metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[4′-(4-chloro­phen­yl)-2,2′:6′,2′′-terpyridine]­nitratocopper(II) nitrate [4′-(4-chloro­phen­yl)-2,2′:6′,2′′-terpyridine]­dinitratocopper(II) monohydrate

aDepartment of Chemistry, Tongji University, Shanghai, People's Republic of China
*Correspondence e-mail: shishuo@tongji.edu.cn, tmyao@tongji.edu.cn

(Received 30 December 2010; accepted 12 February 2011; online 19 February 2011)

The crystal structure of the title compound, [Cu(NO3)(C21H14ClN3)(H2O)]NO3·[Cu(NO3)2(C21H14ClN3)]·H2O, con­sists of two crystallographically independent CuII complexes, in which each copper cation is penta­coordinated by three N atoms of the chelating ligand and two O atoms of nitrate anions or water mol­ecules. One of the coordinated nitrate anions is disordered over two set of sites in a 0.85:0.15 ratio.

Related literature

For the use of substituted terpyridine ligands in coordination chemistry due to their ability to form complexes with transition metals, see: Chen et al. (2010[Chen, F.-T. (2010). Acta Cryst. E66, m755.]); Feng et al. (2006[Feng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.]); Hou et al. (2005[Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825-7832.]); Mutai et al. (2001[Mutai, T., Chen, J.-D., Arita, S. & Araki, K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1045-1050.]). For the synthesis of the title compound, see: Mutai et al. (2001[Mutai, T., Chen, J.-D., Arita, S. & Araki, K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1045-1050.]). For related structures, see: Granifo et al. (2004[Granifo, J., Garland, M.-T. & Baggio, R. (2004). Inorg. Chem. Commun. 7, 77-81.]); Chen et al. (2010[Chen, F.-T. (2010). Acta Cryst. E66, m755.]). For the biochemcial importance of terpyridine ligands, see: Bertrand et al. (2007[Bertrand, H., Monchaud, D., Cian, A.-D., Guillot, R., Mergny, J.-L. & Teulade-Fichou, M.-P. (2007). Org. Biomol. Chem. 5, 2555-2559.]); Maity et al. (2010[Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R., & Chakravarty, A. R. (2010). Organometallics, 29, 3632-3641.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C21H14ClN3)][Cu(NO3)(C21H14ClN3)(H2O)]NO3·H2O

  • Mr = 1098.76

  • Monoclinic, P 21 /c

  • a = 14.7172 (2) Å

  • b = 15.0680 (2) Å

  • c = 20.4214 (3) Å

  • β = 105.377 (1)°

  • V = 4366.51 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.04 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.462, Tmax = 0.581

  • 17732 measured reflections

  • 8572 independent reflections

  • 7142 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.00

  • 8572 reflections

  • 643 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CIFTAB in SHELXL97.

Supporting information


Comment top

Substituted terpyridine ligands have attracted widespread attention in coordination chemistry due to their ability to form complexes with transition metals, (Chen et al.,2010; Feng et al.,2006; Granifo et al.,2004; Hou et al.,2005; Mutai et al.,2001). Recent studies reveal that under certain conditions, copper complexes with phenanthroline and polypyridine ligands have good DNA binding activity, which attracted great interest in biochemistry (Bertrand et al.,2007; Maity et al.,2010). The crystal structure of the title compound was determined as part of an ongoing study of the properties of copper complex containing terpyridyl ligands.

The crystal structure of the title compound consists of two crystallographically independent complexes, in which the copper cations are always penta coordinated within a distorted square-pyramidal coordination (Fig.1). In one of these complexes two copper atom is coordinated by three N atoms of the tridentrate chelating ligand and two O atoms of two independent two nitrate anions.In the other complex the copper is coordinated by three N atoms of the chelating ligand, one O atom of one nitrate anion and an O atom of one water molecule. The structure contains one additional nitrate anion and one additional water molecule that are not connected to the copper cations. The central Cu–N bond lengths [Cu(1)—N(5) = 1.9287 (16) Å and Cu(2)—N(2) = 1.9256 (18)Å] are slightly shorter than those to the outer N atoms of 2.0178 (18), 2.0277 (18), 2.0096 (19) and 2.014 (2)Å. The bond angles to the N atoms of the terpyridyl unit of 80.40 (8), 80.07 (8), 80.39 (7) and 79.97 (7) ° deviate from the ideal values which is a common characteristics for terpyridyl-containing complexes (Granifo et al.,2004). The apical Cu–O bond lenghts (Cu(1)—O(1 W) 2.208 (2) Å and Cu(2)—O(4) 2.163 (3) Å) are longer than the other Cu–O bonds.

Related literature top

For the use of substituted terpyridine ligands in coordination chemistry due to their ability to form complexes with transition metals, see: Chen et al. (2010); Feng et al. (2006); Hou et al. (2005); Mutai et al. (2001). For the synthesis of the title compound, see: Mutai et al. (2001). For related structures, see: Granifo et al. (2004); Chen et al. (2010). For the biochemcial importance of terpyridine ligands, see: Bertrand et al. (2007); Maity et al. (2010).

Experimental top

4'-(4-Chlorophenyl)-2,2':6',2''-terpyridine (Cl-ptp) has been synthesized by a procedure reported in the literature (Mutai et al. 2001). A solution of Cl-ptp (42.35 mg, 0.124 mmol) in dichloromethane (3 ml) was mixed with anhydrous acetonitrile (3 ml) dissolving copper nitrate (29.96 mg, 0.124 mmol),then sealed and kept it in refrigerator. Several days later, blue crystals were collected by filtration.

Refinement top

All H atom were positioned geometrically and refined as riding, with aromatic C—H =0.93 Å and with Uiso(H) = 1.2Ueq(C).The water H were located in difference map and were refined isotropic.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB in SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with labelling showing displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity.
Aqua[4'-(4-chlorophenyl)-2,2':6',2''-terpyridine]nitratocopper(II) nitrate [4'-(4-chlorophenyl)-2,2':6',2''-terpyridine]dinitratocopper(II) monohydrate top
Crystal data top
[Cu(NO3)2(C21H14ClN3)][Cu(NO3)(C21H14ClN3)(H2O)]NO3·H2OZ = 4
Mr = 1098.76F(000) = 2232
Monoclinic, P21/cDx = 1.671 Mg m3
a = 14.7172 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 15.0680 (2) ŵ = 3.04 mm1
c = 20.4214 (3) ÅT = 293 K
β = 105.377 (1)°Block, blue
V = 4366.51 (10) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8572 independent reflections
Radiation source: fine-focus sealed tube7142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 72.9°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1817
Tmin = 0.462, Tmax = 0.581k = 1817
17732 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0792P)2]
where P = (Fo2 + 2Fc2)/3
8572 reflections(Δ/σ)max = 0.001
643 parametersΔρmax = 0.56 e Å3
15 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(NO3)2(C21H14ClN3)][Cu(NO3)(C21H14ClN3)(H2O)]NO3·H2OV = 4366.51 (10) Å3
Mr = 1098.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.7172 (2) ŵ = 3.04 mm1
b = 15.0680 (2) ÅT = 293 K
c = 20.4214 (3) Å0.30 × 0.20 × 0.20 mm
β = 105.377 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8572 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
7142 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.581Rint = 0.027
17732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04415 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.56 e Å3
8572 reflectionsΔρmin = 0.27 e Å3
643 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu20.37161 (3)0.70822 (2)0.243697 (17)0.04814 (11)
Cl10.06351 (4)0.37787 (4)0.19024 (3)0.05263 (14)
N10.38825 (15)0.58174 (12)0.27589 (10)0.0443 (4)
N20.30021 (13)0.64907 (11)0.16278 (9)0.0395 (3)
N30.32876 (16)0.81395 (13)0.18301 (11)0.0499 (4)
N80.57336 (15)0.69059 (13)0.25635 (10)0.0481 (4)
O40.5200 (2)0.73693 (19)0.28333 (17)0.0547 (6)0.85
O50.5407 (3)0.6533 (3)0.20330 (17)0.0886 (10)0.85
O60.6581 (2)0.6877 (3)0.28725 (18)0.0811 (8)0.85
O4'0.5462 (19)0.7293 (19)0.2997 (11)0.085 (9)*0.15
O5'0.5103 (12)0.6818 (14)0.2011 (8)0.074 (5)*0.15
O6'0.6530 (13)0.6649 (19)0.2589 (15)0.107 (8)*0.15
N90.28984 (17)0.76429 (13)0.34439 (11)0.0520 (5)
O70.36819 (15)0.77450 (13)0.33053 (10)0.0605 (5)
O80.23158 (17)0.71330 (18)0.30946 (15)0.0806 (7)
O90.2733 (2)0.80703 (15)0.39136 (12)0.0764 (6)
C10.34510 (15)0.52113 (14)0.22914 (10)0.0380 (4)
C20.35475 (17)0.43099 (14)0.24211 (11)0.0439 (4)
H2A0.32440.38980.20970.053*
C30.41109 (19)0.40344 (16)0.30496 (12)0.0492 (5)
H3A0.41910.34330.31490.059*
C40.45462 (19)0.46552 (18)0.35206 (12)0.0517 (5)
H4A0.49240.44800.39420.062*
C50.44127 (19)0.55490 (17)0.33570 (12)0.0516 (5)
H5A0.47040.59710.36760.062*
C60.29006 (14)0.56106 (13)0.16427 (10)0.0372 (4)
C70.23287 (15)0.51691 (12)0.10898 (10)0.0381 (4)
H7A0.22530.45570.11030.046*
C80.18654 (14)0.56533 (13)0.05104 (10)0.0368 (4)
C90.19961 (16)0.65762 (14)0.05147 (11)0.0415 (4)
H9A0.17020.69160.01380.050*
C100.25694 (16)0.69735 (13)0.10885 (11)0.0399 (4)
C110.27548 (17)0.79410 (13)0.11984 (12)0.0442 (4)
C120.2395 (2)0.85883 (15)0.07258 (14)0.0528 (5)
H12A0.20390.84400.02920.063*
C130.2579 (2)0.94744 (16)0.09149 (17)0.0619 (7)
H13A0.23400.99260.06070.074*
C140.3114 (2)0.96745 (16)0.15558 (18)0.0647 (7)
H14A0.32401.02620.16890.078*
C150.3459 (2)0.89932 (17)0.19996 (16)0.0606 (6)
H15A0.38250.91300.24330.073*
C160.12483 (14)0.51953 (12)0.00913 (10)0.0357 (4)
C170.11446 (17)0.42722 (14)0.00964 (11)0.0435 (4)
H17A0.14710.39450.02780.052*
C180.05659 (18)0.38366 (13)0.06473 (12)0.0457 (5)
H18A0.05000.32230.06420.055*
C190.00875 (15)0.43232 (14)0.12038 (10)0.0395 (4)
C200.01727 (17)0.52367 (14)0.12187 (11)0.0458 (5)
H20A0.01550.55600.15960.055*
C210.07546 (17)0.56623 (13)0.06619 (11)0.0446 (5)
H21A0.08160.62760.06700.053*
Cu10.64469 (2)0.755439 (18)0.511420 (14)0.03832 (10)
Cl21.01554 (6)1.13769 (4)0.93957 (3)0.0688 (2)
O10.53539 (13)0.68233 (11)0.46355 (8)0.0514 (4)
O1W0.71041 (19)0.71742 (18)0.43010 (11)0.0773 (6)
H1O10.67780.71460.38900.116*
H2O10.76780.72280.42970.116*
O20.4079 (2)0.6278 (2)0.48005 (15)0.0932 (9)
O30.48744 (19)0.72562 (16)0.54977 (12)0.0739 (6)
N40.71391 (13)0.65875 (11)0.57323 (9)0.0393 (3)
N50.71651 (12)0.82709 (11)0.58543 (8)0.0345 (3)
N60.60310 (13)0.87827 (11)0.47501 (9)0.0394 (3)
N70.47370 (16)0.67908 (14)0.49853 (11)0.0536 (5)
C220.77267 (14)0.68840 (12)0.63225 (10)0.0356 (4)
C230.82755 (17)0.63125 (14)0.67921 (11)0.0443 (4)
H23A0.86690.65260.71960.053*
C240.8226 (2)0.54068 (15)0.66470 (14)0.0533 (5)
H24A0.85930.50070.69520.064*
C250.7630 (2)0.51087 (14)0.60480 (14)0.0547 (6)
H25A0.75910.45070.59430.066*
C260.70929 (18)0.57172 (15)0.56072 (12)0.0484 (5)
H26A0.66820.55130.52070.058*
C270.77161 (14)0.78655 (12)0.63989 (10)0.0343 (4)
C280.82017 (14)0.83482 (13)0.69578 (10)0.0363 (4)
H28A0.85940.80640.73310.044*
C290.80945 (14)0.92764 (12)0.69537 (10)0.0353 (4)
C300.74968 (15)0.96743 (12)0.63802 (10)0.0367 (4)
H30A0.74021.02850.63660.044*
C310.70481 (14)0.91482 (12)0.58339 (10)0.0347 (4)
C320.64043 (14)0.94527 (13)0.51785 (10)0.0351 (4)
C330.62025 (15)1.03327 (13)0.50081 (10)0.0384 (4)
H33A0.64631.07840.53100.046*
C340.55991 (16)1.05270 (14)0.43731 (11)0.0427 (4)
H34A0.54481.11120.42460.051*
C350.52309 (16)0.98441 (16)0.39380 (11)0.0465 (5)
H35A0.48340.99640.35100.056*
C360.54549 (17)0.89771 (15)0.41408 (11)0.0452 (4)
H36A0.51980.85170.38460.054*
C370.86092 (15)0.98066 (13)0.75508 (10)0.0376 (4)
C380.87342 (17)1.07184 (14)0.75065 (11)0.0447 (5)
H38A0.84951.10060.70940.054*
C390.9212 (2)1.12044 (14)0.80709 (13)0.0516 (5)
H39A0.92881.18140.80370.062*
C400.95691 (18)1.07797 (15)0.86793 (11)0.0473 (5)
C410.9460 (2)0.98785 (16)0.87392 (12)0.0600 (7)
H41A0.97060.95940.91520.072*
C420.8979 (2)0.94048 (14)0.81760 (12)0.0581 (7)
H42A0.89000.87970.82170.070*
N100.89519 (16)0.71939 (12)0.86786 (10)0.0501 (5)
O100.9058 (2)0.76082 (15)0.92176 (12)0.0773 (7)
O110.95399 (15)0.72583 (13)0.83381 (10)0.0598 (4)
O120.82643 (18)0.67101 (17)0.84712 (13)0.0789 (7)
O2W0.88021 (19)1.31295 (18)0.57881 (14)0.0829 (7)
H1O20.92481.27900.59930.124*
H2O20.87951.35740.60430.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0591 (2)0.03360 (16)0.04541 (18)0.00919 (13)0.00277 (14)0.00994 (12)
Cl10.0598 (3)0.0456 (3)0.0432 (3)0.0050 (2)0.0026 (2)0.0097 (2)
N10.0531 (10)0.0368 (8)0.0399 (9)0.0078 (7)0.0070 (7)0.0066 (7)
N20.0427 (9)0.0328 (8)0.0403 (8)0.0054 (6)0.0061 (7)0.0063 (6)
N30.0569 (11)0.0337 (9)0.0557 (11)0.0063 (8)0.0088 (9)0.0081 (8)
N80.0534 (11)0.0426 (9)0.0453 (9)0.0022 (8)0.0080 (8)0.0020 (8)
O40.0515 (14)0.0482 (12)0.0612 (13)0.0112 (10)0.0094 (13)0.0154 (11)
O50.087 (2)0.109 (3)0.0670 (17)0.007 (2)0.0153 (15)0.0462 (18)
O60.0576 (15)0.102 (2)0.0740 (18)0.0114 (14)0.0004 (12)0.0151 (17)
N90.0623 (12)0.0377 (9)0.0518 (11)0.0028 (8)0.0076 (9)0.0060 (8)
O70.0622 (11)0.0582 (10)0.0585 (10)0.0155 (9)0.0115 (8)0.0215 (8)
O80.0637 (13)0.0821 (15)0.0933 (17)0.0165 (11)0.0161 (12)0.0364 (13)
O90.1051 (18)0.0619 (11)0.0688 (13)0.0017 (12)0.0344 (13)0.0190 (10)
C10.0409 (9)0.0363 (9)0.0351 (9)0.0053 (8)0.0070 (7)0.0054 (7)
C20.0529 (12)0.0362 (10)0.0401 (10)0.0032 (8)0.0077 (9)0.0046 (8)
C30.0590 (13)0.0422 (10)0.0438 (11)0.0008 (10)0.0091 (10)0.0024 (9)
C40.0574 (13)0.0544 (12)0.0375 (10)0.0024 (10)0.0025 (9)0.0001 (9)
C50.0618 (14)0.0484 (12)0.0392 (10)0.0106 (10)0.0041 (9)0.0075 (9)
C60.0406 (9)0.0320 (9)0.0385 (9)0.0029 (7)0.0098 (8)0.0042 (7)
C70.0451 (10)0.0288 (8)0.0386 (9)0.0036 (7)0.0081 (8)0.0026 (7)
C80.0385 (9)0.0334 (9)0.0384 (9)0.0009 (7)0.0099 (7)0.0029 (7)
C90.0481 (11)0.0320 (9)0.0420 (10)0.0012 (8)0.0077 (8)0.0011 (8)
C100.0436 (10)0.0324 (9)0.0439 (10)0.0026 (7)0.0119 (8)0.0028 (8)
C110.0494 (11)0.0320 (9)0.0524 (12)0.0045 (8)0.0154 (9)0.0055 (8)
C120.0636 (14)0.0359 (10)0.0596 (13)0.0048 (10)0.0174 (11)0.0009 (9)
C130.0750 (17)0.0344 (11)0.0802 (18)0.0018 (11)0.0273 (14)0.0056 (11)
C140.0738 (18)0.0338 (10)0.089 (2)0.0121 (11)0.0250 (15)0.0106 (12)
C150.0674 (16)0.0380 (11)0.0737 (17)0.0128 (11)0.0138 (13)0.0144 (11)
C160.0410 (10)0.0314 (9)0.0340 (9)0.0005 (7)0.0085 (7)0.0031 (7)
C170.0557 (12)0.0332 (9)0.0364 (9)0.0034 (8)0.0031 (8)0.0030 (7)
C180.0590 (13)0.0297 (9)0.0438 (11)0.0059 (8)0.0056 (9)0.0010 (8)
C190.0424 (10)0.0383 (9)0.0355 (9)0.0029 (8)0.0066 (8)0.0080 (8)
C200.0549 (12)0.0369 (9)0.0392 (10)0.0057 (9)0.0013 (9)0.0009 (8)
C210.0555 (12)0.0293 (8)0.0435 (11)0.0024 (8)0.0036 (9)0.0019 (8)
Cu10.04705 (17)0.03035 (15)0.03209 (15)0.00569 (11)0.00088 (12)0.00446 (10)
Cl20.0935 (5)0.0550 (3)0.0464 (3)0.0186 (3)0.0019 (3)0.0200 (2)
O10.0582 (9)0.0499 (8)0.0403 (7)0.0183 (7)0.0030 (7)0.0090 (6)
O1W0.0907 (16)0.0972 (16)0.0499 (10)0.0037 (13)0.0288 (11)0.0108 (11)
O20.0825 (17)0.109 (2)0.0879 (17)0.0557 (16)0.0212 (13)0.0209 (15)
O30.0870 (15)0.0717 (12)0.0667 (12)0.0139 (12)0.0270 (11)0.0181 (11)
N40.0477 (9)0.0302 (7)0.0378 (8)0.0016 (7)0.0077 (7)0.0039 (6)
N50.0407 (8)0.0288 (7)0.0316 (7)0.0058 (6)0.0052 (6)0.0038 (6)
N60.0441 (9)0.0357 (8)0.0340 (8)0.0032 (7)0.0024 (7)0.0001 (6)
N70.0574 (12)0.0500 (10)0.0480 (10)0.0135 (9)0.0046 (9)0.0022 (8)
C220.0426 (10)0.0305 (8)0.0335 (8)0.0029 (7)0.0096 (7)0.0039 (7)
C230.0537 (12)0.0358 (10)0.0399 (10)0.0015 (8)0.0061 (9)0.0002 (8)
C240.0642 (14)0.0341 (10)0.0576 (13)0.0077 (10)0.0093 (11)0.0042 (9)
C250.0712 (15)0.0283 (9)0.0620 (14)0.0017 (9)0.0132 (12)0.0073 (9)
C260.0590 (13)0.0337 (9)0.0483 (11)0.0052 (9)0.0070 (9)0.0126 (8)
C270.0400 (9)0.0312 (8)0.0302 (8)0.0028 (7)0.0068 (7)0.0005 (7)
C280.0442 (10)0.0303 (8)0.0309 (8)0.0016 (7)0.0041 (7)0.0004 (7)
C290.0421 (9)0.0296 (8)0.0320 (8)0.0031 (7)0.0059 (7)0.0023 (7)
C300.0450 (10)0.0266 (8)0.0361 (9)0.0025 (7)0.0063 (8)0.0014 (7)
C310.0403 (9)0.0300 (8)0.0329 (9)0.0038 (7)0.0080 (7)0.0004 (7)
C320.0374 (9)0.0346 (9)0.0323 (8)0.0042 (7)0.0073 (7)0.0006 (7)
C330.0419 (10)0.0343 (9)0.0379 (9)0.0022 (7)0.0089 (8)0.0016 (7)
C340.0446 (11)0.0417 (10)0.0413 (10)0.0035 (8)0.0103 (8)0.0082 (8)
C350.0460 (11)0.0534 (12)0.0353 (9)0.0004 (9)0.0024 (8)0.0058 (9)
C360.0486 (11)0.0452 (10)0.0367 (10)0.0044 (9)0.0023 (8)0.0023 (8)
C370.0461 (10)0.0297 (8)0.0328 (9)0.0018 (7)0.0030 (7)0.0045 (7)
C380.0582 (12)0.0320 (9)0.0377 (10)0.0035 (8)0.0016 (9)0.0008 (8)
C390.0680 (15)0.0315 (9)0.0499 (12)0.0091 (9)0.0062 (11)0.0082 (9)
C400.0561 (12)0.0407 (10)0.0400 (10)0.0065 (9)0.0040 (9)0.0129 (8)
C410.0896 (19)0.0403 (11)0.0364 (10)0.0035 (12)0.0073 (11)0.0033 (9)
C420.097 (2)0.0281 (9)0.0376 (11)0.0009 (11)0.0034 (11)0.0025 (8)
N100.0618 (12)0.0311 (8)0.0489 (10)0.0042 (8)0.0005 (9)0.0087 (7)
O100.1122 (19)0.0648 (12)0.0536 (11)0.0207 (12)0.0193 (11)0.0108 (9)
O110.0646 (11)0.0525 (9)0.0594 (10)0.0011 (8)0.0113 (9)0.0076 (8)
O120.0731 (14)0.0745 (13)0.0776 (14)0.0272 (12)0.0000 (11)0.0053 (11)
O2W0.0724 (14)0.0842 (15)0.0845 (15)0.0128 (12)0.0073 (12)0.0130 (13)
Geometric parameters (Å, º) top
Cu2—N21.9256 (18)Cu1—O11.9806 (16)
Cu2—N12.0096 (19)Cu1—N42.0178 (18)
Cu2—N32.014 (2)Cu1—N62.0277 (18)
Cu2—O72.0475 (18)Cu1—O1W2.208 (2)
Cu2—O42.163 (3)Cl2—C401.739 (2)
Cl1—C191.742 (2)O1—N71.297 (3)
N1—C51.326 (3)O1W—H1O10.8500
N1—C11.352 (3)O1W—H2O10.8501
N2—C101.333 (3)O2—N71.218 (3)
N2—C61.336 (3)O3—N71.231 (3)
N3—C151.339 (3)N4—C261.334 (3)
N3—C111.354 (3)N4—C221.359 (3)
N8—O51.202 (3)N5—C311.332 (3)
N8—O4'1.214 (14)N5—C271.338 (3)
N8—O6'1.222 (14)N6—C361.339 (3)
N8—O61.240 (4)N6—C321.353 (3)
N8—O5'1.263 (13)C22—C231.379 (3)
N8—O41.279 (3)C22—C271.488 (2)
N9—O81.229 (3)C23—C241.394 (3)
N9—O91.232 (3)C23—H23A0.9300
N9—O71.267 (3)C24—C251.378 (4)
C1—C21.384 (3)C24—H24A0.9300
C1—C61.485 (3)C25—C261.378 (4)
C2—C31.394 (3)C25—H25A0.9300
C2—H2A0.9300C26—H26A0.9300
C3—C41.372 (3)C27—C281.382 (3)
C3—H3A0.9300C28—C291.407 (3)
C4—C51.389 (4)C28—H28A0.9300
C4—H4A0.9300C29—C301.400 (3)
C5—H5A0.9300C29—C371.486 (3)
C6—C71.386 (3)C30—C311.385 (3)
C7—C81.403 (3)C30—H30A0.9300
C7—H7A0.9300C31—C321.492 (2)
C8—C91.404 (3)C32—C331.383 (3)
C8—C161.490 (3)C33—C341.395 (3)
C9—C101.385 (3)C33—H33A0.9300
C9—H9A0.9300C34—C351.373 (3)
C10—C111.489 (3)C34—H34A0.9300
C11—C121.375 (4)C35—C361.384 (3)
C12—C131.396 (3)C35—H35A0.9300
C12—H12A0.9300C36—H36A0.9300
C13—C141.370 (5)C37—C421.387 (3)
C13—H13A0.9300C37—C381.392 (3)
C14—C151.374 (4)C38—C391.389 (3)
C14—H14A0.9300C38—H38A0.9300
C15—H15A0.9300C39—C401.372 (3)
C16—C211.390 (3)C39—H39A0.9300
C16—C171.399 (3)C40—C411.377 (3)
C17—C181.383 (3)C41—C421.379 (3)
C17—H17A0.9300C41—H41A0.9300
C18—C191.378 (3)C42—H42A0.9300
C18—H18A0.9300N10—O121.228 (3)
C19—C201.383 (3)N10—O101.239 (3)
C20—C211.386 (3)N10—O111.249 (3)
C20—H20A0.9300O2W—H1O20.8500
C21—H21A0.9300O2W—H2O20.8501
Cu1—N51.9287 (16)
N2—Cu2—N180.40 (8)C21—C20—H20A120.6
N2—Cu2—N380.07 (8)C20—C21—C16121.70 (19)
N1—Cu2—N3160.46 (8)C20—C21—H21A119.2
N2—Cu2—O7146.70 (8)C16—C21—H21A119.2
N1—Cu2—O7102.01 (8)N5—Cu1—O1154.52 (7)
N3—Cu2—O794.10 (9)N5—Cu1—N480.39 (7)
N2—Cu2—O4132.92 (9)O1—Cu1—N496.69 (7)
N1—Cu2—O492.52 (11)N5—Cu1—N679.97 (7)
N3—Cu2—O4101.09 (11)O1—Cu1—N6101.54 (7)
O7—Cu2—O480.36 (9)N4—Cu1—N6160.33 (7)
C5—N1—C1119.73 (19)N5—Cu1—O1W118.45 (9)
C5—N1—Cu2125.54 (15)O1—Cu1—O1W86.84 (9)
C1—N1—Cu2114.59 (15)N4—Cu1—O1W91.94 (9)
C10—N2—C6121.93 (18)N6—Cu1—O1W96.37 (9)
C10—N2—Cu2119.28 (14)N7—O1—Cu1110.17 (13)
C6—N2—Cu2118.61 (15)Cu1—O1W—H1O1120.7
C15—N3—C11118.7 (2)Cu1—O1W—H2O1128.1
C15—N3—Cu2126.5 (2)H1O1—O1W—H2O1107.3
C11—N3—Cu2114.79 (14)C26—N4—C22118.74 (19)
O5—N8—O4'138.8 (13)C26—N4—Cu1126.75 (16)
O5—N8—O6'92.3 (14)C22—N4—Cu1114.48 (13)
O4'—N8—O6'128.3 (19)C31—N5—C27121.60 (16)
O5—N8—O6123.3 (3)C31—N5—Cu1119.44 (14)
O4'—N8—O697.3 (13)C27—N5—Cu1118.77 (13)
O6'—N8—O631.1 (13)C36—N6—C32119.07 (18)
O5—N8—O5'28.7 (9)C36—N6—Cu1126.56 (15)
O4'—N8—O5'113.3 (16)C32—N6—Cu1114.36 (13)
O6'—N8—O5'118.3 (17)O2—N7—O3124.2 (3)
O6—N8—O5'148.4 (10)O2—N7—O1118.0 (2)
O5—N8—O4120.0 (3)O3—N7—O1117.7 (2)
O4'—N8—O420.7 (12)N4—C22—C23121.93 (18)
O6'—N8—O4147.7 (14)N4—C22—C27113.44 (17)
O6—N8—O4116.7 (3)C23—C22—C27124.62 (18)
O5'—N8—O493.0 (10)C22—C23—C24118.4 (2)
N8—O4—Cu2113.81 (19)C22—C23—H23A120.8
O8—N9—O9121.8 (3)C24—C23—H23A120.8
O8—N9—O7118.8 (2)C25—C24—C23119.5 (2)
O9—N9—O7119.3 (2)C25—C24—H24A120.2
N9—O7—Cu2111.52 (14)C23—C24—H24A120.2
N1—C1—C2121.5 (2)C26—C25—C24118.9 (2)
N1—C1—C6113.54 (18)C26—C25—H25A120.6
C2—C1—C6124.92 (18)C24—C25—H25A120.6
C1—C2—C3118.3 (2)N4—C26—C25122.5 (2)
C1—C2—H2A120.8N4—C26—H26A118.7
C3—C2—H2A120.8C25—C26—H26A118.7
C4—C3—C2119.7 (2)N5—C27—C28120.86 (17)
C4—C3—H3A120.1N5—C27—C22112.81 (16)
C2—C3—H3A120.1C28—C27—C22126.32 (18)
C3—C4—C5118.8 (2)C27—C28—C29119.05 (18)
C3—C4—H4A120.6C27—C28—H28A120.5
C5—C4—H4A120.6C29—C28—H28A120.5
N1—C5—C4121.9 (2)C30—C29—C28118.38 (17)
N1—C5—H5A119.1C30—C29—C37121.79 (17)
C4—C5—H5A119.1C28—C29—C37119.83 (17)
N2—C6—C7120.35 (19)C31—C30—C29119.24 (17)
N2—C6—C1112.63 (18)C31—C30—H30A120.4
C7—C6—C1127.02 (18)C29—C30—H30A120.4
C6—C7—C8119.44 (17)N5—C31—C30120.84 (18)
C6—C7—H7A120.3N5—C31—C32112.28 (17)
C8—C7—H7A120.3C30—C31—C32126.88 (17)
C7—C8—C9118.33 (19)N6—C32—C33121.96 (18)
C7—C8—C16120.55 (17)N6—C32—C31113.75 (17)
C9—C8—C16121.11 (19)C33—C32—C31124.28 (18)
C10—C9—C8119.0 (2)C32—C33—C34118.45 (19)
C10—C9—H9A120.5C32—C33—H33A120.8
C8—C9—H9A120.5C34—C33—H33A120.8
N2—C10—C9120.90 (18)C35—C34—C33119.3 (2)
N2—C10—C11112.43 (19)C35—C34—H34A120.4
C9—C10—C11126.6 (2)C33—C34—H34A120.4
N3—C11—C12122.0 (2)C34—C35—C36119.5 (2)
N3—C11—C10113.4 (2)C34—C35—H35A120.3
C12—C11—C10124.6 (2)C36—C35—H35A120.3
C11—C12—C13118.3 (3)N6—C36—C35121.8 (2)
C11—C12—H12A120.9N6—C36—H36A119.1
C13—C12—H12A120.9C35—C36—H36A119.1
C14—C13—C12119.7 (3)C42—C37—C38117.65 (19)
C14—C13—H13A120.2C42—C37—C29120.71 (18)
C12—C13—H13A120.2C38—C37—C29121.64 (18)
C13—C14—C15118.9 (2)C39—C38—C37120.9 (2)
C13—C14—H14A120.5C39—C38—H38A119.6
C15—C14—H14A120.5C37—C38—H38A119.6
N3—C15—C14122.4 (3)C40—C39—C38119.6 (2)
N3—C15—H15A118.8C40—C39—H39A120.2
C14—C15—H15A118.8C38—C39—H39A120.2
C21—C16—C17117.73 (18)C39—C40—C41121.0 (2)
C21—C16—C8121.72 (18)C39—C40—Cl2120.39 (17)
C17—C16—C8120.54 (18)C41—C40—Cl2118.63 (19)
C18—C17—C16121.35 (19)C40—C41—C42118.9 (2)
C18—C17—H17A119.3C40—C41—H41A120.6
C16—C17—H17A119.3C42—C41—H41A120.6
C19—C18—C17119.19 (18)C41—C42—C37122.1 (2)
C19—C18—H18A120.4C41—C42—H42A119.0
C17—C18—H18A120.4C37—C42—H42A119.0
C18—C19—C20121.20 (19)O12—N10—O10120.3 (3)
C18—C19—Cl1119.47 (16)O12—N10—O11118.9 (2)
C20—C19—Cl1119.33 (17)O10—N10—O11120.8 (2)
C19—C20—C21118.8 (2)H1O2—O2W—H2O2107.7
C19—C20—H20A120.6

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C21H14ClN3)][Cu(NO3)(C21H14ClN3)(H2O)]NO3·H2O
Mr1098.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.7172 (2), 15.0680 (2), 20.4214 (3)
β (°) 105.377 (1)
V3)4366.51 (10)
Z4
Radiation typeCu Kα
µ (mm1)3.04
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.462, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
17732, 8572, 7142
Rint0.027
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.00
No. of reflections8572
No. of parameters643
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), CIFTAB in SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20901060, 20871094) and the Program for Young Excellent Talents in Tongji University.

References

First citationBertrand, H., Monchaud, D., Cian, A.-D., Guillot, R., Mergny, J.-L. & Teulade-Fichou, M.-P. (2007). Org. Biomol. Chem. 5, 2555–2559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, F.-T. (2010). Acta Cryst. E66, m755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFeng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.  Web of Science CSD CrossRef CAS Google Scholar
First citationGranifo, J., Garland, M.-T. & Baggio, R. (2004). Inorg. Chem. Commun. 7, 77–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R., & Chakravarty, A. R. (2010). Organometallics, 29, 3632–3641.  Web of Science CSD CrossRef CAS Google Scholar
First citationMutai, T., Chen, J.-D., Arita, S. & Araki, K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1045–1050.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds