organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o552-o553

Pyrimidin-2-amine–1-phenyl­cyclo­pentane-1-carb­­oxy­lic acid (1/1)

aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
*Correspondence e-mail: he_guangwen@ices.a-star.edu.sg, reginald_tan@ices.a-star.edu.sg

(Received 6 January 2011; accepted 28 January 2011; online 2 February 2011)

In the crystal structure of the title co-crystal, C4H5N3·C12H14O2, the components are linked by N—H⋯O and O—H⋯N hydrogen bonds. Self-assembly of these dimeric units results in a four-component supra­molecular unit featuring a homosynthon between two mol­ecules of the pyrimidin-2-amine involving two N—H⋯O hydrogen bonds, and two heterosynthons between each one mol­ecule of pyrimidin-2-amine and 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid involving N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the structure of pyrimidin-2-amine, see: Scheinbeim & Schempp (1976[Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607-609.]) and for the structure of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: Margulis (1975[Margulis, T. N. (1975). Acta Cryst. B31, 1049-1052.]). For mol­ecular co-crystals of pyrimidin-2-amine, see: Serafin & Wheeler (2007[Serafin, M. F. & Wheeler, K. A. (2007). Acta Cryst. C63, o620-o621.]); Shan et al. (2002[Shan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101-3104.]); Goswami et al. (1999a[Goswami, S., Mahapatra, A. K., Ghosh, K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1999a). Acta Cryst. C55, 87-89.],b[Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999b). Acta Cryst. C55, 583-585.], 2000[Goswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477-478.]); Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]); Lynch et al. (1997[Lynch, D. E., Latif, T., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 567-575.]). For a salt of 2-amino­pyridine and 1-phenyl-1-cyclo­propane­carb­oxy­lic acid, see: He et al. (2010[He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339-o3340.]). For a recent screening study for co-crystal and salt formation using pulse-gradient spin–echo nuclear magnetic resonance, see: He et al. (2009[He, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst Growth Des. 9, 4529-4532.]).

[Scheme 1]

Experimental

Crystal data
  • C4H5N3·C12H14O2

  • Mr = 285.34

  • Monoclinic, P 21 /n

  • a = 9.1461 (18) Å

  • b = 10.490 (2) Å

  • c = 15.474 (3) Å

  • β = 98.14 (3)°

  • V = 1469.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.44 × 0.44 × 0.22 mm

Data collection
  • Rigaku Saturn 70 CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.963, Tmax = 0.981

  • 20335 measured reflections

  • 3641 independent reflections

  • 3516 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.178

  • S = 1.21

  • 3641 reflections

  • 202 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H6⋯N1 0.87 (2) 1.79 (2) 2.653 (2) 173 (3)
N3—H5⋯O1 0.90 (3) 2.08 (3) 2.966 (2) 168 (2)
N3—H1⋯N2i 0.88 (3) 2.13 (3) 3.006 (2) 173 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An analysis of the crystal structure of pyrimidin-2-amine reveals that it forms a homosynthon (I) involving two N–H···N hydrogen bonds (Scheinbeim and Schempp, 1976). However, when it is cocrystallized with the molecules possessing at least one carboxylic acid group in the structure, it forms a pyrimidin-2-amine–carboxylic acid supramolecular heterosynthon (II) (Fig. 1) involving two hydrogen bonds, namely N–H···O and O–H···N. These strong hydrogen bonds are preferred over potential alternative arrangements and play a significant role in structure-directing (Shan et al., 2002). We have chosen pyrimidin-2-amine and 1-phenylcyclopentane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He et al., 2009).

The crystal structure of the title cocrystal contains one molecule of pyrimidin-2-amine and one molecule of 1-phenylcyclopentane-1-carboxylic acid in the crystallographic asymmetric unit (Fig. 2). The identity of the cocrystal was confirmed by Fourier Transform Infrared (FT—IR) spectrum which showed carboxylic acid O—H stretching band at 3167 cm-1 and carbonyl stretching band at 1685 cm-1 (Fig. 3). Two pyrimidin-2-amine molecules that are related by an inversion center form the synthon I involving N–H···O (N···O = 3.006 (2) Å) hydrogen bonds. Two 1-phenylcyclopentane-1-carboxylic acid molecules hydrogen bond to either side of the dimeric motif involving synthon II which is sustained by N–H···O (N···O = 2.966 (2) Å) and O–H···O (O···O = 2.653 (2) Å) hydrogen bonds and forms a four-component supramolecular unit (Fig. 4). These four-component supramolecular units self assemble in the crystal structure via several weak C–H···O interactions (Fig. 5).

Related literature top

For the structure of pyrimidin-2-amine, see: Scheinbeim & Schempp (1976) and for the structure of 1-phenylcyclopentane-1-carboxylic acid, see: Margulis (1975). For recent molecular co-crystals of pyrimidin-2-amine, see: Serafin & Wheeler (2007); Shan et al. (2002); Goswami et al. (1999a,b, 2000); Chinnakali et al. (1999); Lynch et al. (1997). For a salt of 2-aminopyridine and 1-phenyl-1-cyclopropanecarboxylic acid, see: He et al. (2010). For a recent screening study for co-crystal and salt formation using pulse-gradient spin–echo nuclear magnetic resonance, see: He et al. (2009).

Experimental top

0.0957 g (1 mmol) of pyrimidin-2-amine (Alfa Aesar, 99%) and 0.1909 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7.6 ml of ethyl acetate (Fisher Scientific, HPLC). Solution was then filtered through a 0.22µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The block-shaped crystal (0.44 × 0.44 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo Kα radiation = 0.71073 Å at 50 kV and 40 mA) was collected after one day. Fourier Transform Infrared (FT—IR) experiments were performed using Bio-Rad spectrometer (FTS3000MX) to confirm whether the resulting molecular complex is a cocrystal or a salt.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O2—H6 bond distance which was found to be long in the normal refinement cycles was fixed using DFIX command in SHELX. Other H atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. pyrimidin-2-amine–pyrimidin-2-amine supramolecular homosynthon (I) and pyrimidin-2-amine–carboxylic acid supramolecular heterosynthon (II).
[Figure 2] Fig. 2. The molecular structures of pyrimidin-2-amine and 1-phenyl-1-cyclopropentanecarboxylic acid, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. F T—IR spectra for pyrimidin-2-amine, 1-phenylcyclopentane-1-carboxylic acid and the 1/1 cocrystal of them, respectively.
[Figure 4] Fig. 4. A four-component supramolecular unit that features N–H···O and O–H···N heterosynthon interactions, and O–H···O homosynthon interaction in the crystal structure of the title cocrystal.
[Figure 5] Fig. 5. Part of the crystal structure of the title cocrystal, showing the arrangement of the four-component supramolecular units.
Pyrimidin-2-amine–1-phenylcyclopentane-1-carboxylic acid (1/1) top
Crystal data top
C4H5N3·C12H14O2F(000) = 608
Mr = 285.34Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1461 (18) ÅCell parameters from 4896 reflections
b = 10.490 (2) Åθ = 1.9–31.1°
c = 15.474 (3) ŵ = 0.09 mm1
β = 98.14 (3)°T = 110 K
V = 1469.7 (5) Å3Block, colorless
Z = 40.44 × 0.44 × 0.22 mm
Data collection top
Rigaku Saturn 70 CCD area-detector
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube3516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.963, Tmax = 0.981k = 1313
20335 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.5855P]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C4H5N3·C12H14O2V = 1469.7 (5) Å3
Mr = 285.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1461 (18) ŵ = 0.09 mm1
b = 10.490 (2) ÅT = 110 K
c = 15.474 (3) Å0.44 × 0.44 × 0.22 mm
β = 98.14 (3)°
Data collection top
Rigaku Saturn 70 CCD area-detector
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3516 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.036
20335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.28 e Å3
3641 reflectionsΔρmin = 0.27 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.04632 (14)0.55094 (13)0.70052 (8)0.0344 (3)
O10.22224 (15)0.40633 (14)0.73866 (9)0.0397 (3)
C160.12059 (18)0.47154 (16)0.75641 (11)0.0281 (3)
C60.09084 (18)0.42117 (16)0.83708 (10)0.0273 (3)
C50.06701 (18)0.47220 (17)0.84621 (11)0.0289 (4)
C80.35533 (19)0.45531 (18)0.80273 (12)0.0337 (4)
H80.43560.51100.78420.040*
C120.17880 (19)0.3999 (2)0.91211 (12)0.0396 (4)
H12A0.21800.32470.88430.047*
H12B0.13190.37090.96250.047*
C70.21065 (18)0.50062 (17)0.81043 (11)0.0305 (4)
H70.19360.58730.79720.037*
C100.2643 (2)0.24866 (18)0.84809 (12)0.0362 (4)
H100.28210.16200.86100.043*
C110.1195 (2)0.29396 (17)0.85543 (12)0.0332 (4)
H110.03950.23760.87310.040*
C150.0807 (2)0.6105 (2)0.88196 (13)0.0380 (4)
H15A0.04100.67270.83650.046*
H15B0.02790.62040.93320.046*
C90.3820 (2)0.32934 (19)0.82208 (12)0.0354 (4)
H90.48050.29850.81750.042*
C130.3039 (2)0.4964 (3)0.94177 (14)0.0523 (6)
H13A0.32690.49751.00620.063*
H13B0.39450.47310.91720.063*
C140.2473 (2)0.6273 (2)0.90771 (16)0.0517 (6)
H14A0.26840.69300.95370.062*
H14B0.29440.65300.85660.062*
H60.082 (3)0.557 (3)0.6516 (13)0.066 (8)*
C20.24306 (19)0.66091 (17)0.39920 (12)0.0318 (4)
H20.27600.68600.34620.038*
N30.36606 (18)0.47957 (17)0.58582 (11)0.0391 (4)
N10.14713 (15)0.58831 (14)0.54997 (9)0.0299 (3)
N20.33123 (16)0.58740 (14)0.45437 (10)0.0314 (3)
C30.1056 (2)0.70251 (18)0.41554 (12)0.0345 (4)
H30.04450.75540.37570.041*
C40.06304 (19)0.66250 (18)0.49318 (12)0.0346 (4)
H40.03040.68900.50680.041*
H50.331 (3)0.447 (2)0.6325 (17)0.051 (7)*
C10.27973 (18)0.55295 (16)0.52886 (11)0.0285 (3)
H10.451 (3)0.454 (2)0.5716 (16)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0317 (6)0.0434 (7)0.0300 (6)0.0106 (5)0.0113 (5)0.0085 (5)
O10.0385 (7)0.0472 (8)0.0361 (7)0.0150 (6)0.0146 (6)0.0093 (6)
C160.0247 (7)0.0303 (8)0.0297 (8)0.0005 (6)0.0056 (6)0.0009 (6)
C60.0259 (7)0.0322 (8)0.0249 (8)0.0013 (6)0.0071 (6)0.0011 (6)
C50.0226 (7)0.0380 (9)0.0268 (8)0.0023 (6)0.0055 (6)0.0003 (6)
C80.0249 (8)0.0410 (9)0.0361 (9)0.0003 (7)0.0070 (7)0.0050 (7)
C120.0264 (8)0.0626 (13)0.0297 (9)0.0001 (8)0.0039 (7)0.0093 (8)
C70.0279 (8)0.0307 (8)0.0336 (9)0.0016 (6)0.0074 (6)0.0031 (7)
C100.0408 (10)0.0329 (9)0.0364 (9)0.0097 (7)0.0102 (7)0.0021 (7)
C110.0331 (9)0.0333 (9)0.0336 (9)0.0005 (7)0.0058 (7)0.0018 (7)
C150.0305 (9)0.0449 (10)0.0402 (10)0.0110 (7)0.0106 (7)0.0113 (8)
C90.0303 (8)0.0436 (10)0.0339 (9)0.0108 (7)0.0104 (7)0.0084 (7)
C130.0274 (9)0.0954 (18)0.0335 (10)0.0092 (10)0.0018 (8)0.0042 (11)
C140.0357 (10)0.0700 (15)0.0500 (12)0.0211 (10)0.0082 (9)0.0156 (11)
C20.0328 (8)0.0344 (9)0.0292 (8)0.0018 (7)0.0077 (6)0.0018 (7)
N30.0306 (8)0.0513 (10)0.0383 (9)0.0149 (7)0.0150 (7)0.0168 (7)
N10.0238 (6)0.0371 (8)0.0294 (7)0.0027 (5)0.0065 (5)0.0024 (6)
N20.0294 (7)0.0340 (7)0.0320 (8)0.0035 (6)0.0087 (6)0.0040 (6)
C30.0304 (8)0.0403 (10)0.0326 (9)0.0052 (7)0.0045 (7)0.0057 (7)
C40.0257 (8)0.0437 (10)0.0348 (9)0.0070 (7)0.0060 (6)0.0041 (7)
C10.0256 (8)0.0291 (8)0.0316 (8)0.0016 (6)0.0066 (6)0.0010 (6)
Geometric parameters (Å, º) top
O2—C161.318 (2)C15—H15A0.9900
O2—H60.869 (17)C15—H15B0.9900
O1—C161.217 (2)C9—H90.9500
C16—C51.537 (2)C13—C141.535 (4)
C6—C71.392 (2)C13—H13A0.9900
C6—C111.397 (2)C13—H13B0.9900
C6—C51.527 (2)C14—H14A0.9900
C5—C121.538 (2)C14—H14B0.9900
C5—C151.551 (3)C2—N21.334 (2)
C8—C91.384 (3)C2—C31.387 (2)
C8—C71.395 (2)C2—H20.9500
C8—H80.9500N3—C11.340 (2)
C12—C131.548 (3)N3—H50.90 (3)
C12—H12A0.9900N3—H10.88 (3)
C12—H12B0.9900N1—C41.334 (2)
C7—H70.9500N1—C11.352 (2)
C10—C91.384 (3)N2—C11.355 (2)
C10—C111.397 (2)C3—C41.380 (3)
C10—H100.9500C3—H30.9500
C11—H110.9500C4—H40.9500
C15—C141.530 (3)
C16—O2—H6113.4 (19)C5—C15—H15B111.1
O1—C16—O2123.13 (16)H15A—C15—H15B109.1
O1—C16—C5123.93 (16)C10—C9—C8119.54 (16)
O2—C16—C5112.93 (14)C10—C9—H9120.2
C7—C6—C11118.03 (15)C8—C9—H9120.2
C7—C6—C5120.77 (15)C14—C13—C12106.50 (16)
C11—C6—C5121.20 (15)C14—C13—H13A110.4
C6—C5—C16109.44 (13)C12—C13—H13A110.4
C6—C5—C12114.81 (15)C14—C13—H13B110.4
C16—C5—C12109.27 (14)C12—C13—H13B110.4
C6—C5—C15112.84 (14)H13A—C13—H13B108.6
C16—C5—C15107.86 (14)C15—C14—C13105.13 (18)
C12—C5—C15102.24 (15)C15—C14—H14A110.7
C9—C8—C7120.06 (17)C13—C14—H14A110.7
C9—C8—H8120.0C15—C14—H14B110.7
C7—C8—H8120.0C13—C14—H14B110.7
C5—C12—C13105.58 (17)H14A—C14—H14B108.8
C5—C12—H12A110.6N2—C2—C3123.13 (16)
C13—C12—H12A110.6N2—C2—H2118.4
C5—C12—H12B110.6C3—C2—H2118.4
C13—C12—H12B110.6C1—N3—H5120.2 (16)
H12A—C12—H12B108.8C1—N3—H1118.2 (16)
C6—C7—C8121.24 (16)H5—N3—H1121 (2)
C6—C7—H7119.4C4—N1—C1117.03 (15)
C8—C7—H7119.4C2—N2—C1116.58 (15)
C9—C10—C11120.36 (17)C4—C3—C2115.97 (16)
C9—C10—H10119.8C4—C3—H3122.0
C11—C10—H10119.8C2—C3—H3122.0
C10—C11—C6120.76 (17)N1—C4—C3122.94 (16)
C10—C11—H11119.6N1—C4—H4118.5
C6—C11—H11119.6C3—C4—H4118.5
C14—C15—C5103.19 (17)N3—C1—N1117.64 (16)
C14—C15—H15A111.1N3—C1—N2118.00 (15)
C5—C15—H15A111.1N1—C1—N2124.36 (16)
C14—C15—H15B111.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···N10.87 (2)1.79 (2)2.653 (2)173 (3)
N3—H5···O10.90 (3)2.08 (3)2.966 (2)168 (2)
N3—H1···N2i0.88 (3)2.13 (3)3.006 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H5N3·C12H14O2
Mr285.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)9.1461 (18), 10.490 (2), 15.474 (3)
β (°) 98.14 (3)
V3)1469.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.44 × 0.22
Data collection
DiffractometerRigaku Saturn 70 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
20335, 3641, 3516
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.178, 1.21
No. of reflections3641
No. of parameters202
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···N10.869 (17)1.788 (18)2.653 (2)173 (3)
N3—H5···O10.90 (3)2.08 (3)2.966 (2)168 (2)
N3—H1···N2i0.88 (3)2.13 (3)3.006 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Mahapatra, A. K., Ghosh, K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1999a). Acta Cryst. C55, 87–89.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999b). Acta Cryst. C55, 583–585.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477–478.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339–o3340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst Growth Des. 9, 4529–4532.  Web of Science CrossRef CAS Google Scholar
First citationLynch, D. E., Latif, T., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 567–575.  CrossRef CAS Google Scholar
First citationMargulis, T. N. (1975). Acta Cryst. B31, 1049–1052.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSerafin, M. F. & Wheeler, K. A. (2007). Acta Cryst. C63, o620–o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101–3104.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o552-o553
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds