organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Amino­acridinium nitrate monohydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 6 January 2011; accepted 31 January 2011; online 5 February 2011)

The pyridine N atom of the cation in the title hydrated salt, C13H11N2+·NO3·H2O, is protonated; the N atom of the NH2 group shows a planar conformation. The former N atom is hydrogen bonded to a water mol­ecule. The amino group is involved in three N—H⋯O hydrogen bonds with two neighboring nitrate anions. The water mol­ecule is hydrogen bonded to two adjacent nitrate anions. In the crystal, this results in a layered network.

Related literature

For the structure of 9-amino­acridine hydro­chloride monohydrate, see: Talacki et al. (1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]). For positive-charge-assisted hydrogen bonds, see: Gilli et al. (1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N2+·NO3·H2O

  • Mr = 275.26

  • Triclinic, [P \overline 1]

  • a = 6.8556 (2) Å

  • b = 10.0532 (2) Å

  • c = 10.5912 (3) Å

  • α = 117.016 (1)°

  • β = 94.138 (1)°

  • γ = 97.995 (1)°

  • V = 636.36 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.75 × 0.75 × 0.45 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.923, Tmax = 0.953

  • 8945 measured reflections

  • 2822 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.04

  • 2822 reflections

  • 201 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.93 (1) 2.23 (2) 3.0619 (17) 149 (1)
N2—H2A⋯O3i 0.93 (1) 2.30 (2) 3.0662 (16) 140 (1)
N2—H2B⋯O2ii 0.90 (1) 2.07 (1) 2.9123 (15) 157 (2)
O4—H4A⋯O3iii 0.91 (2) 2.03 (2) 2.9147 (18) 164 (2)
N1—H1⋯O4 0.89 (1) 1.91 (1) 2.7867 (15) 170 (2)
O4—H4B⋯O1 0.90 (2) 2.01 (2) 2.9058 (18) 173 (2)
O4—H4B⋯O2 0.90 (2) 2.64 (2) 3.2039 (19) 122 (2)
Symmetry codes: (i) x, y-1, z-1; (ii) -x, -y+1, -z+1; (iii) x+1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In a previous work, the crystal structure of 9-aminoacridine hydrochloride monohydrate (Talacki et al., 1974) has been investigated. Here, we report on the crystal structure of title hydrated salt, C13H11N2+.NO3-.H2O (Fig. 1).

In 9-amino-acridinium cation, the heteroatom N1 and the nitrogen atom of NH2 unit (N2) have a sp2 character. The C1—N1—C13 angle is 122.68 (11)°; the fused tricyclic system is essentially planar.

The protonated pyridine nitrogen atom is involving in a positive charge assisted (Gilli et al., 1994) N—H···O hydrogen bond with a neighboring H2O molecule (N1···O4 = 2.7867 (15) Å). Moreover, the water molecule forms two O—H···O hydrogen bonds (O···O = 2.9058 (18) & 2.9147 (18) Å) with two adjacent NO3- anions; also, the weak hydrogen bond O4—H4B···O2 (O4···O2 = 3.2039 (19) Å) may be considered which has not influence on the pattern of crystal packing. The NH2 unit of cation cooperates in three N—H···O hydrogen bonds (N···O = 2.9123 (15), 3.0619 (17) and 3.0662 (16) Å), with two neighboring nitrate anions. Cations, anions and water molecules are hydrogen bonded in a 2-D arrangement (Fig. 2).

Related literature top

For the structure of 9-aminoacridine hydrochloride monohydrate, see: Talacki et al. (1974). For positive-charge-assisted hydrogen bonds, see: Gilli et al. (1994).

Experimental top

The title hydrated salt was obtained fortuitously from the reaction between 9-aminoacridine and Fe(NO3)3.9H2O in CH3OH as follows: To a solution of 9-aminoacridine (0.194 g, 1 mmol) in CH3OH (5 ml), a solution of Fe(NO3)3.9H2O (0.202 g, 0.5 mmol) in CH3OH (5 ml) was added at 343 K. After 1 h stirring, the solid was filtered; the crystals were obtained from methanolic solution after a slow evaporation at room temperature.

Refinement top

The hydrogen atom of NH group and those of water molecule were found in difference Fourier synthesis.The NH H atoms were restrained to 0.90 A and the refinement give good values. The H atoms in the water molecule were refined with a restraint of 1.00 A for a ideal distance OH and obtained acceptable values. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular view with the atom labeling scheme, displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing of cations, anions and water molecules in the title hydrated salt. H bonds are shown as dashed lines.
9-Aminoacridinium nitrate monohydrate top
Crystal data top
C13H11N2+·NO3·H2OZ = 2
Mr = 275.26F(000) = 288
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8556 (2) ÅCell parameters from 600 reflections
b = 10.0532 (2) Åθ = 1–14°
c = 10.5912 (3) ŵ = 0.11 mm1
α = 117.016 (1)°T = 293 K
β = 94.138 (1)°Block, colourless
γ = 97.995 (1)°0.75 × 0.75 × 0.45 mm
V = 636.36 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2822 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD rotation images, thick slices scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.923, Tmax = 0.953k = 1213
8945 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.0299P]
where P = (Fo2 + 2Fc2)/3
2822 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.26 e Å3
5 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H11N2+·NO3·H2Oγ = 97.995 (1)°
Mr = 275.26V = 636.36 (3) Å3
Triclinic, P1Z = 2
a = 6.8556 (2) ÅMo Kα radiation
b = 10.0532 (2) ŵ = 0.11 mm1
c = 10.5912 (3) ÅT = 293 K
α = 117.016 (1)°0.75 × 0.75 × 0.45 mm
β = 94.138 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2822 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2054 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.953Rint = 0.028
8945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0455 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2822 reflectionsΔρmin = 0.22 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28645 (17)0.69390 (14)0.48088 (14)0.0392 (3)
C20.3072 (2)0.82982 (15)0.46976 (16)0.0491 (3)
H20.34180.92370.55180.059*
C30.2764 (2)0.82263 (16)0.33871 (17)0.0548 (4)
H30.29000.91230.33170.066*
C40.2245 (2)0.68227 (17)0.21357 (17)0.0545 (4)
H40.20540.67940.12450.065*
C50.20191 (19)0.54989 (15)0.22257 (14)0.0456 (3)
H50.16630.45720.13930.055*
C60.23215 (17)0.55232 (13)0.35736 (13)0.0377 (3)
C70.20689 (17)0.41608 (13)0.37264 (13)0.0368 (3)
C80.23830 (16)0.43023 (13)0.51410 (13)0.0369 (3)
C90.21635 (19)0.30332 (15)0.54077 (15)0.0438 (3)
H90.17790.20570.46420.053*
C100.2506 (2)0.32195 (17)0.67683 (16)0.0513 (4)
H100.23530.23750.69240.062*
C110.3088 (2)0.46790 (18)0.79260 (16)0.0554 (4)
H110.33260.47970.88500.066*
C120.3312 (2)0.59339 (17)0.77252 (14)0.0512 (4)
H120.36950.69000.85070.061*
C130.29601 (17)0.57631 (14)0.63302 (13)0.0393 (3)
N10.31813 (16)0.70224 (12)0.61313 (12)0.0437 (3)
N20.15562 (19)0.28113 (13)0.25875 (12)0.0507 (3)
N30.0612 (2)1.10579 (12)0.88933 (12)0.0521 (3)
O10.22383 (17)1.19337 (12)0.95048 (12)0.0721 (4)
O20.04483 (18)1.00530 (11)0.76309 (11)0.0674 (3)
O30.08334 (18)1.12104 (15)0.95548 (12)0.0739 (4)
O40.4979 (2)0.98619 (13)0.83821 (14)0.0775 (4)
H10.361 (2)0.7928 (17)0.6889 (16)0.062 (5)*
H2A0.133 (2)0.2695 (19)0.1668 (16)0.061 (4)*
H2B0.126 (2)0.1971 (17)0.2686 (18)0.067 (5)*
H4A0.626 (2)1.017 (2)0.883 (2)0.094 (7)*
H4B0.422 (3)1.057 (2)0.875 (2)0.098 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (6)0.0385 (6)0.0459 (7)0.0080 (5)0.0077 (5)0.0183 (6)
C20.0462 (7)0.0360 (6)0.0613 (9)0.0068 (5)0.0078 (6)0.0200 (6)
C30.0529 (8)0.0489 (8)0.0750 (10)0.0128 (6)0.0108 (7)0.0386 (8)
C40.0580 (8)0.0612 (9)0.0577 (9)0.0190 (7)0.0121 (6)0.0369 (8)
C50.0480 (7)0.0453 (7)0.0441 (7)0.0138 (6)0.0073 (5)0.0202 (6)
C60.0321 (6)0.0383 (6)0.0432 (7)0.0097 (5)0.0083 (5)0.0183 (6)
C70.0315 (6)0.0356 (6)0.0398 (7)0.0079 (5)0.0061 (5)0.0142 (5)
C80.0288 (6)0.0407 (7)0.0418 (7)0.0092 (5)0.0076 (5)0.0189 (6)
C90.0407 (7)0.0435 (7)0.0495 (7)0.0097 (5)0.0093 (5)0.0229 (6)
C100.0475 (7)0.0610 (9)0.0605 (9)0.0167 (6)0.0154 (6)0.0387 (8)
C110.0543 (8)0.0750 (10)0.0448 (8)0.0185 (7)0.0128 (6)0.0325 (8)
C120.0494 (8)0.0565 (8)0.0390 (7)0.0103 (6)0.0078 (6)0.0148 (6)
C130.0326 (6)0.0428 (7)0.0399 (7)0.0084 (5)0.0077 (5)0.0166 (6)
N10.0450 (6)0.0353 (6)0.0412 (6)0.0056 (5)0.0052 (5)0.0107 (5)
N20.0694 (8)0.0356 (6)0.0397 (6)0.0073 (5)0.0013 (5)0.0133 (5)
N30.0707 (8)0.0388 (6)0.0428 (6)0.0083 (6)0.0041 (6)0.0182 (5)
O10.0757 (8)0.0523 (6)0.0587 (7)0.0043 (6)0.0034 (6)0.0076 (5)
O20.0965 (8)0.0445 (6)0.0431 (6)0.0017 (5)0.0006 (5)0.0100 (5)
O30.0681 (7)0.0950 (9)0.0604 (7)0.0244 (6)0.0096 (6)0.0358 (7)
O40.0701 (8)0.0541 (7)0.0758 (8)0.0067 (6)0.0002 (6)0.0060 (6)
Geometric parameters (Å, º) top
C1—N11.3641 (18)C9—H90.9300
C1—C61.4024 (18)C10—C111.396 (2)
C1—C21.4127 (18)C10—H100.9300
C2—C31.356 (2)C11—C121.362 (2)
C2—H20.9300C11—H110.9300
C3—C41.403 (2)C12—C131.4061 (19)
C3—H30.9300C12—H120.9300
C4—C51.3654 (19)C13—N11.3650 (17)
C4—H40.9300N1—H10.887 (14)
C5—C61.4163 (18)N2—H2A0.925 (14)
C5—H50.9300N2—H2B0.895 (14)
C6—C71.4393 (17)N3—O21.2411 (15)
C7—N21.3186 (16)N3—O11.2417 (16)
C7—C81.4361 (17)N3—O31.2417 (17)
C8—C131.4091 (18)O4—H4A0.909 (16)
C8—C91.4178 (17)O4—H4B0.901 (16)
C9—C101.364 (2)
N1—C1—C6120.53 (11)C10—C9—H9119.4
N1—C1—C2119.19 (12)C8—C9—H9119.4
C6—C1—C2120.28 (12)C9—C10—C11119.94 (13)
C3—C2—C1119.60 (13)C9—C10—H10120.0
C3—C2—H2120.2C11—C10—H10120.0
C1—C2—H2120.2C12—C11—C10121.11 (13)
C2—C3—C4121.12 (13)C12—C11—H11119.4
C2—C3—H3119.4C10—C11—H11119.4
C4—C3—H3119.4C11—C12—C13119.71 (13)
C5—C4—C3120.01 (13)C11—C12—H12120.1
C5—C4—H4120.0C13—C12—H12120.1
C3—C4—H4120.0N1—C13—C12119.63 (12)
C4—C5—C6120.69 (13)N1—C13—C8120.00 (11)
C4—C5—H5119.7C12—C13—C8120.37 (12)
C6—C5—H5119.7C1—N1—C13122.68 (11)
C1—C6—C5118.30 (11)C1—N1—H1118.7 (11)
C1—C6—C7118.91 (11)C13—N1—H1118.6 (11)
C5—C6—C7122.78 (11)C7—N2—H2A122.2 (10)
N2—C7—C8120.83 (11)C7—N2—H2B120.4 (11)
N2—C7—C6120.48 (11)H2A—N2—H2B116.9 (16)
C8—C7—C6118.70 (11)O2—N3—O1119.79 (14)
C13—C8—C9117.72 (11)O2—N3—O3120.94 (13)
C13—C8—C7119.16 (11)O1—N3—O3119.27 (12)
C9—C8—C7123.11 (11)H4A—O4—H4B114 (2)
C10—C9—C8121.15 (13)
N1—C1—C2—C3179.86 (12)N2—C7—C8—C90.21 (19)
C6—C1—C2—C30.71 (19)C6—C7—C8—C9179.70 (10)
C1—C2—C3—C40.1 (2)C13—C8—C9—C100.24 (18)
C2—C3—C4—C50.7 (2)C7—C8—C9—C10179.00 (11)
C3—C4—C5—C60.6 (2)C8—C9—C10—C110.1 (2)
N1—C1—C6—C5179.71 (11)C9—C10—C11—C120.4 (2)
C2—C1—C6—C50.87 (17)C10—C11—C12—C130.2 (2)
N1—C1—C6—C71.12 (17)C11—C12—C13—N1179.87 (12)
C2—C1—C6—C7178.31 (10)C11—C12—C13—C80.1 (2)
C4—C5—C6—C10.23 (19)C9—C8—C13—N1179.64 (10)
C4—C5—C6—C7178.91 (11)C7—C8—C13—N11.09 (17)
C1—C6—C7—N2179.90 (11)C9—C8—C13—C120.38 (17)
C5—C6—C7—N20.77 (19)C7—C8—C13—C12178.89 (11)
C1—C6—C7—C80.01 (16)C6—C1—N1—C131.16 (18)
C5—C6—C7—C8179.14 (11)C2—C1—N1—C13178.27 (10)
N2—C7—C8—C13179.02 (11)C12—C13—N1—C1179.99 (11)
C6—C7—C8—C131.08 (16)C8—C13—N1—C10.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.93 (1)2.23 (2)3.0619 (17)149 (1)
N2—H2A···O3i0.93 (1)2.30 (2)3.0662 (16)140 (1)
N2—H2B···O2ii0.90 (1)2.07 (1)2.9123 (15)157 (2)
O4—H4A···O3iii0.91 (2)2.03 (2)2.9147 (18)164 (2)
N1—H1···O40.89 (1)1.91 (1)2.7867 (15)170 (2)
O4—H4B···O10.90 (2)2.01 (2)2.9058 (18)173 (2)
O4—H4B···O20.90 (2)2.64 (2)3.2039 (19)122 (2)
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11N2+·NO3·H2O
Mr275.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8556 (2), 10.0532 (2), 10.5912 (3)
α, β, γ (°)117.016 (1), 94.138 (1), 97.995 (1)
V3)636.36 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.75 × 0.75 × 0.45
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.923, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
8945, 2822, 2054
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.04
No. of reflections2822
No. of parameters201
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: COLLECT (Nonius, 2001), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.925 (14)2.230 (15)3.0619 (17)149.4 (14)
N2—H2A···O3i0.925 (14)2.304 (15)3.0662 (16)139.5 (13)
N2—H2B···O2ii0.895 (14)2.070 (14)2.9123 (15)156.5 (15)
O4—H4A···O3iii0.909 (16)2.030 (17)2.9147 (18)164.1 (19)
N1—H1···O40.887 (14)1.909 (14)2.7867 (15)169.6 (15)
O4—H4B···O10.901 (16)2.010 (16)2.9058 (18)173 (2)
O4—H4B···O20.901 (16)2.64 (2)3.2039 (19)121.5 (18)
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad and the Islamic Azad University Shahr-e-Rey Branch is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds