organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-7-(4-Chloro­phen­yl)-5,7-di­hydro-4H-pyrano[3,4-c]isoxazole-3-carbaldehyde oxime

aSchool of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Sunchon National University, Sunchon 540-742, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr, chkwak@sunchon.ac.kr

(Received 28 January 2011; accepted 15 February 2011; online 19 February 2011)

In the title compound, C13H11ClN2O3, the nine-membered bicycle includes an oxime group having the C=N group in an E configuration. The isoxazole ring is almost planar [r.m.s. deviation = 0.0056 Å]; the dihedral angle between the isoxazole and 4-chloro­phenyl ring is 75.60 (5)°. In the crystal, inter­molecular O—H⋯Nisoxazole hydrogen bonds give rise to chains running along the b axis.

Related literature

For the synthesis, see: Kim & Lee (1994[Kim, H. J. & Lee, J. H. (1994). Heterocycles, 38, 1383-1391.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClN2O3

  • Mr = 278.69

  • Monoclinic, C 2/c

  • a = 32.748 (2) Å

  • b = 8.8501 (5) Å

  • c = 8.6366 (5) Å

  • β = 90.478 (2)°

  • V = 2503.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.8 × 0.6 × 0.4 mm

Data collection
  • Rigaku R-AXIS RAPID II-S diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2008[Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.800, Tmax = 0.833

  • 11943 measured reflections

  • 2860 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.04

  • 2860 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 2.07 2.7920 (15) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2008[Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fused bicyclic isoxazoles, such as dihydrofuro- and dihydropyrano[3,4-c]isoxazole,particularly have fungicidal activities against some plant pathogens. To find a new lead compound as plant fungicide and to study the structure-activity relationship (SAR), we are interested in the solid-state structures of the fused bicyclic isoxazoles.The title compound, C13H11ClN2O3, forms bicycle adjointed 5-membered isoxazole ring and 6-membered oxane ring in C8 and C9 position and it adopts E conformation (Fig.1). Isoxazole ring is a plane with the largest deviation of 0.0081 (8)Å from the least suare plane.The C7 and C10 atoms lie in the isoxazole ring plane with the largest deviation of 0.00157 (7)Å (C7) from the least-squares plane of the isoxazole ring. The dihedral angle between isoxazole and 4-chlorophenyl ring is 75.60 (5)°.The compound displays intermolecular hydrogen boning between oxyen(O3) of oxime and nitrogen(symmetric code:O3 and H3 = x,y,z+1,N3 = -x+1/2, y+1/2, -z+/2)isoxazole with a distance between O3 and N1 of 2.79 (2)Å )(Fig. 2 and Table 1). This intermolecular hydrogen bonding forms 1-D zig-zag chain of of titled compound in crystalline solid.

Related literature top

For the synthesis, see: Kim & Lee (1994).

Experimental top

A mixture of 7-(4-chlorophenyl)-5,7-dihydro-4H-pyrano[3,4-c]isoxazole-3-carbaldehyde (1.50 g, 5.69 mmol), HONH2.HCl (593 mg, 8.53 mmol) and NaOAc (700 mg, 8.53 mmol) in EtOH (30 ml) was stirred for 3 h at 25 °C. After filtration of the reaction mixture, the filtrate was concentrated under vacuum to give crude product, which was chromatographed on SiO2 eluting with n-hexane/EtOAc (2:1) solution to afford an isomeric mixture mixture (E:Z = 9:2). Single crystals of the (E)-isomer suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/EtOAc solution at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (CH, sp2), 0.98 (CH, sp3) or 0.97 Å (CH2) and OH(hydroxyl) =0.82, and Uiso(H) = 1.2Ueq(C),Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound. Dashed bonds represent hydrogen bonds.
(E)-7-(4-Chlorophenyl)-5,7-dihydro-4H- pyrano[3,4-c]isoxazole-3-carbaldehyde oxime top
Crystal data top
C13H11ClN2O3Z = 8
Mr = 278.69Dx = 1.479 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 32.748 (2) ÅCell parameters from 12348 reflections
b = 8.8501 (5) Åθ = 27.5–3.4°
c = 8.6366 (5) ŵ = 0.31 mm1
β = 90.478 (2)°T = 293 K
V = 2503.0 (3) Å3Block, colorless
Z = 80.8 × 0.6 × 0.4 mm
F(000) = 1152
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
h = 4242
Tmin = 0.800, Tmax = 0.833k = 1011
11943 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.5098P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H11ClN2O3V = 2503.0 (3) Å3
Mr = 278.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.748 (2) ŵ = 0.31 mm1
b = 8.8501 (5) ÅT = 293 K
c = 8.6366 (5) Å0.8 × 0.6 × 0.4 mm
β = 90.478 (2)°
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
2467 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.833Rint = 0.050
11943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
2860 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.011720 (14)0.77709 (6)0.05872 (5)0.05107 (15)
O30.30644 (3)1.11893 (12)0.46915 (11)0.0345 (2)
H30.32061.14780.39610.052*
O20.21571 (3)0.83333 (11)0.33603 (10)0.0274 (2)
C130.25192 (4)0.98089 (15)0.52385 (14)0.0257 (3)
H130.25771.00350.62650.031*
O10.10481 (3)0.75465 (11)0.63146 (11)0.0305 (2)
N20.27422 (3)1.03185 (13)0.41410 (12)0.0281 (3)
C70.12022 (4)0.68615 (15)0.49215 (15)0.0261 (3)
H70.12380.57760.50950.031*
N10.17910 (3)0.75114 (13)0.31966 (13)0.0277 (3)
C10.04117 (4)0.75176 (18)0.10681 (16)0.0330 (3)
C40.09035 (4)0.70947 (15)0.36207 (15)0.0257 (3)
C120.21739 (4)0.88671 (15)0.48414 (14)0.0246 (3)
C80.16124 (4)0.75648 (14)0.45511 (15)0.0241 (3)
C90.18390 (4)0.83945 (15)0.56547 (14)0.0248 (3)
C30.08107 (4)0.85489 (16)0.31074 (17)0.0328 (3)
H3A0.09150.93800.36300.039*
C50.07352 (4)0.58664 (15)0.28589 (16)0.0288 (3)
H50.07880.48940.32120.035*
C60.04879 (4)0.60687 (17)0.15740 (17)0.0331 (3)
H60.03760.52420.10660.040*
C100.16899 (4)0.85873 (17)0.72871 (15)0.0317 (3)
H10A0.19090.83870.80070.038*
H10B0.15950.96130.74500.038*
C110.13411 (5)0.74717 (18)0.75476 (16)0.0336 (3)
H11A0.12060.76960.85240.040*
H11B0.14510.64550.76090.040*
C20.05646 (4)0.87708 (17)0.18291 (18)0.0353 (3)
H20.05030.97410.14900.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0505 (3)0.0642 (3)0.0388 (2)0.0056 (2)0.01860 (18)0.00215 (17)
O30.0336 (5)0.0442 (6)0.0257 (5)0.0137 (4)0.0038 (4)0.0043 (4)
O20.0245 (4)0.0339 (5)0.0239 (5)0.0006 (4)0.0016 (3)0.0031 (4)
C130.0275 (6)0.0295 (7)0.0201 (6)0.0010 (5)0.0023 (5)0.0011 (5)
O10.0294 (5)0.0361 (5)0.0260 (5)0.0023 (4)0.0017 (4)0.0030 (4)
N20.0280 (5)0.0322 (6)0.0241 (5)0.0040 (5)0.0045 (4)0.0013 (4)
C70.0275 (6)0.0241 (6)0.0268 (6)0.0003 (5)0.0020 (5)0.0010 (5)
N10.0245 (5)0.0311 (6)0.0277 (6)0.0011 (4)0.0031 (4)0.0041 (4)
C10.0253 (6)0.0453 (9)0.0283 (7)0.0026 (6)0.0029 (5)0.0005 (6)
C40.0228 (6)0.0265 (7)0.0277 (7)0.0003 (5)0.0002 (5)0.0010 (5)
C120.0276 (6)0.0255 (6)0.0207 (6)0.0033 (5)0.0025 (5)0.0009 (4)
C80.0253 (6)0.0232 (6)0.0238 (6)0.0038 (5)0.0022 (5)0.0003 (4)
C90.0271 (6)0.0235 (6)0.0240 (6)0.0006 (5)0.0035 (5)0.0002 (5)
C30.0336 (7)0.0261 (7)0.0387 (8)0.0009 (6)0.0061 (6)0.0016 (5)
C50.0285 (6)0.0251 (7)0.0329 (7)0.0009 (5)0.0007 (5)0.0027 (5)
C60.0313 (7)0.0352 (8)0.0327 (7)0.0025 (6)0.0024 (5)0.0081 (6)
C100.0363 (7)0.0370 (8)0.0219 (6)0.0085 (6)0.0013 (5)0.0026 (5)
C110.0381 (8)0.0406 (8)0.0221 (7)0.0093 (6)0.0007 (6)0.0014 (5)
C20.0344 (7)0.0313 (8)0.0401 (8)0.0033 (6)0.0040 (6)0.0053 (6)
Geometric parameters (Å, º) top
Cl1—C11.7456 (14)C4—C51.3872 (18)
O3—N21.3934 (14)C4—C31.3955 (19)
O3—H30.8200C12—C91.3633 (18)
O2—C121.3651 (15)C8—C91.4178 (17)
O2—N11.4105 (14)C9—C101.4978 (18)
C13—N21.2742 (17)C3—C21.386 (2)
C13—C121.4482 (18)C3—H3A0.9300
C13—H130.9300C5—C61.3907 (19)
O1—C71.4351 (16)C5—H50.9300
O1—C111.4409 (17)C6—H60.9300
C7—C41.5099 (17)C10—C111.525 (2)
C7—C81.5123 (18)C10—H10A0.9700
C7—H70.9800C10—H10B0.9700
N1—C81.3043 (18)C11—H11A0.9700
C1—C61.378 (2)C11—H11B0.9700
C1—C21.385 (2)C2—H20.9300
N2—O3—H3109.5C12—C9—C10134.78 (12)
C12—O2—N1108.26 (9)C8—C9—C10121.57 (12)
N2—C13—C12118.12 (11)C2—C3—C4120.87 (13)
N2—C13—H13120.9C2—C3—H3A119.6
C12—C13—H13120.9C4—C3—H3A119.6
C7—O1—C11111.63 (10)C4—C5—C6120.92 (13)
C13—N2—O3111.89 (10)C4—C5—H5119.5
O1—C7—C4109.92 (11)C6—C5—H5119.5
O1—C7—C8107.99 (10)C1—C6—C5118.75 (13)
C4—C7—C8111.48 (11)C1—C6—H6120.6
O1—C7—H7109.1C5—C6—H6120.6
C4—C7—H7109.1C9—C10—C11107.63 (11)
C8—C7—H7109.1C9—C10—H10A110.2
C8—N1—O2105.46 (10)C11—C10—H10A110.2
C6—C1—C2121.84 (13)C9—C10—H10B110.2
C6—C1—Cl1118.81 (11)C11—C10—H10B110.2
C2—C1—Cl1119.35 (12)H10A—C10—H10B108.5
C5—C4—C3118.92 (12)O1—C11—C10111.33 (11)
C5—C4—C7120.54 (12)O1—C11—H11A109.4
C3—C4—C7120.44 (12)C10—C11—H11A109.4
C9—C12—O2109.75 (11)O1—C11—H11B109.4
C9—C12—C13132.92 (12)C10—C11—H11B109.4
O2—C12—C13117.31 (11)H11A—C11—H11B108.0
N1—C8—C9112.85 (12)C1—C2—C3118.65 (13)
N1—C8—C7124.45 (11)C1—C2—H2120.7
C9—C8—C7122.68 (12)C3—C2—H2120.7
C12—C9—C8103.65 (11)
C12—C13—N2—O3179.32 (11)O2—C12—C9—C10179.11 (14)
C11—O1—C7—C4174.62 (11)C13—C12—C9—C102.5 (3)
C11—O1—C7—C852.81 (13)N1—C8—C9—C120.76 (15)
C12—O2—N1—C80.96 (13)C7—C8—C9—C12177.73 (11)
O1—C7—C4—C5121.01 (13)N1—C8—C9—C10179.62 (12)
C8—C7—C4—C5119.28 (13)C7—C8—C9—C101.90 (19)
O1—C7—C4—C362.69 (16)C5—C4—C3—C21.9 (2)
C8—C7—C4—C357.02 (16)C7—C4—C3—C2174.40 (13)
N1—O2—C12—C91.48 (14)C3—C4—C5—C62.0 (2)
N1—O2—C12—C13177.20 (10)C7—C4—C5—C6174.35 (12)
N2—C13—C12—C9165.24 (14)C2—C1—C6—C51.9 (2)
N2—C13—C12—O213.06 (18)Cl1—C1—C6—C5177.63 (11)
O2—N1—C8—C90.11 (14)C4—C5—C6—C10.1 (2)
O2—N1—C8—C7178.57 (11)C12—C9—C10—C11167.22 (15)
O1—C7—C8—N1161.63 (12)C8—C9—C10—C1113.29 (18)
C4—C7—C8—N140.79 (17)C7—O1—C11—C1073.78 (15)
O1—C7—C8—C916.68 (16)C9—C10—C11—O148.62 (16)
C4—C7—C8—C9137.52 (12)C6—C1—C2—C31.9 (2)
O2—C12—C9—C81.34 (14)Cl1—C1—C2—C3177.59 (11)
C13—C12—C9—C8177.05 (13)C4—C3—C2—C10.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.072.7920 (15)147
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11ClN2O3
Mr278.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)32.748 (2), 8.8501 (5), 8.6366 (5)
β (°) 90.478 (2)
V3)2503.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.8 × 0.6 × 0.4
Data collection
DiffractometerRigaku R-AXIS RAPID II-S
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2008)
Tmin, Tmax0.800, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
11943, 2860, 2467
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.04
No. of reflections2860
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: RAPID-AUTO (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.072.7920 (15)147
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This study was supported financially by Chonnam National University. CHK thanks the RIC, Sunchon National University, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, H. J. & Lee, J. H. (1994). Heterocycles, 38, 1383–1391.  CAS Google Scholar
First citationRigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds