: VCH Publishers Inc.]); McKeown (1998[McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.]); Wöhrle (2001[Wöhrle, D. (2001). Macromol. Rapid Commun. 22, 68-97.]).

[Scheme 1]

Experimental

Crystal data
  • C36H44N2O2

  • Mr = 536.76

  • Triclinic, [P \overline 1]

  • a = 10.9468 (3) Å

  • b = 11.0416 (4) Å

  • c = 15.3133 (5) Å

  • α = 99.719 (1)°

  • β = 102.996 (1)°

  • γ = 110.963 (1)°

  • V = 1619.71 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 175 K

  • 0.21 × 0.19 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.990

  • 31007 measured reflections

  • 7785 independent reflections

  • 5255 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.03

  • 7785 reflections

  • 399 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O1 0.96 2.5 3.117 (2) 122
C20—H20A⋯O1 0.96 2.32 2.982 (3) 125
C36—H36B⋯O2 0.96 2.52 3.122 (3) 121
C37—H37B⋯O2 0.96 2.29 2.966 (2) 127
C22A—H22A⋯N2i 0.96 2.59 3.535 (4) 170
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted phthalonitriles have been used as starting materials for synthesizing peripherally substituted phtalocyanines and subphthalocyanines (McKeown, 1998). Phthalocyanines and metallophthalocyanines have been invesitigated for many years because of their wide range of applications, including use in chemical sensors, liquid crystals, Langmiur-Blodgett films, non-linear optics, batteries, and as carrier generation materials in the near-infrared (Lennoff & Lever, 1989–1996). Some phthalocyanines have been used in the petroleum industry as catalysts for the oxidation of sulfur compounds in the gasoline fraction. Applications such as photoconducters in the xerographic double layers of laser printers and coping machines, and as as active materials in writable data-storage disks, are also known. The production of phthalocyanines for use in dyes and pigments is around 80 000 tonnes per year (Wöhrle, 2001). The crystal structure of the title compound is presented here. It containes three aromatic rings. Ring A (C3—C8, r.m.s = 0.0047), ring B (C11—C16, r.m.s = 0.0051) and ring C (C25—C30, r.m.s = 0.0038) are essentialy planar. C1, C2 and N1 is coplanar to ring A but N2 is -0.1252 (41) Å out of the plane formed by ring A. The C1N1 and the C2N2 triple bond distances are 1.145 (2) Å and 1.143 (2) Å respectively and are consistent with values found in similar compounds (Kartal et al. 2006, Petek et al. 2004 and Dinçer et al. 2004). The N1—C1—C3 and N2—C2—C4 bond angles are 179.26 (18) ° and 178.4 (3) ° respectively, this is consistent with values found for simular compounds (Şahin, et al. 2007, Wu, et al. 2010 and Yazıcı, et al. 2004). The dihedral angles between rings A and B and between rings A and C are 68.134 (8) ° and 70.637 (11) ° respectively. The angle between rings B and C is 48.12 (6) °. The crystal packing is stabilized by C—H···O intermolecular hydrogen interactions.

Related literature top

For simular structures, see: Kartal et al. (2006); Petek et al. (2004); Dinçer et al. (2004). For other related structures, see: Şahin, et al. (2007); Wu et al. (2010); Yazıcı et al. (2004). For general background to phthalocyanines and metallophthalocyanines, see: Lenznoff & Lever (1989–1996); McKeown (1998); Wöhrle (2001).

Experimental top

Ground K2CO3 (4.91 g; 35.5 mmol; 7 eq.) was added to a solution of 4,5-dichlorophthalonitrile (1.00 g; 5.08 mmol) and 2,4-di-tert-butylphenol (2.20 g; 10.7 mmol; 2.1 eq.) in dry DMF (75 ml) before stirring overnight at 80 °C. The reaction mixture was cooled to room temperature before being transferred to 3M HCl (80 ml conc. HCl in 200 ml H2O). The precipitate was filtered off, washed with H2O and allowed to dry in air. The crude product was recrystallized from hot ethyl acetate and ethanol (1:1) to yield the title compound (77.9%). Rf 0.8 (Hexane:Acetone; 8:2); Mp 269.0 °C;

1H NMR (600 MHz, CDCl3) δ 7.52 (2H, d, J = 2.3 Hz, H-3', 3"), 7.31 (2H, dd, J = 8.4, 2.3 Hz, H-5', 5"), 7.21 (2H, s, H-3,6), 6.86 (2H, d, J = 8.4 Hz, H-6', 6" H-2,6), 1.39 (36H, s, –C(CH3)3). 13C NMR (151 MHz, CDCl3) δ 152.51, 150.60, 148.46, 140.82, 125.13 (C-3',3"), 124.74 (C-5',5"), 121.66 (C-3,6), 120.36 (C-6',6"), 115.42 (–CN), 109.64 (C-1,2), 35.03 (–C(CH3)3), 34.82 (–C(CH3)3), 31.57 (–C(CH3)3), 30.40 (–C(CH3)3).

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso (H) = 1.2Ueq(C) and at a distance of 0.93 Å. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WingGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). Some H atoms and the disorder was left out for clarity.
4,5-Bis(2,4-di-tert-butylphenoxy)phthalonitrile top
Crystal data top
C36H44N2O2Z = 2
Mr = 536.76F(000) = 580
Triclinic, P1Dx = 1.1 Mg m3
a = 10.9468 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0416 (4) ÅCell parameters from 7569 reflections
c = 15.3133 (5) Åθ = 2.8–28.6°
α = 99.719 (1)°µ = 0.07 mm1
β = 102.996 (1)°T = 175 K
γ = 110.963 (1)°Cuboid, colourless
V = 1619.71 (9) Å30.21 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.986, Tmax = 0.990k = 1414
31007 measured reflectionsl = 2020
7785 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.5205P]
where P = (Fo2 + 2Fc2)/3
7785 reflections(Δ/σ)max = 0.017
399 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C36H44N2O2γ = 110.963 (1)°
Mr = 536.76V = 1619.71 (9) Å3
Triclinic, P1Z = 2
a = 10.9468 (3) ÅMo Kα radiation
b = 11.0416 (4) ŵ = 0.07 mm1
c = 15.3133 (5) ÅT = 175 K
α = 99.719 (1)°0.21 × 0.19 × 0.14 mm
β = 102.996 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5255 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.031
31007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
7785 reflectionsΔρmin = 0.30 e Å3
399 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 2019 frames were collected with a frame width of 0.5° covering up to θ = 28.57° with 99.4% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.32485 (17)0.09576 (17)0.99913 (12)0.0399 (4)
C20.2111 (2)0.0801 (2)1.06591 (15)0.0601 (6)
C30.27916 (16)0.02106 (15)0.94090 (12)0.0350 (3)
C40.22520 (18)0.06741 (17)0.97435 (12)0.0399 (4)
C50.18274 (18)0.14119 (17)0.91845 (12)0.0428 (4)
H50.14790.2010.94120.051*
C60.19232 (16)0.12561 (15)0.82952 (11)0.0344 (3)
C70.24483 (15)0.03433 (15)0.79532 (11)0.0325 (3)
C80.28764 (16)0.03739 (15)0.85123 (12)0.0356 (4)
H80.32250.09720.82860.043*
C110.32695 (16)0.03783 (15)0.67397 (11)0.0341 (3)
C120.46705 (18)0.02362 (17)0.71765 (12)0.0422 (4)
H120.50420.0990.76870.051*
C130.55247 (17)0.02689 (18)0.68553 (12)0.0421 (4)
H130.64670.01380.7160.05*
C140.49885 (16)0.13740 (16)0.60855 (11)0.0342 (3)
C150.35667 (16)0.19584 (16)0.56661 (11)0.0335 (3)
H150.320.27010.51480.04*
C160.26543 (16)0.15055 (15)0.59701 (11)0.0317 (3)
C170.10949 (16)0.22154 (16)0.54796 (12)0.0364 (4)
C180.07343 (19)0.33885 (19)0.46378 (13)0.0503 (5)
H18A0.11510.30520.4190.075*
H18B0.02470.38290.43590.075*
H18C0.10710.40210.48360.075*
C190.03676 (18)0.27803 (18)0.61657 (13)0.0458 (4)
H19A0.06010.3270.5850.069*
H19B0.05160.2050.66750.069*
H19C0.07340.33730.640.069*
C200.05301 (19)0.1242 (2)0.51307 (14)0.0495 (5)
H20A0.07050.05130.56490.074*
H20B0.04430.17130.48260.074*
H20C0.09740.08910.46980.074*
C210.58891 (17)0.19560 (18)0.56883 (12)0.0414 (4)
C250.09512 (16)0.28072 (16)0.79279 (11)0.0334 (3)
C260.03540 (17)0.22322 (16)0.80045 (12)0.0406 (4)
H260.07630.13120.79420.049*
C270.10495 (16)0.30261 (16)0.81741 (12)0.0385 (4)
H270.19210.26380.82360.046*
C280.04634 (15)0.43969 (15)0.82533 (11)0.0310 (3)
C290.08501 (15)0.49289 (15)0.81665 (10)0.0300 (3)
H290.12510.58460.82180.036*
C300.16077 (15)0.41736 (15)0.80073 (10)0.0294 (3)
C310.12629 (16)0.52644 (17)0.84061 (12)0.0371 (4)
C320.1880 (2)0.5004 (2)0.91925 (15)0.0562 (5)
H32A0.23750.55560.92780.084*
H32B0.11560.52230.97590.084*
H32C0.24980.40710.90350.084*
C330.0344 (2)0.6768 (2)0.8677 (2)0.0792 (8)
H33A0.00280.6980.81840.119*
H33B0.03940.69950.92370.119*
H33C0.08760.72740.87810.119*
C340.2414 (3)0.4900 (3)0.75103 (16)0.0823 (8)
H34A0.2030.50630.70140.124*
H34B0.29190.54420.75920.124*
H34C0.30220.39640.73580.124*
C350.30789 (15)0.48317 (16)0.79499 (11)0.0352 (4)
C360.40825 (18)0.4698 (2)0.87618 (14)0.0540 (5)
H36A0.50080.5170.8760.081*
H36B0.3890.37620.86960.081*
H36C0.3980.50770.93390.081*
C370.31886 (19)0.4175 (2)0.70201 (13)0.0485 (4)
H37A0.26030.43180.65170.073*
H37B0.29080.32240.69450.073*
H37C0.41240.45710.70170.073*
C380.35244 (18)0.63396 (18)0.80263 (15)0.0504 (5)
H38A0.290.64580.75320.076*
H38B0.44370.67120.79790.076*
H38C0.35150.67930.86160.076*
N10.36199 (18)0.15552 (17)1.04487 (12)0.0546 (4)
N20.1971 (3)0.0875 (3)1.13809 (15)0.0937 (8)
O10.24505 (12)0.02227 (11)0.70557 (8)0.0384 (3)
O20.15855 (12)0.19450 (11)0.76953 (8)0.0400 (3)
C22A0.7447 (3)0.1104 (4)0.6219 (2)0.0569 (8)0.814 (6)
H22A0.76330.11360.68560.085*0.814 (6)
H22B0.76860.01860.61980.085*0.814 (6)
H22C0.79820.14650.5930.085*0.814 (6)
C23A0.5683 (3)0.1892 (5)0.46811 (18)0.0696 (12)0.814 (6)
H23A0.62920.21920.44380.104*0.814 (6)
H23B0.58790.09810.46580.104*0.814 (6)
H23C0.47480.24640.43140.104*0.814 (6)
C24A0.5532 (5)0.3364 (4)0.5778 (5)0.0921 (16)0.814 (6)
H24A0.60910.37330.55260.138*0.814 (6)
H24B0.45790.39130.54410.138*0.814 (6)
H24C0.56960.33480.64230.138*0.814 (6)
C22B0.5042 (14)0.2940 (15)0.4618 (7)0.050 (3)0.186 (6)
H22D0.56630.31790.43470.075*0.186 (6)
H22E0.46460.24710.4250.075*0.186 (6)
H22F0.43230.37430.46330.075*0.186 (6)
C23B0.6083 (13)0.2968 (14)0.6183 (9)0.0414 (4)0.186 (6)
H23D0.6640.33460.59360.062*0.186 (6)
H23E0.52030.36740.60930.062*0.186 (6)
H23F0.6530.25320.68370.062*0.186 (6)
C24B0.7055 (16)0.0922 (14)0.5672 (16)0.075 (5)0.186 (6)
H24D0.75680.03530.62940.112*0.186 (6)
H24E0.67910.040.52860.112*0.186 (6)
H24F0.76150.12950.54240.112*0.186 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (9)0.0387 (9)0.0422 (10)0.0193 (8)0.0179 (8)0.0111 (8)
C20.0913 (16)0.0783 (14)0.0484 (12)0.0639 (13)0.0374 (11)0.0255 (11)
C30.0367 (8)0.0329 (8)0.0402 (9)0.0163 (7)0.0168 (7)0.0114 (7)
C40.0487 (9)0.0455 (9)0.0374 (10)0.0275 (8)0.0209 (8)0.0120 (8)
C50.0564 (10)0.0455 (10)0.0435 (10)0.0343 (9)0.0254 (8)0.0112 (8)
C60.0411 (8)0.0319 (8)0.0388 (9)0.0208 (7)0.0184 (7)0.0099 (7)
C70.0371 (8)0.0290 (7)0.0362 (9)0.0164 (6)0.0180 (7)0.0059 (6)
C80.0411 (8)0.0318 (8)0.0425 (10)0.0208 (7)0.0202 (7)0.0091 (7)
C110.0445 (9)0.0340 (8)0.0359 (9)0.0234 (7)0.0224 (7)0.0100 (7)
C120.0461 (9)0.0396 (9)0.0378 (10)0.0166 (8)0.0173 (8)0.0005 (7)
C130.0366 (8)0.0496 (10)0.0378 (10)0.0167 (8)0.0149 (7)0.0042 (8)
C140.0397 (8)0.0394 (9)0.0332 (9)0.0209 (7)0.0200 (7)0.0116 (7)
C150.0418 (8)0.0324 (8)0.0318 (8)0.0191 (7)0.0166 (7)0.0069 (7)
C160.0383 (8)0.0310 (8)0.0348 (9)0.0189 (6)0.0176 (7)0.0126 (7)
C170.0384 (8)0.0378 (8)0.0398 (9)0.0203 (7)0.0157 (7)0.0125 (7)
C180.0424 (10)0.0524 (11)0.0477 (11)0.0187 (8)0.0093 (8)0.0010 (9)
C190.0422 (9)0.0455 (10)0.0548 (12)0.0171 (8)0.0226 (8)0.0187 (9)
C200.0474 (10)0.0566 (11)0.0579 (12)0.0305 (9)0.0182 (9)0.0262 (10)
C210.0431 (9)0.0505 (10)0.0425 (10)0.0268 (8)0.0239 (8)0.0111 (8)
C250.0409 (8)0.0361 (8)0.0316 (8)0.0247 (7)0.0142 (7)0.0061 (7)
C260.0433 (9)0.0299 (8)0.0481 (11)0.0149 (7)0.0171 (8)0.0061 (7)
C270.0319 (8)0.0369 (9)0.0446 (10)0.0131 (7)0.0140 (7)0.0056 (7)
C280.0316 (7)0.0362 (8)0.0296 (8)0.0189 (6)0.0108 (6)0.0069 (6)
C290.0320 (7)0.0314 (8)0.0306 (8)0.0167 (6)0.0113 (6)0.0078 (6)
C300.0322 (7)0.0365 (8)0.0242 (8)0.0192 (6)0.0097 (6)0.0071 (6)
C310.0359 (8)0.0433 (9)0.0433 (10)0.0252 (7)0.0173 (7)0.0132 (8)
C320.0628 (12)0.0676 (13)0.0641 (14)0.0428 (11)0.0377 (11)0.0227 (11)
C330.0718 (14)0.0479 (12)0.150 (3)0.0396 (11)0.0676 (16)0.0295 (14)
C340.0867 (17)0.133 (2)0.0566 (15)0.0862 (18)0.0123 (12)0.0214 (15)
C350.0315 (7)0.0435 (9)0.0369 (9)0.0209 (7)0.0142 (7)0.0097 (7)
C360.0365 (9)0.0752 (14)0.0522 (12)0.0262 (9)0.0092 (8)0.0212 (10)
C370.0474 (10)0.0597 (12)0.0464 (11)0.0251 (9)0.0264 (9)0.0115 (9)
C380.0397 (9)0.0461 (10)0.0706 (14)0.0170 (8)0.0276 (9)0.0161 (10)
N10.0664 (11)0.0530 (10)0.0526 (10)0.0305 (8)0.0185 (8)0.0214 (8)
N20.160 (2)0.137 (2)0.0594 (13)0.1165 (19)0.0640 (14)0.0490 (13)
O10.0530 (7)0.0419 (6)0.0368 (7)0.0314 (6)0.0243 (5)0.0116 (5)
O20.0580 (7)0.0415 (6)0.0394 (7)0.0352 (6)0.0242 (6)0.0129 (5)
C22A0.0425 (14)0.089 (2)0.0473 (17)0.0339 (14)0.0231 (13)0.0108 (15)
C23A0.0579 (18)0.117 (3)0.0391 (15)0.046 (2)0.0224 (13)0.0008 (17)
C24A0.075 (2)0.054 (2)0.178 (5)0.0412 (18)0.072 (3)0.033 (3)
C22B0.066 (8)0.061 (8)0.037 (6)0.044 (7)0.023 (5)0.000 (5)
C23B0.0431 (9)0.0505 (10)0.0425 (10)0.0268 (8)0.0239 (8)0.0111 (8)
C24B0.059 (9)0.071 (8)0.105 (15)0.029 (7)0.055 (10)0.007 (9)
Geometric parameters (Å, º) top
C1—N11.145 (2)C27—C281.388 (2)
C1—C31.438 (2)C27—H270.93
C2—N21.143 (3)C28—C291.392 (2)
C2—C41.434 (3)C28—C311.534 (2)
C3—C81.383 (2)C29—C301.3999 (19)
C3—C41.395 (2)C29—H290.93
C4—C51.393 (2)C30—C351.542 (2)
C5—C61.376 (2)C31—C341.518 (3)
C5—H50.93C31—C331.525 (3)
C6—O21.3578 (19)C31—C321.528 (2)
C6—C71.412 (2)C32—H32A0.96
C7—O11.3588 (19)C32—H32B0.96
C7—C81.376 (2)C32—H32C0.96
C8—H80.93C33—H33A0.96
C11—C121.379 (2)C33—H33B0.96
C11—C161.393 (2)C33—H33C0.96
C11—O11.4110 (17)C34—H34A0.96
C12—C131.384 (2)C34—H34B0.96
C12—H120.93C34—H34C0.96
C13—C141.383 (2)C35—C361.529 (2)
C13—H130.93C35—C381.533 (2)
C14—C151.394 (2)C35—C371.536 (2)
C14—C211.532 (2)C36—H36A0.96
C15—C161.397 (2)C36—H36B0.96
C15—H150.93C36—H36C0.96
C16—C171.536 (2)C37—H37A0.96
C17—C181.529 (2)C37—H37B0.96
C17—C201.531 (2)C37—H37C0.96
C17—C191.539 (2)C38—H38A0.96
C18—H18A0.96C38—H38B0.96
C18—H18B0.96C38—H38C0.96
C18—H18C0.96C22A—H22A0.96
C19—H19A0.96C22A—H22B0.96
C19—H19B0.96C22A—H22C0.96
C19—H19C0.96C23A—H23A0.96
C20—H20A0.96C23A—H23B0.96
C20—H20B0.96C23A—H23C0.96
C20—H20C0.96C24A—H24A0.96
C21—C24B1.384 (13)C24A—H24B0.96
C21—C24A1.500 (4)C24A—H24C0.96
C21—C23B1.501 (12)C22B—H22D0.96
C21—C23A1.525 (3)C22B—H22E0.96
C21—C22A1.557 (3)C22B—H22F0.96
C21—C22B1.650 (11)C23B—H23D0.96
C25—C261.382 (2)C23B—H23E0.96
C25—C301.390 (2)C23B—H23F0.96
C25—O21.4089 (17)C24B—H24D0.96
C26—C271.380 (2)C24B—H24E0.96
C26—H260.93C24B—H24F0.96
N1—C1—C3179.26 (18)C26—C27—C28120.78 (15)
N2—C2—C4178.4 (3)C26—C27—H27119.6
C8—C3—C4119.70 (15)C28—C27—H27119.6
C8—C3—C1120.12 (14)C27—C28—C29117.23 (13)
C4—C3—C1120.18 (15)C27—C28—C31120.53 (13)
C5—C4—C3120.20 (15)C29—C28—C31122.23 (14)
C5—C4—C2120.12 (15)C28—C29—C30124.32 (14)
C3—C4—C2119.67 (15)C28—C29—H29117.8
C6—C5—C4119.99 (14)C30—C29—H29117.8
C6—C5—H5120C25—C30—C29115.24 (13)
C4—C5—H5120C25—C30—C35122.92 (13)
O2—C6—C5125.57 (13)C29—C30—C35121.83 (14)
O2—C6—C7114.72 (14)C34—C31—C33109.46 (19)
C5—C6—C7119.68 (14)C34—C31—C32109.21 (17)
O1—C7—C8124.80 (13)C33—C31—C32106.95 (16)
O1—C7—C6115.18 (13)C34—C31—C28108.44 (14)
C8—C7—C6120.00 (14)C33—C31—C28112.04 (14)
C7—C8—C3120.42 (14)C32—C31—C28110.70 (13)
C7—C8—H8119.8C31—C32—H32A109.5
C3—C8—H8119.8C31—C32—H32B109.5
C12—C11—C16122.65 (13)H32A—C32—H32B109.5
C12—C11—O1117.89 (14)C31—C32—H32C109.5
C16—C11—O1119.32 (14)H32A—C32—H32C109.5
C11—C12—C13120.01 (16)H32B—C32—H32C109.5
C11—C12—H12120C31—C33—H33A109.5
C13—C12—H12120C31—C33—H33B109.5
C14—C13—C12120.56 (16)H33A—C33—H33B109.5
C14—C13—H13119.7C31—C33—H33C109.5
C12—C13—H13119.7H33A—C33—H33C109.5
C13—C14—C15117.32 (14)H33B—C33—H33C109.5
C13—C14—C21122.73 (15)C31—C34—H34A109.5
C15—C14—C21119.95 (14)C31—C34—H34B109.5
C14—C15—C16124.54 (15)H34A—C34—H34B109.5
C14—C15—H15117.7C31—C34—H34C109.5
C16—C15—H15117.7H34A—C34—H34C109.5
C11—C16—C15114.91 (14)H34B—C34—H34C109.5
C11—C16—C17123.53 (13)C36—C35—C38107.50 (15)
C15—C16—C17121.56 (14)C36—C35—C37110.04 (14)
C18—C17—C20107.50 (15)C38—C35—C37107.12 (14)
C18—C17—C16111.47 (13)C36—C35—C30109.04 (14)
C20—C17—C16111.28 (14)C38—C35—C30111.76 (12)
C18—C17—C19108.14 (15)C37—C35—C30111.30 (14)
C20—C17—C19109.01 (14)C35—C36—H36A109.5
C16—C17—C19109.35 (14)C35—C36—H36B109.5
C17—C18—H18A109.5H36A—C36—H36B109.5
C17—C18—H18B109.5C35—C36—H36C109.5
H18A—C18—H18B109.5H36A—C36—H36C109.5
C17—C18—H18C109.5H36B—C36—H36C109.5
H18A—C18—H18C109.5C35—C37—H37A109.5
H18B—C18—H18C109.5C35—C37—H37B109.5
C17—C19—H19A109.5H37A—C37—H37B109.5
C17—C19—H19B109.5C35—C37—H37C109.5
H19A—C19—H19B109.5H37A—C37—H37C109.5
C17—C19—H19C109.5H37B—C37—H37C109.5
H19A—C19—H19C109.5C35—C38—H38A109.5
H19B—C19—H19C109.5C35—C38—H38B109.5
C17—C20—H20A109.5H38A—C38—H38B109.5
C17—C20—H20B109.5C35—C38—H38C109.5
H20A—C20—H20B109.5H38A—C38—H38C109.5
C17—C20—H20C109.5H38B—C38—H38C109.5
H20A—C20—H20C109.5C7—O1—C11118.38 (12)
H20B—C20—H20C109.5C6—O2—C25120.00 (12)
C24B—C21—C24A135.6 (7)C21—C22A—H22A109.5
C24B—C21—C23B117.8 (9)C21—C22A—H22B109.5
C24A—C21—C23B27.0 (4)C21—C22A—H22C109.5
C24B—C21—C23A72.6 (9)C21—C23A—H23A109.5
C24A—C21—C23A112.7 (3)C21—C23A—H23B109.5
C23B—C21—C23A133.6 (5)C21—C23A—H23C109.5
C24B—C21—C14110.0 (5)C21—C24A—H24A109.5
C24A—C21—C14109.31 (17)C21—C24A—H24B109.5
C23B—C21—C14108.7 (5)C21—C24A—H24C109.5
C23A—C21—C14108.60 (16)C21—C22B—H22D109.5
C24B—C21—C22A36.7 (9)C21—C22B—H22E109.5
C24A—C21—C22A108.2 (2)H22D—C22B—H22E109.5
C23B—C21—C22A84.1 (5)C21—C22B—H22F109.5
C23A—C21—C22A106.40 (19)H22D—C22B—H22F109.5
C14—C21—C22A111.68 (16)H22E—C22B—H22F109.5
C24B—C21—C22B108.7 (8)C21—C23B—H23D109.5
C24A—C21—C22B75.0 (5)C21—C23B—H23E109.5
C23B—C21—C22B100.4 (6)H23D—C23B—H23E109.5
C23A—C21—C22B40.0 (5)C21—C23B—H23F109.5
C14—C21—C22B110.8 (4)H23D—C23B—H23F109.5
C22A—C21—C22B133.0 (4)H23E—C23B—H23F109.5
C26—C25—C30122.53 (13)C21—C24B—H24D109.5
C26—C25—O2117.88 (14)C21—C24B—H24E109.5
C30—C25—O2119.43 (13)H24D—C24B—H24E109.5
C27—C26—C25119.90 (15)C21—C24B—H24F109.5
C27—C26—H26120H24D—C24B—H24F109.5
C25—C26—H26120H24E—C24B—H24F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O10.962.53.117 (2)122
C20—H20A···O10.962.322.982 (3)125
C36—H36B···O20.962.523.122 (3)121
C37—H37B···O20.962.292.966 (2)127
C22A—H22A···N2i0.962.593.535 (4)170
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC36H44N2O2
Mr536.76
Crystal system, space groupTriclinic, P1
Temperature (K)175
a, b, c (Å)10.9468 (3), 11.0416 (4), 15.3133 (5)
α, β, γ (°)99.719 (1), 102.996 (1), 110.963 (1)
V3)1619.71 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.21 × 0.19 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
31007, 7785, 5255
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.03
No. of reflections7785
No. of parameters399
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005), WingGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O10.962.53.117 (2)122
C20—H20A···O10.962.322.982 (3)125
C36—H36B···O20.962.523.122 (3)121
C37—H37B···O20.962.292.966 (2)127
C22A—H22A···N2i0.962.593.535 (4)170
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The University of the Free State and Sasol are gratefully acknowledged for financial support. Special thanks are due to Professor Andreas Roodt.

References

First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinçer, M., Özdemir, N., Akdemir, N., Özdil, M., Ağar, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKartal, A., Albayrak, Ç., Ağar, A., Ocak Ískeleli, N. & Erdönmez, A. (2006). Acta Cryst. E62, o2720–o2721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLenznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanine: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim, New York: VCH Publishers Inc.  Google Scholar
First citationMcKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.  Google Scholar
First citationPetek, H., Akdemir, N., Ağar, E., Özil, M. & Şenel, İ. (2004). Acta Cryst. E60, o1105–o1106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, O., Büyükgüngör, O., Şaşmaz, S. & Kantar, C. (2007). Acta Cryst. E63, o4205.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhrle, D. (2001). Macromol. Rapid Commun. 22, 68–97.  Web of Science CrossRef CAS Google Scholar
First citationWu, X., Jiang, J. & Zhang, X. (2010). Acta Cryst. E66, o795.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYazıcı, S., Akdemir, N., Ağar, E., Özil, M., Şenel, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1119–o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o705-o706
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds