organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propan-1-aminium 3,4,5,6-tetra­chloro-2-(meth­­oxy­carbon­yl)benzoate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 28 January 2011; accepted 9 February 2011; online 12 February 2011)

In the anion of the title salt, C3H10N+·C9H3Cl4O4, the meth­oxy­carbonyl and carboxyl groups are aligned at dihedral angles of 57.8 (3) and 62.5 (3)°, respectively, with the aromatic ring. In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds, generating chains running aong the c axis.

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C9H3Cl4O4

  • Mr = 377.03

  • Monoclinic, C 2/c

  • a = 28.387 (3) Å

  • b = 14.9600 (13) Å

  • c = 7.8054 (6) Å

  • β = 93.216 (1)°

  • V = 3309.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.47 × 0.32 × 0.23 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.726, Tmax = 0.851

  • 8267 measured reflections

  • 2920 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.135

  • S = 1.02

  • 2920 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 2.22 2.938 (4) 137
N1—H1A⋯O4i 0.89 2.41 2.984 (4) 123
N1—H1B⋯O3ii 0.89 1.98 2.845 (4) 164
N1—H1C⋯O3iii 0.89 2.05 2.894 (4) 159
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have been studying synthesis of 4,5,6,7-tetrachloro-2-propylisoindoline-1,3-dione. In the present work, the reaction of 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid and propylamine in methanol is expected to yield 4,5,6,7-tetrachloro-2-propylisoindoline-1,3-dione. However, the product is propylaminium 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoate (Scheme I, Fig. 1), the reason may be shorter time and cooler temperature in the reaction. The asymmetric unit of the title compound (I) contains one propylaminium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoate anion (Fig. 1). The cation adopts N—C—C—C torsion angle of -178.6 (3) °, the dihedral angles of benzene ring with the methoxycarbonyl and carboxylate groups are 57.8 (3) and 62.5 (3) °, respectively, in the antion. The bond lengths and angles are in agreement with those in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal structure the cations and anions are connected by intermolecular N—H···O hydrogen bonds into one-dimensional chains along [001](Fig. 2 and Table 1).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrachloroisobenzofuran-1,3-dione (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. And then Propylamine (0.59 g, 0.01 mol) was added to the above solution, being mixed round for 10 min at room temperature. And then the solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.96–0.97 Å, N—H = 0.89 Å, O—H = 0.82Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along c axis. Hydrogen bonds are indicated by dashed lines.
Propan-1-aminium 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate top
Crystal data top
C3H10N+·C9H3Cl4O4F(000) = 1536
Mr = 377.03Dx = 1.513 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.387 (3) ÅCell parameters from 1429 reflections
b = 14.9600 (13) Åθ = 2.9–23.7°
c = 7.8054 (6) ŵ = 0.73 mm1
β = 93.216 (1)°T = 298 K
V = 3309.5 (5) Å3Block, colorless
Z = 80.47 × 0.32 × 0.23 mm
Data collection top
Bruker SMART
diffractometer
2920 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2333
Tmin = 0.726, Tmax = 0.851k = 1717
8267 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
2920 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C3H10N+·C9H3Cl4O4V = 3309.5 (5) Å3
Mr = 377.03Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.387 (3) ŵ = 0.73 mm1
b = 14.9600 (13) ÅT = 298 K
c = 7.8054 (6) Å0.47 × 0.32 × 0.23 mm
β = 93.216 (1)°
Data collection top
Bruker SMART
diffractometer
2920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1405 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.851Rint = 0.069
8267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
2920 reflectionsΔρmin = 0.20 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50360 (3)0.81553 (7)0.52072 (18)0.0958 (5)
Cl20.55595 (5)0.99424 (7)0.6113 (3)0.1375 (7)
Cl30.66359 (4)0.99436 (7)0.6998 (2)0.1342 (7)
Cl40.72101 (4)0.81799 (7)0.68593 (18)0.0961 (5)
N10.44237 (10)0.58365 (18)0.4533 (4)0.0630 (9)
H1A0.46370.61370.39680.095*
H1B0.44430.52570.42860.095*
H1C0.44800.59150.56570.095*
O10.68601 (9)0.63305 (17)0.7732 (4)0.0749 (8)
O20.66423 (10)0.5995 (2)0.5002 (4)0.0908 (10)
O30.56435 (9)0.59345 (17)0.6786 (4)0.0749 (8)
O40.54157 (9)0.63029 (17)0.4104 (4)0.0710 (8)
C10.66366 (13)0.6473 (3)0.6217 (7)0.0604 (11)
C20.56159 (12)0.6450 (2)0.5521 (6)0.0530 (10)
C30.63685 (11)0.7345 (2)0.6219 (5)0.0527 (10)
C40.58827 (12)0.7341 (2)0.5810 (5)0.0522 (9)
C50.56380 (12)0.8150 (2)0.5743 (5)0.0665 (12)
C60.58697 (14)0.8952 (2)0.6135 (6)0.0797 (14)
C70.63492 (14)0.8952 (2)0.6518 (6)0.0779 (13)
C80.66020 (12)0.8156 (2)0.6525 (5)0.0619 (11)
C90.71825 (15)0.5576 (3)0.7804 (7)0.1017 (16)
H9A0.70070.50310.76370.153*
H9B0.73520.55620.89040.153*
H9C0.74020.56350.69190.153*
C100.39403 (12)0.6172 (2)0.4012 (5)0.0634 (11)
H10A0.37140.59140.47560.076*
H10B0.38560.59840.28460.076*
C110.39174 (14)0.7179 (2)0.4118 (5)0.0731 (12)
H11A0.41390.74360.33540.088*
H11B0.40100.73670.52780.088*
C120.34187 (16)0.7531 (3)0.3628 (6)0.0944 (15)
H12A0.33350.73820.24540.142*
H12B0.34130.81680.37670.142*
H12C0.31970.72620.43570.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0429 (6)0.0713 (7)0.1698 (14)0.0085 (5)0.0226 (7)0.0073 (7)
Cl20.0788 (9)0.0531 (7)0.276 (2)0.0161 (6)0.0340 (11)0.0109 (9)
Cl30.0782 (9)0.0619 (7)0.259 (2)0.0211 (6)0.0221 (10)0.0134 (9)
Cl40.0379 (6)0.0906 (8)0.1587 (13)0.0099 (5)0.0041 (7)0.0034 (8)
N10.053 (2)0.0559 (18)0.080 (2)0.0011 (15)0.0030 (17)0.0029 (17)
O10.0562 (17)0.0818 (19)0.085 (2)0.0207 (14)0.0071 (16)0.0062 (16)
O20.087 (2)0.090 (2)0.094 (3)0.0328 (17)0.0111 (18)0.0228 (19)
O30.085 (2)0.0574 (17)0.083 (2)0.0072 (14)0.0046 (16)0.0042 (16)
O40.0572 (17)0.0811 (19)0.073 (2)0.0115 (14)0.0083 (15)0.0113 (16)
C10.041 (2)0.059 (3)0.081 (4)0.0008 (19)0.001 (2)0.002 (2)
C20.035 (2)0.050 (2)0.075 (3)0.0007 (17)0.005 (2)0.000 (2)
C30.039 (2)0.048 (2)0.071 (3)0.0034 (18)0.0019 (18)0.0013 (19)
C40.042 (2)0.048 (2)0.067 (3)0.0035 (18)0.0029 (18)0.0037 (19)
C50.038 (2)0.054 (2)0.106 (4)0.0011 (18)0.008 (2)0.001 (2)
C60.047 (3)0.049 (2)0.141 (4)0.0082 (19)0.010 (3)0.002 (2)
C70.053 (3)0.049 (2)0.130 (4)0.009 (2)0.009 (3)0.002 (2)
C80.033 (2)0.062 (2)0.090 (3)0.0047 (18)0.003 (2)0.003 (2)
C90.071 (3)0.101 (3)0.132 (4)0.040 (3)0.002 (3)0.032 (3)
C100.050 (2)0.059 (2)0.081 (3)0.0034 (18)0.000 (2)0.002 (2)
C110.076 (3)0.062 (3)0.081 (3)0.005 (2)0.000 (2)0.002 (2)
C120.080 (3)0.087 (3)0.115 (4)0.022 (3)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C51.736 (3)C4—C51.396 (4)
Cl2—C61.724 (4)C5—C61.393 (5)
Cl3—C71.723 (4)C6—C71.377 (5)
Cl4—C81.732 (3)C7—C81.391 (5)
N1—C101.496 (4)C9—H9A0.9600
N1—H1A0.8900C9—H9B0.9600
N1—H1B0.8900C9—H9C0.9600
N1—H1C0.8900C10—C111.510 (5)
O1—C11.327 (5)C10—H10A0.9700
O1—C91.453 (4)C10—H10B0.9700
O2—C11.189 (4)C11—C121.538 (5)
O3—C21.251 (4)C11—H11A0.9700
O4—C21.234 (4)C11—H11B0.9700
C1—C31.511 (5)C12—H12A0.9600
C2—C41.544 (5)C12—H12B0.9600
C3—C81.396 (4)C12—H12C0.9600
C3—C41.398 (4)
C10—N1—H1A109.5C7—C8—C3120.2 (3)
C10—N1—H1B109.5C7—C8—Cl4119.5 (3)
H1A—N1—H1B109.5C3—C8—Cl4120.2 (3)
C10—N1—H1C109.5O1—C9—H9A109.5
H1A—N1—H1C109.5O1—C9—H9B109.5
H1B—N1—H1C109.5H9A—C9—H9B109.5
C1—O1—C9115.3 (3)O1—C9—H9C109.5
O2—C1—O1126.0 (4)H9A—C9—H9C109.5
O2—C1—C3123.4 (4)H9B—C9—H9C109.5
O1—C1—C3110.7 (4)N1—C10—C11111.2 (3)
O4—C2—O3127.1 (3)N1—C10—H10A109.4
O4—C2—C4118.8 (4)C11—C10—H10A109.4
O3—C2—C4114.1 (4)N1—C10—H10B109.4
C8—C3—C4119.7 (3)C11—C10—H10B109.4
C8—C3—C1121.1 (3)H10A—C10—H10B108.0
C4—C3—C1119.1 (3)C10—C11—C12111.7 (3)
C5—C4—C3119.1 (3)C10—C11—H11A109.3
C5—C4—C2120.3 (3)C12—C11—H11A109.3
C3—C4—C2120.5 (3)C10—C11—H11B109.3
C6—C5—C4120.7 (3)C12—C11—H11B109.3
C6—C5—Cl1119.7 (3)H11A—C11—H11B107.9
C4—C5—Cl1119.6 (3)C11—C12—H12A109.5
C7—C6—C5119.8 (3)C11—C12—H12B109.5
C7—C6—Cl2120.0 (3)H12A—C12—H12B109.5
C5—C6—Cl2120.2 (3)C11—C12—H12C109.5
C6—C7—C8120.2 (3)H12A—C12—H12C109.5
C6—C7—Cl3119.8 (3)H12B—C12—H12C109.5
C8—C7—Cl3120.0 (3)
C9—O1—C1—O27.9 (6)C4—C5—C6—C72.9 (7)
C9—O1—C1—C3171.6 (3)Cl1—C5—C6—C7178.3 (4)
O2—C1—C3—C8119.1 (4)C4—C5—C6—Cl2178.0 (3)
O1—C1—C3—C860.5 (5)Cl1—C5—C6—Cl20.8 (6)
O2—C1—C3—C457.3 (6)C5—C6—C7—C80.4 (7)
O1—C1—C3—C4123.1 (4)Cl2—C6—C7—C8179.5 (4)
C8—C3—C4—C51.0 (6)C5—C6—C7—Cl3179.9 (4)
C1—C3—C4—C5177.4 (4)Cl2—C6—C7—Cl30.7 (6)
C8—C3—C4—C2178.1 (4)C6—C7—C8—C32.8 (7)
C1—C3—C4—C25.5 (6)Cl3—C7—C8—C3176.9 (3)
O4—C2—C4—C564.5 (5)C6—C7—C8—Cl4175.4 (4)
O3—C2—C4—C5117.7 (4)Cl3—C7—C8—Cl44.9 (6)
O4—C2—C4—C3118.5 (4)C4—C3—C8—C73.5 (6)
O3—C2—C4—C359.3 (5)C1—C3—C8—C7179.8 (4)
C3—C4—C5—C62.2 (6)C4—C3—C8—Cl4174.7 (3)
C2—C4—C5—C6174.9 (4)C1—C3—C8—Cl41.6 (5)
C3—C4—C5—Cl1179.1 (3)N1—C10—C11—C12178.6 (3)
C2—C4—C5—Cl13.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.222.938 (4)137
N1—H1A···O4i0.892.412.984 (4)123
N1—H1B···O3ii0.891.982.845 (4)164
N1—H1C···O3iii0.892.052.894 (4)159
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC3H10N+·C9H3Cl4O4
Mr377.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.387 (3), 14.9600 (13), 7.8054 (6)
β (°) 93.216 (1)
V3)3309.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.47 × 0.32 × 0.23
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.726, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
8267, 2920, 1405
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.135, 1.02
No. of reflections2920
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.222.938 (4)137
N1—H1A···O4i0.892.412.984 (4)123
N1—H1B···O3ii0.891.982.845 (4)164
N1—H1C···O3iii0.892.052.894 (4)159
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds