organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Chloro-4-nitro­phen­yl)diazen­yl]-N,N-di­ethyl­aniline

aCollege of Chemical & Pharmaceutical Sciences, Qingdao Agriculture University, Qingdao 266109, People's Republic of China
*Correspondence e-mail: lhedlut2002@yahoo.com.cn

(Received 4 February 2011; accepted 14 February 2011; online 19 February 2011)

In the title compound, C16H17ClN4O2, the aromatic ring is twisted slightly with respect to the plane of the diazene group [N—N—C—C torsion angle = −3.9 (4)°]. The NO2 group is twisted by 16.2 (4)° relative to the aromatic ring. The two ethyl chains are positioned such that one ethyl chain lies above and the other below the ring.

Related literature

For background to disperse dyes, see: Freeman & Posey (1992[Freeman, H. S. & Posey, J. C. (1992). Dyes Pigm. 20, 147-169.]); Freeman et al. (1997[Freeman, H. S., Mclntosh, S. A. & Singh, P. (1997). Dyes Pigm. 35, 149-164.]). For related structures, see: He et al. (2009[He, L., El-Shafei, A., Freeman, H. S. & Boyle, P. (2009). Dyes Pigm. 82, 299-306.]); Maginn et al. (1993[Maginn, S. J., Bullock, J. F. & Docherty, R. (1993). Dyes Pigm. 23, 159-178.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClN4O2

  • Mr = 332.79

  • Monoclinic, C 2/c

  • a = 25.745 (2) Å

  • b = 7.5774 (6) Å

  • c = 18.8628 (15) Å

  • β = 121.795 (5)°

  • V = 3127.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 110 K

  • 0.40 × 0.06 × 0.04 mm

Data collection
  • Bruker–Nonius X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.990

  • 21470 measured reflections

  • 3105 independent reflections

  • 1987 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.03

  • 3105 reflections

  • 276 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is important to investigate the structural properties of disperse dyes in solid state because the absorption and dyeing performance such as dye uptake by the fibers are dependent not only on the conformation of the solid dye but also on the interactions between fiber surface and dye in molecular level. Here, we report the crystal structure of 4-(N,N-diethylamino)-2'-chloro-4'-nitroazobenzene.

In the title compound, C16H17ClN4O2, the aromatic rings in the azobenzene skeleton is essentially planar with respect to the plane of the azo group, although the N1—N2—C7—C8 torsion angle is -3.9 (4) °. The NO2 group is twisted relative to the aryl group to which it is bonded by 16.2 (4)° (O1—N3—C4—C3). In the N,N-diethylamino group, two ethyl chains tend to be sepatated as far apart as possible with one ethyl being above the aminobenzene plane and another one below both it.

Related literature top

For background to disperse dyes, see: Freeman & Posey (1992); Freeman et al. (1997). For related structures, see: He et al. (2009); Maginn et al. (1993).

Experimental top

The crystal was obtained by dissolving 0.5 g title compound in 50 ml acetone at room temperature and the resulting solution was covered with Parafilm plastic containing pin holes for slow evaporation of the solvent.

Refinement top

The hydrogen atoms were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of 4-(N,N-diethylamino)-2'-chloro-4'-nitroazobenzene showing 50% probability ellipsoids.
4-[(2-Chloro-4-nitrophenyl)diazenyl]-N,N-diethylaniline top
Crystal data top
C16H17ClN4O2F(000) = 1392
Mr = 332.79Dx = 1.413 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
a = 25.745 (2) ÅCell parameters from 4405 reflections
b = 7.5774 (6) Åθ = 2.5–25.5°
c = 18.8628 (15) ŵ = 0.26 mm1
β = 121.795 (5)°T = 110 K
V = 3127.6 (4) Å3Prism, red
Z = 80.40 × 0.06 × 0.04 mm
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube1987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.903, Tmax = 0.990k = 98
21470 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0616P)2 + 3.7461P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H17ClN4O2V = 3127.6 (4) Å3
Mr = 332.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.745 (2) ŵ = 0.26 mm1
b = 7.5774 (6) ÅT = 110 K
c = 18.8628 (15) Å0.40 × 0.06 × 0.04 mm
β = 121.795 (5)°
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1987 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.990Rint = 0.062
21470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132All H-atom parameters refined
S = 1.03Δρmax = 0.30 e Å3
3105 reflectionsΔρmin = 0.37 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05101 (3)0.47275 (10)0.39144 (4)0.0324 (2)
O10.16973 (10)0.5393 (3)0.13154 (12)0.0404 (5)
O20.23165 (9)0.4835 (3)0.17351 (13)0.0406 (6)
N10.01886 (10)0.2751 (3)0.49659 (12)0.0221 (5)
N20.00367 (10)0.1881 (3)0.54089 (13)0.0235 (5)
N30.18043 (11)0.4861 (3)0.18396 (14)0.0312 (6)
C10.03294 (12)0.3220 (3)0.41830 (15)0.0230 (6)
C20.02263 (12)0.4170 (3)0.36330 (16)0.0232 (6)
C30.07057 (13)0.4702 (4)0.28604 (16)0.0254 (6)
H30.0649 (13)0.545 (4)0.2500 (19)0.034 (8)*
C40.12889 (12)0.4255 (3)0.26414 (15)0.0258 (6)
C50.14133 (13)0.3303 (4)0.31635 (16)0.0268 (6)
H50.1831 (14)0.302 (4)0.3003 (18)0.034 (8)*
C60.09304 (12)0.2792 (4)0.39309 (17)0.0248 (6)
H60.0984 (13)0.214 (4)0.4299 (18)0.035 (8)*
C70.05212 (12)0.1399 (3)0.61996 (15)0.0213 (6)
C80.11401 (12)0.1691 (3)0.65168 (16)0.0205 (6)
H80.1255 (12)0.223 (4)0.6154 (16)0.029 (7)*
C90.15720 (13)0.1204 (3)0.73204 (16)0.0220 (6)
H90.1982 (14)0.138 (4)0.7512 (17)0.035 (8)*
C100.14028 (11)0.0425 (3)0.78528 (15)0.0204 (6)
C110.07782 (12)0.0103 (4)0.75163 (16)0.0236 (6)
H110.0638 (12)0.040 (3)0.7845 (17)0.026 (7)*
C120.03514 (13)0.0575 (4)0.67093 (17)0.0241 (6)
H120.0068 (13)0.034 (3)0.6497 (17)0.025 (7)*
N40.18316 (9)0.0024 (3)0.86547 (13)0.0233 (5)
C130.24663 (12)0.0550 (4)0.90619 (17)0.0251 (6)
H13A0.2599 (11)0.074 (3)0.9655 (17)0.019 (7)*
H13B0.2482 (12)0.170 (4)0.8836 (16)0.023 (7)*
C140.28708 (14)0.0772 (4)0.8975 (2)0.0293 (7)
H14A0.2819 (14)0.196 (5)0.917 (2)0.053 (10)*
H14B0.3270 (15)0.039 (4)0.9279 (18)0.031 (8)*
H14C0.2750 (13)0.088 (4)0.8404 (19)0.030 (8)*
C150.16615 (14)0.0922 (4)0.91908 (17)0.0271 (6)
H15A0.2026 (13)0.159 (4)0.9614 (18)0.034 (8)*
H15B0.1330 (11)0.175 (3)0.8853 (15)0.015 (6)*
C160.14643 (15)0.0348 (5)0.96314 (19)0.0341 (7)
H16A0.1835 (15)0.110 (4)1.005 (2)0.047 (9)*
H16B0.1328 (14)0.027 (4)0.994 (2)0.044 (9)*
H16C0.1166 (13)0.112 (4)0.9259 (18)0.029 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0281 (4)0.0469 (4)0.0259 (4)0.0027 (3)0.0167 (3)0.0077 (3)
O10.0482 (14)0.0484 (13)0.0190 (11)0.0144 (10)0.0140 (10)0.0060 (9)
O20.0262 (12)0.0426 (13)0.0366 (12)0.0003 (9)0.0053 (10)0.0060 (10)
N10.0257 (12)0.0269 (12)0.0140 (11)0.0030 (9)0.0106 (10)0.0017 (9)
N20.0266 (13)0.0275 (13)0.0165 (11)0.0023 (9)0.0113 (10)0.0005 (9)
N30.0362 (15)0.0270 (13)0.0199 (13)0.0060 (10)0.0074 (11)0.0003 (10)
C10.0290 (15)0.0255 (14)0.0153 (13)0.0025 (11)0.0122 (12)0.0029 (11)
C20.0236 (14)0.0273 (15)0.0194 (14)0.0027 (11)0.0117 (12)0.0007 (11)
C30.0348 (16)0.0240 (14)0.0195 (14)0.0058 (12)0.0158 (13)0.0015 (11)
C40.0274 (15)0.0278 (15)0.0151 (13)0.0070 (11)0.0064 (12)0.0015 (11)
C50.0280 (16)0.0278 (15)0.0221 (15)0.0012 (12)0.0115 (13)0.0028 (12)
C60.0297 (16)0.0265 (15)0.0206 (14)0.0008 (12)0.0147 (13)0.0013 (12)
C70.0258 (15)0.0226 (14)0.0174 (13)0.0031 (11)0.0127 (12)0.0003 (10)
C80.0272 (15)0.0214 (13)0.0184 (14)0.0005 (10)0.0158 (12)0.0009 (10)
C90.0209 (14)0.0262 (14)0.0206 (14)0.0018 (11)0.0121 (12)0.0015 (11)
C100.0249 (14)0.0221 (13)0.0168 (13)0.0042 (11)0.0127 (11)0.0004 (10)
C110.0262 (15)0.0323 (15)0.0191 (14)0.0010 (11)0.0165 (12)0.0020 (11)
C120.0225 (15)0.0307 (15)0.0233 (15)0.0004 (12)0.0149 (13)0.0003 (12)
N40.0223 (12)0.0320 (13)0.0171 (11)0.0015 (9)0.0114 (10)0.0049 (9)
C130.0256 (15)0.0308 (16)0.0179 (14)0.0004 (12)0.0107 (12)0.0020 (12)
C140.0247 (17)0.0366 (18)0.0286 (17)0.0031 (13)0.0156 (14)0.0059 (13)
C150.0279 (16)0.0371 (17)0.0191 (14)0.0053 (13)0.0143 (13)0.0090 (12)
C160.0328 (18)0.0495 (19)0.0223 (16)0.0079 (16)0.0161 (15)0.0034 (15)
Geometric parameters (Å, º) top
Cl1—C21.731 (3)C9—H90.93 (3)
O1—N31.226 (3)C10—N41.365 (3)
O2—N31.226 (3)C10—C111.405 (4)
N1—N21.276 (3)C11—C121.375 (4)
N1—C11.418 (3)C11—H110.95 (3)
N2—C71.398 (3)C12—H120.95 (3)
N3—C41.464 (3)N4—C131.458 (3)
C1—C61.397 (4)N4—C151.465 (3)
C1—C21.398 (4)C13—C141.514 (4)
C2—C31.384 (4)C13—H13A0.99 (3)
C3—C41.373 (4)C13—H13B0.98 (3)
C3—H30.95 (3)C14—H14A1.01 (3)
C4—C51.388 (4)C14—H14B0.92 (3)
C5—C61.376 (4)C14—H14C0.96 (3)
C5—H50.98 (3)C15—C161.523 (4)
C6—H60.92 (3)C15—H15A0.99 (3)
C7—C81.393 (4)C15—H15B0.98 (3)
C7—C121.396 (4)C16—H16A1.03 (3)
C8—C91.376 (4)C16—H16B0.95 (3)
C8—H80.97 (3)C16—H16C0.93 (3)
C9—C101.417 (4)
N2—N1—C1111.5 (2)C11—C10—C9117.3 (2)
N1—N2—C7115.1 (2)C12—C11—C10120.8 (2)
O1—N3—O2123.7 (2)C12—C11—H11118.2 (17)
O1—N3—C4118.0 (2)C10—C11—H11120.9 (17)
O2—N3—C4118.3 (2)C11—C12—C7121.4 (3)
C6—C1—C2118.4 (2)C11—C12—H12119.1 (16)
C6—C1—N1124.2 (2)C7—C12—H12119.5 (16)
C2—C1—N1117.4 (2)C10—N4—C13122.5 (2)
C3—C2—C1121.3 (3)C10—N4—C15121.3 (2)
C3—C2—Cl1118.5 (2)C13—N4—C15115.8 (2)
C1—C2—Cl1120.2 (2)N4—C13—C14112.9 (2)
C4—C3—C2118.2 (3)N4—C13—H13A105.2 (15)
C4—C3—H3119.1 (18)C14—C13—H13A111.6 (14)
C2—C3—H3122.5 (18)N4—C13—H13B109.2 (15)
C3—C4—C5122.6 (2)C14—C13—H13B110.5 (15)
C3—C4—N3119.0 (2)H13A—C13—H13B107 (2)
C5—C4—N3118.3 (2)C13—C14—H14A108.4 (18)
C6—C5—C4118.3 (3)C13—C14—H14B109.2 (18)
C6—C5—H5120.2 (17)H14A—C14—H14B112 (3)
C4—C5—H5121.5 (17)C13—C14—H14C110.1 (17)
C5—C6—C1121.2 (3)H14A—C14—H14C109 (2)
C5—C6—H6122.2 (18)H14B—C14—H14C109 (2)
C1—C6—H6116.6 (18)N4—C15—C16113.0 (3)
C8—C7—C12118.5 (2)N4—C15—H15A107.0 (16)
C8—C7—N2126.3 (2)C16—C15—H15A109.2 (16)
C12—C7—N2115.1 (2)N4—C15—H15B108.9 (14)
C9—C8—C7120.5 (2)C16—C15—H15B109.6 (14)
C9—C8—H8121.5 (16)H15A—C15—H15B109 (2)
C7—C8—H8118.0 (16)C15—C16—H16A108.9 (18)
C8—C9—C10121.4 (2)C15—C16—H16B111.3 (19)
C8—C9—H9118.9 (18)H16A—C16—H16B107 (3)
C10—C9—H9119.7 (18)C15—C16—H16C111.5 (17)
N4—C10—C11121.5 (2)H16A—C16—H16C107 (3)
N4—C10—C9121.2 (2)H16B—C16—H16C110 (3)
C1—N1—N2—C7178.7 (2)N1—N2—C7—C83.9 (4)
N2—N1—C1—C60.3 (4)N1—N2—C7—C12175.0 (2)
N2—N1—C1—C2179.6 (2)C12—C7—C8—C91.2 (4)
C6—C1—C2—C30.9 (4)N2—C7—C8—C9177.7 (2)
N1—C1—C2—C3179.1 (2)C7—C8—C9—C101.1 (4)
C6—C1—C2—Cl1179.81 (19)C8—C9—C10—N4178.7 (2)
N1—C1—C2—Cl10.1 (3)C8—C9—C10—C112.6 (4)
C1—C2—C3—C40.7 (4)N4—C10—C11—C12179.5 (2)
Cl1—C2—C3—C4180.0 (2)C9—C10—C11—C121.8 (4)
C2—C3—C4—C50.2 (4)C10—C11—C12—C70.5 (4)
C2—C3—C4—N3177.8 (2)C8—C7—C12—C112.0 (4)
O1—N3—C4—C316.2 (4)N2—C7—C12—C11177.0 (2)
O2—N3—C4—C3162.6 (2)C11—C10—N4—C13169.7 (2)
O1—N3—C4—C5166.1 (2)C9—C10—N4—C1311.6 (4)
O2—N3—C4—C515.0 (4)C11—C10—N4—C152.3 (4)
C3—C4—C5—C60.0 (4)C9—C10—N4—C15176.4 (2)
N3—C4—C5—C6177.5 (2)C10—N4—C13—C1492.7 (3)
C4—C5—C6—C10.2 (4)C15—N4—C13—C1494.9 (3)
C2—C1—C6—C50.7 (4)C10—N4—C15—C1685.4 (3)
N1—C1—C6—C5179.4 (2)C13—N4—C15—C1687.1 (3)

Experimental details

Crystal data
Chemical formulaC16H17ClN4O2
Mr332.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)25.745 (2), 7.5774 (6), 18.8628 (15)
β (°) 121.795 (5)
V3)3127.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.06 × 0.04
Data collection
DiffractometerBruker–Nonius X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
21470, 3105, 1987
Rint0.062
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.03
No. of reflections3105
No. of parameters276
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreeman, H. S., Mclntosh, S. A. & Singh, P. (1997). Dyes Pigm. 35, 149–164.  CrossRef CAS Web of Science Google Scholar
First citationFreeman, H. S. & Posey, J. C. (1992). Dyes Pigm. 20, 147–169.  CrossRef CAS Web of Science Google Scholar
First citationHe, L., El-Shafei, A., Freeman, H. S. & Boyle, P. (2009). Dyes Pigm. 82, 299–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaginn, S. J., Bullock, J. F. & Docherty, R. (1993). Dyes Pigm. 23, 159–178.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds