metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(3-Meth­­oxy-2-oxido­benzyl­­idene-κO2)benzohydrazidato-κ2N′,O]tris­­(pyridine-κN)cobalt(III) perchlorate

aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
*Correspondence e-mail: liyh@cust.edu.cn

(Received 21 January 2011; accepted 8 February 2011; online 12 February 2011)

In the mononuclear title compound, [CoIII(C15H12N2O3)(C5H5N)3]ClO4, the CoIII ion is coordinated by three pyridine mol­ecules and one N′-(3-meth­oxy-2-oxidobenzyl­idene)benzohydrazidate Schiff base ligand in an O,N,O′-tridentate manner. The CoIII ion adopts a distorted CoN4O2 octa­hedral coordination environment.

Related literature

For applications of Schiff base compounds, see: Ando et al. (2004[Ando, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237-2244.]); Guo et al. (2010[Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.]). For the preparation of the Schiff base, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Monfared, H.-H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Sacconi (1954[Sacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249-256.]). For related structures, see: Monfared et al. (2009[Monfared, H.-H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]); Sun et al. (2008[Sun, S.-Z., Kang, W.-J., Li, D.-C., Wang, D.-Q. & Dou, J.-M. (2008). Acta Cryst. E64, m438.]); Yu, Zhao et al. (2010[Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139-144.]); Yu, Li et al. (2010[Yu, G.-M., Li, Y.-H., Zou, L.-F., Zhu, J.-W. & Liu, X.-Q. (2010). Acta Cryst. E66, m693-m694.]); Zhang et al. (2004[Zhang, L., Liu, L., Jia, D.-Z. & Yu, K.-B. (2004). Struct. Chem. 15, 327-331.]); Zou et al. (2010[Zou, L.-F., Ma, Y.-Q., Yu, G.-M., Gan, F.-J. & Li, Y.-H. (2010). Acta Cryst. E66, m828.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C15H12N2O3)(C5H5N)3]ClO4

  • Mr = 663.95

  • Monoclinic, C c

  • a = 10.7591 (5) Å

  • b = 13.2318 (6) Å

  • c = 21.0558 (10) Å

  • β = 94.610 (1)°

  • V = 2987.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 185 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.919

  • 7543 measured reflections

  • 4991 independent reflections

  • 4431 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.072

  • S = 1.00

  • 4991 reflections

  • 398 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2332 Friedel pairs

  • Flack parameter: 0.011 (12)

Table 1
Selected bond lengths (Å)

Co1—O2 1.866 (2)
Co1—N2 1.864 (3)
Co1—O1 1.898 (2)
Co1—N5 1.957 (3)
Co1—N3 1.977 (3)
Co1—N4 1.987 (3)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The development of routes and strategies for the design and construction of Schiff base compounds are of great interest not only because of their intriguing structural motifs but also because of their important applications in antitumor activities (Ando et al., 2004), magnetochemistry (Guo et al., 2010), and so on. Acylhydrazone ligands are widely used to assemble coordination polymers, which have received a considerable interest over the last decade. From the structural point of view, selection of the Schiff base ligand 3-methoxysalicylaldehyde benzoylhydrazide(H2L) is a good choice for construction of coordination polymers with defined geometry and special properties, due to its containing a combination of nitrogen and oxygen donor atoms (Yu, Zhao et al., 2010). Some geometrically intriguing supramolecular structures derived from this ligand have been reported including structurally characterized species with Mn2 (Yu, Li et al., 2010), Cu4 (Monfared et al., 2009), Fe1 (Zou et al., 2010) units among others. As a continuation of our efforts on this system, we report the synthesis and characterization of the title cobalt(III) compound.

The molecular structure of [CoIII(C15H12N2O3)(C5H5N)3]ClO4, together with the atom-numbering scheme, is illustrated in Fig. 1. Selected bond lengths are given in Table 1. The asymmetric unit of the title compound consists of a mononuclear cation [CoIII(C15H12N2O3)(C5H5N)3]+, accompanied by one perchlorate anion. Several mononuclear compounds with similar structures have been reported previously (Sun et al., 2008; Zhang et al., 2004). The cobalt(III) atom has a distorted octahedral geometry, which consists of two oxygen atoms (O1 and O2) and one nitrogen atom (N2) of L2- and three nitrogen atoms (N3, N4 and N5) from three pyridine molecules. In the ligand, the angles for the equatorial donor atoms [82.99 (11)° for O1—Co1—N2 and 93.38 (11)° for O2—Co1—N2] correspond, respectively, with the more constrained five-membered chelate ring O1—C7—N1—N2—Co1 and the less constrained six-membered ring N2—C8—C9—C10—O2—Co1. The N2O2 equatorial plane, defined by O1 O2, N3 and N5, shows a small but significant tetrahedral distortion. The maximum displacements from the least-squares plane through atoms O1, O2, N3 and N5 are 0.027 (3)and 0.025 (3) Å for atoms O1 and O2, respectively; Co1 is 0.0396 (4) Å below this plane.

Related literature top

For applications of Schiff base compounds, see: Ando et al. (2004); Guo et al. (2010). For the preparation of the Schiff base, see: Pouralimardan et al. (2007); Sacconi (1954). For related structures , see: Monfared et al. (2009); Sun et al. (2008); Yu, Zhao et al. (2010); Yu, Li et al. (2010); Zhang et al. (2004); Zou et al. (2010).

Experimental top

The 3-methoxysalicylaldehyde benzoylhydrazide ligand (H2L) was prepared in a manner similar to the reported procedures (Pouralimardan et al., 2007; Sacconi, 1954). The title compound was synthesized by adding Co(ClO4)2.6H2O (0.2 mmol) to a solution of H2L (0.20 mmol) in methanol 20 ml. The resulting mixture was stirred at room temperature to afford a dark brown solution. After 10 min pyridine (1 ml) was added and the solution was stirred for 3 h. Slow evaporation of the resulting dark brown solution over three weeks afforded brown crystals of the product.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model [C–H (aromatic) = 0.95 Å; C–H (CH3) = 0.98 Å; and Uĩso(H) = 1.5Ueq(C)]. The displacement ellipsoids for O6 and O7 are significantly larger than those of their neighbors suggesting some degree of disorder in this side of the anion however attempts to model this disorder with a split-atom model proved unsatisfactory.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[N'-(3-Methoxy-2-oxidobenzylidene-κO2)benzohydrazidato- κ2N',O]tris(pyridine-κN)cobalt(III) perchlorate top
Crystal data top
[Co(C15H12N2O3)(C5H5N)3]ClO4F(000) = 1368
Mr = 663.95Dx = 1.476 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4029 reflections
a = 10.7591 (5) Åθ = 4.9–50.1°
b = 13.2318 (6) ŵ = 0.72 mm1
c = 21.0558 (10) ÅT = 185 K
β = 94.610 (1)°Block, brown
V = 2987.9 (2) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4991 independent reflections
Radiation source: fine-focus sealed tube4431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.869, Tmax = 0.919k = 1510
7543 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0182P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4991 reflectionsΔρmax = 0.35 e Å3
398 parametersΔρmin = 0.29 e Å3
2 restraintsAbsolute structure: Flack (1983), 2332 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
[Co(C15H12N2O3)(C5H5N)3]ClO4V = 2987.9 (2) Å3
Mr = 663.95Z = 4
Monoclinic, CcMo Kα radiation
a = 10.7591 (5) ŵ = 0.72 mm1
b = 13.2318 (6) ÅT = 185 K
c = 21.0558 (10) Å0.20 × 0.18 × 0.12 mm
β = 94.610 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4431 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.919Rint = 0.027
7543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.35 e Å3
S = 1.00Δρmin = 0.29 e Å3
4991 reflectionsAbsolute structure: Flack (1983), 2332 Friedel pairs
398 parametersAbsolute structure parameter: 0.011 (12)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16794 (8)0.46289 (8)0.39641 (4)0.0359 (2)
Co10.43297 (3)0.52399 (3)0.15848 (2)0.02070 (11)
C10.0228 (3)0.4207 (3)0.15340 (18)0.0328 (9)
H1A0.00040.39670.19520.039*
C20.1460 (3)0.4165 (3)0.12945 (19)0.0374 (10)
H20.20700.38880.15460.045*
C30.1808 (3)0.4523 (3)0.06960 (19)0.0366 (9)
H30.26580.44950.05350.044*
C40.0923 (3)0.4925 (3)0.03236 (16)0.0299 (8)
H40.11620.51740.00910.036*
C50.0310 (3)0.4960 (2)0.05629 (16)0.0243 (8)
H50.09170.52380.03090.029*
C60.0675 (3)0.4598 (2)0.11655 (15)0.0203 (7)
C70.1985 (3)0.4645 (2)0.14193 (15)0.0211 (7)
C80.4045 (3)0.3970 (3)0.26468 (16)0.0257 (8)
H80.35630.35000.28630.031*
C90.5224 (3)0.4264 (3)0.29441 (16)0.0272 (8)
C100.6075 (3)0.4826 (2)0.26093 (16)0.0244 (7)
C110.7181 (3)0.5184 (3)0.29505 (18)0.0309 (8)
C120.7422 (4)0.4979 (3)0.35821 (19)0.0405 (10)
H120.81680.52190.38040.049*
C130.6570 (4)0.4416 (3)0.3905 (2)0.0439 (11)
H130.67430.42750.43460.053*
C140.5498 (3)0.4068 (3)0.35949 (17)0.0360 (9)
H140.49280.36880.38210.043*
C150.9083 (4)0.6080 (4)0.2875 (2)0.0614 (14)
H15A0.89390.65100.32410.074*
H15B0.95240.64670.25660.074*
H15C0.95870.54940.30200.074*
C160.5344 (3)0.3336 (3)0.11885 (17)0.0279 (8)
H160.56180.32880.16280.033*
C170.5655 (3)0.2574 (3)0.07847 (18)0.0323 (9)
H170.61230.20080.09460.039*
C180.5280 (4)0.2640 (3)0.01462 (19)0.0400 (10)
H180.54970.21300.01420.048*
C190.4576 (3)0.3469 (3)0.00668 (17)0.0356 (9)
H190.43000.35390.05050.043*
C200.4281 (3)0.4198 (3)0.03744 (16)0.0290 (9)
H200.37800.47570.02310.035*
C210.4288 (3)0.6714 (3)0.05572 (16)0.0272 (8)
H210.34160.65920.05390.033*
C220.4729 (4)0.7378 (3)0.01264 (17)0.0346 (9)
H220.41750.77040.01820.042*
C230.6008 (4)0.7560 (3)0.01530 (18)0.0342 (9)
H230.63480.80080.01400.041*
C240.6760 (4)0.7082 (3)0.06089 (18)0.0346 (9)
H240.76330.72040.06400.041*
C250.6260 (3)0.6423 (3)0.10249 (17)0.0280 (8)
H250.67990.60910.13380.034*
C260.2924 (3)0.6392 (3)0.24550 (17)0.0311 (9)
H260.22490.59710.23030.037*
C270.2755 (4)0.7074 (3)0.29368 (19)0.0407 (10)
H270.19670.71330.31060.049*
C280.3734 (4)0.7665 (3)0.31680 (18)0.0434 (11)
H280.36390.81190.35100.052*
C290.4846 (4)0.7596 (3)0.29042 (17)0.0379 (9)
H290.55280.80120.30530.045*
C300.4966 (3)0.6918 (2)0.24201 (16)0.0293 (8)
H300.57420.68760.22360.035*
N10.2366 (2)0.4037 (2)0.18851 (12)0.0218 (6)
N20.3587 (2)0.4305 (2)0.20981 (13)0.0221 (7)
N30.4673 (2)0.4141 (2)0.09866 (13)0.0236 (7)
N40.5022 (2)0.6234 (2)0.09999 (13)0.0226 (7)
N50.4026 (2)0.6309 (2)0.21957 (12)0.0231 (7)
O10.2693 (2)0.53324 (17)0.11795 (11)0.0231 (6)
O20.5914 (2)0.50462 (18)0.19950 (11)0.0249 (6)
O30.7924 (2)0.5744 (2)0.25842 (12)0.0397 (7)
O40.0449 (2)0.4311 (2)0.40770 (12)0.0444 (7)
O50.1830 (3)0.4614 (2)0.33036 (12)0.0529 (8)
O60.1873 (4)0.5628 (3)0.41864 (19)0.1058 (16)
O70.2518 (3)0.3989 (4)0.4303 (2)0.1226 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0324 (5)0.0473 (6)0.0278 (5)0.0055 (5)0.0017 (4)0.0020 (4)
Co10.0196 (2)0.0223 (2)0.0201 (2)0.0008 (2)0.00069 (16)0.0003 (2)
C10.031 (2)0.039 (2)0.029 (2)0.0017 (17)0.0005 (17)0.0075 (18)
C20.0226 (19)0.048 (2)0.042 (2)0.0104 (19)0.0074 (18)0.001 (2)
C30.0205 (18)0.036 (2)0.053 (3)0.0018 (17)0.0017 (18)0.0009 (19)
C40.0265 (19)0.035 (2)0.027 (2)0.0033 (17)0.0041 (16)0.0033 (16)
C50.0213 (18)0.0247 (19)0.0279 (19)0.0019 (15)0.0080 (15)0.0005 (15)
C60.0212 (16)0.0208 (18)0.0190 (17)0.0007 (14)0.0019 (13)0.0030 (14)
C70.0209 (17)0.0215 (18)0.0212 (18)0.0024 (14)0.0044 (14)0.0049 (15)
C80.0300 (19)0.025 (2)0.023 (2)0.0059 (16)0.0062 (16)0.0068 (16)
C90.0233 (18)0.030 (2)0.028 (2)0.0036 (16)0.0002 (15)0.0020 (16)
C100.0230 (18)0.0251 (18)0.0240 (19)0.0065 (16)0.0047 (14)0.0001 (16)
C110.0258 (19)0.030 (2)0.036 (2)0.0004 (16)0.0044 (16)0.0023 (17)
C120.036 (2)0.049 (3)0.034 (2)0.0016 (19)0.0123 (17)0.0012 (19)
C130.040 (2)0.062 (3)0.028 (2)0.001 (2)0.0042 (18)0.003 (2)
C140.033 (2)0.044 (2)0.030 (2)0.0042 (18)0.0036 (17)0.0096 (18)
C150.042 (3)0.070 (3)0.068 (3)0.025 (2)0.017 (2)0.019 (3)
C160.0209 (17)0.029 (2)0.034 (2)0.0002 (16)0.0039 (15)0.0010 (16)
C170.028 (2)0.024 (2)0.045 (2)0.0037 (16)0.0055 (18)0.0034 (17)
C180.041 (2)0.032 (2)0.048 (3)0.0020 (19)0.015 (2)0.0157 (19)
C190.043 (2)0.039 (2)0.025 (2)0.0064 (19)0.0038 (17)0.0085 (17)
C200.034 (2)0.0222 (19)0.030 (2)0.0026 (17)0.0018 (17)0.0033 (16)
C210.0302 (19)0.024 (2)0.027 (2)0.0002 (16)0.0018 (16)0.0007 (16)
C220.044 (2)0.035 (2)0.024 (2)0.0009 (19)0.0030 (18)0.0046 (17)
C230.046 (2)0.027 (2)0.031 (2)0.006 (2)0.0118 (19)0.0030 (18)
C240.032 (2)0.033 (2)0.039 (2)0.0063 (18)0.0079 (17)0.0001 (18)
C250.0244 (19)0.030 (2)0.030 (2)0.0004 (16)0.0044 (16)0.0021 (16)
C260.035 (2)0.030 (2)0.029 (2)0.0049 (17)0.0048 (17)0.0030 (16)
C270.051 (3)0.032 (2)0.041 (2)0.005 (2)0.021 (2)0.0032 (19)
C280.071 (3)0.033 (3)0.027 (2)0.000 (2)0.009 (2)0.0062 (18)
C290.049 (2)0.030 (2)0.033 (2)0.0051 (19)0.0034 (19)0.0027 (17)
C300.034 (2)0.0231 (19)0.030 (2)0.0036 (17)0.0001 (16)0.0008 (16)
N10.0174 (14)0.0254 (16)0.0220 (15)0.0027 (12)0.0023 (11)0.0008 (12)
N20.0221 (15)0.0241 (17)0.0204 (16)0.0015 (13)0.0032 (12)0.0018 (13)
N30.0206 (15)0.0267 (17)0.0237 (17)0.0005 (13)0.0039 (13)0.0009 (13)
N40.0235 (15)0.0204 (16)0.0240 (16)0.0005 (13)0.0023 (13)0.0032 (12)
N50.0279 (16)0.0214 (16)0.0201 (16)0.0015 (14)0.0022 (13)0.0005 (13)
O10.0204 (13)0.0250 (14)0.0240 (14)0.0020 (10)0.0016 (11)0.0028 (11)
O20.0183 (12)0.0336 (15)0.0223 (14)0.0002 (10)0.0011 (11)0.0032 (11)
O30.0259 (13)0.0492 (18)0.0421 (16)0.0111 (13)0.0093 (12)0.0085 (14)
O40.0353 (15)0.0655 (19)0.0331 (15)0.0087 (14)0.0075 (12)0.0004 (13)
O50.0571 (18)0.073 (2)0.0310 (16)0.0146 (16)0.0199 (14)0.0125 (14)
O60.170 (4)0.074 (3)0.082 (3)0.071 (3)0.058 (3)0.050 (2)
O70.052 (2)0.178 (5)0.137 (4)0.029 (3)0.003 (2)0.094 (4)
Geometric parameters (Å, º) top
Cl1—O71.392 (4)C15—O31.416 (4)
Cl1—O51.413 (3)C15—H15A0.9800
Cl1—O61.412 (4)C15—H15B0.9800
Cl1—O41.427 (2)C15—H15C0.9800
Co1—O21.866 (2)C16—N31.338 (4)
Co1—N21.864 (3)C16—C171.377 (5)
Co1—O11.898 (2)C16—H160.9500
Co1—N51.957 (3)C17—C181.375 (5)
Co1—N31.977 (3)C17—H170.9500
Co1—N41.987 (3)C18—C191.387 (5)
C1—C21.381 (5)C18—H180.9500
C1—C61.391 (4)C19—C201.393 (5)
C1—H1A0.9500C19—H190.9500
C2—C31.370 (5)C20—N31.326 (4)
C2—H20.9500C20—H200.9500
C3—C41.388 (5)C21—N41.334 (4)
C3—H30.9500C21—C221.374 (5)
C4—C51.381 (5)C21—H210.9500
C4—H40.9500C22—C231.394 (5)
C5—C61.384 (5)C22—H220.9500
C5—H50.9500C23—C241.361 (5)
C6—C71.468 (4)C23—H230.9500
C7—O11.314 (4)C24—C251.376 (5)
C7—N11.309 (4)C24—H240.9500
C8—N21.297 (4)C25—N41.352 (4)
C8—C91.423 (5)C25—H250.9500
C8—H80.9500C26—N51.349 (4)
C9—C141.402 (5)C26—C271.381 (5)
C9—C101.411 (4)C26—H260.9500
C10—O21.324 (4)C27—C281.369 (5)
C10—C111.422 (4)C27—H270.9500
C11—O31.372 (4)C28—C291.362 (5)
C11—C121.361 (5)C28—H280.9500
C12—C131.400 (5)C29—C301.372 (5)
C12—H120.9500C29—H290.9500
C13—C141.360 (5)C30—N51.349 (4)
C13—H130.9500C30—H300.9500
C14—H140.9500N1—N21.399 (3)
O7—Cl1—O5112.1 (2)H15A—C15—H15B109.5
O7—Cl1—O6109.1 (3)O3—C15—H15C109.5
O5—Cl1—O6108.3 (2)H15A—C15—H15C109.5
O7—Cl1—O4107.9 (2)H15B—C15—H15C109.5
O5—Cl1—O4109.92 (16)N3—C16—C17122.6 (3)
O6—Cl1—O4109.6 (2)N3—C16—H16118.7
O2—Co1—N293.38 (11)C17—C16—H16118.7
O2—Co1—O1175.67 (11)C18—C17—C16119.4 (4)
N2—Co1—O182.99 (11)C18—C17—H17120.3
O2—Co1—N589.42 (11)C16—C17—H17120.3
N2—Co1—N589.80 (12)C17—C18—C19118.4 (3)
O1—Co1—N592.92 (11)C17—C18—H18120.8
O2—Co1—N389.06 (11)C19—C18—H18120.8
N2—Co1—N389.56 (11)C18—C19—C20118.7 (3)
O1—Co1—N388.55 (10)C18—C19—H19120.7
N5—Co1—N3178.31 (13)C20—C19—H19120.7
O2—Co1—N490.21 (11)N3—C20—C19122.5 (3)
N2—Co1—N4176.30 (13)N3—C20—H20118.7
O1—Co1—N493.39 (11)C19—C20—H20118.7
N5—Co1—N491.12 (10)N4—C21—C22123.3 (3)
N3—Co1—N489.61 (12)N4—C21—H21118.3
C2—C1—C6120.3 (3)C22—C21—H21118.3
C2—C1—H1A119.9C21—C22—C23118.5 (4)
C6—C1—H1A119.9C21—C22—H22120.8
C3—C2—C1120.4 (3)C23—C22—H22120.8
C3—C2—H2119.8C24—C23—C22118.5 (4)
C1—C2—H2119.8C24—C23—H23120.8
C2—C3—C4120.2 (3)C22—C23—H23120.8
C2—C3—H3119.9C23—C24—C25120.2 (3)
C4—C3—H3119.9C23—C24—H24119.9
C5—C4—C3119.3 (3)C25—C24—H24119.9
C5—C4—H4120.3N4—C25—C24121.8 (3)
C3—C4—H4120.3N4—C25—H25119.1
C4—C5—C6121.1 (3)C24—C25—H25119.1
C4—C5—H5119.4N5—C26—C27121.4 (4)
C6—C5—H5119.4N5—C26—H26119.3
C5—C6—C1118.7 (3)C27—C26—H26119.3
C5—C6—C7120.9 (3)C28—C27—C26119.5 (4)
C1—C6—C7120.4 (3)C28—C27—H27120.3
O1—C7—N1123.9 (3)C26—C27—H27120.3
O1—C7—C6117.3 (3)C29—C28—C27119.5 (4)
N1—C7—C6118.7 (3)C29—C28—H28120.2
N2—C8—C9124.0 (3)C27—C28—H28120.2
N2—C8—H8118.0C28—C29—C30119.0 (4)
C9—C8—H8118.0C28—C29—H29120.5
C14—C9—C10119.5 (3)C30—C29—H29120.5
C14—C9—C8119.3 (3)N5—C30—C29122.6 (3)
C10—C9—C8121.0 (3)N5—C30—H30118.7
O2—C10—C9124.4 (3)C29—C30—H30118.7
O2—C10—C11117.3 (3)C7—N1—N2108.2 (3)
C9—C10—C11118.3 (3)C8—N2—N1118.6 (3)
O3—C11—C12125.7 (3)C8—N2—Co1126.4 (3)
O3—C11—C10113.5 (3)N1—N2—Co1114.7 (2)
C12—C11—C10120.9 (3)C20—N3—C16118.4 (3)
C11—C12—C13120.0 (4)C20—N3—Co1121.1 (2)
C11—C12—H12120.0C16—N3—Co1120.5 (2)
C13—C12—H12120.0C21—N4—C25117.7 (3)
C14—C13—C12120.7 (4)C21—N4—Co1121.2 (2)
C14—C13—H13119.7C25—N4—Co1121.0 (2)
C12—C13—H13119.7C30—N5—C26118.0 (3)
C13—C14—C9120.7 (4)C30—N5—Co1120.1 (2)
C13—C14—H14119.7C26—N5—Co1121.5 (2)
C9—C14—H14119.7C7—O1—Co1109.2 (2)
O3—C15—H15A109.5C10—O2—Co1121.7 (2)
O3—C15—H15B109.5C11—O3—C15117.3 (3)

Experimental details

Crystal data
Chemical formula[Co(C15H12N2O3)(C5H5N)3]ClO4
Mr663.95
Crystal system, space groupMonoclinic, Cc
Temperature (K)185
a, b, c (Å)10.7591 (5), 13.2318 (6), 21.0558 (10)
β (°) 94.610 (1)
V3)2987.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.869, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
7543, 4991, 4431
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.00
No. of reflections4991
No. of parameters398
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29
Absolute structureFlack (1983), 2332 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O21.866 (2)Co1—N51.957 (3)
Co1—N21.864 (3)Co1—N31.977 (3)
Co1—O11.898 (2)Co1—N41.987 (3)
 

Acknowledgements

We thank the project supported by the Department of Education of Jilin Province, China (200837) and Changchun University of Science and Technology for their financial support.

References

First citationAndo, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237–2244.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMonfared, H.-H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.  Web of Science CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Monfared, H.-H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249–256.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S.-Z., Kang, W.-J., Li, D.-C., Wang, D.-Q. & Dou, J.-M. (2008). Acta Cryst. E64, m438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, G.-M., Li, Y.-H., Zou, L.-F., Zhu, J.-W. & Liu, X.-Q. (2010). Acta Cryst. E66, m693–m694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Liu, L., Jia, D.-Z. & Yu, K.-B. (2004). Struct. Chem. 15, 327–331.  Web of Science CSD CrossRef Google Scholar
First citationZou, L.-F., Ma, Y.-Q., Yu, G.-M., Gan, F.-J. & Li, Y.-H. (2010). Acta Cryst. E66, m828.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds