organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-(1-naphth­yl)-1′′,2′′,3′′,4′′-tetra­hydro­indane-2-spiro-2′-pyrrolidine-3′-spiro-2′′-naphthalene-1,3,1′′-trione

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 8 February 2011; accepted 9 February 2011; online 12 February 2011)

In the title compound, C32H25NO3, the pyrrolidine ring adopts an envelope conformation, whereas the cyclo­hexa­none ring in the tetra­hydro­naphthalene fused-ring system adopts a half-chair conformation. The indanedione unit is oriented at an angle of 58.9 (1)° with respect to the naphthyl ring system. Three intra­molecular C—H⋯O close contacts and an intra­molecular C—H⋯π inter­action are observed. In the crystal, mol­ecules associate via C—H⋯O hydrogen bonds, forming a helical chain with a C(10) motif along the b axis.

Related literature

For general background to pyrrolidine derivatives, see: Bello et al. (2010[Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestro, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320-3334.]); Pettersson et al. (2011[Pettersson, M., Campbell, B. M., Dounary, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865-868.]). For related structures, see: Abdul Ajees et al. (2002[Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.]); Selvanayagam et al. (2005[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J. & Raghunathan, R. (2005). Acta Cryst. E61, o1582-o1584.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C32H25NO3

  • Mr = 471.53

  • Orthorhombic, P 21 21 21

  • a = 10.8442 (9) Å

  • b = 11.431 (1) Å

  • c = 19.2701 (16) Å

  • V = 2388.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 28122 measured reflections

  • 3233 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.10

  • 3233 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is centroid of the C1/C5/C6/C11/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.98 2.23 2.772 (2) 114
C4—H4A⋯O1 0.97 2.53 3.072 (3) 115
C13—H13B⋯O1 0.97 2.59 3.246 (3) 125
C29—H29⋯O2i 0.93 2.40 3.218 (2) 146
C17—H17⋯O1ii 0.93 2.55 3.442 (3) 163
C14—H14BCg1 0.97 2.51 3.146 (2) 123
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Pyrrolidine derivatives are used as norepinephrine reuptake inhibitors and 5-HT(1A) partial agonists for treating neuropsychiatric disorders including depression and anxiety (Pettersson et al., 2011). These derivatives are used as alpha-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies (Bello et al., 2010). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative, and the results are presented here.

The molecular structure of (I) is illustrated in Fig. 1. The C—C bond lengths in the pyrrolidine ring are somewhat longer in particular at two spiro junctions C1 and C2 and the C—N bond lengths are somewhat shorter than normal values. This may be due to steric forces of the bulky substituents at atoms C1 and C2 of the pyrrolidine ring (Abdul Ajees et al., 2002; Selvanayagam et al., 2005).

The sum of the angles at N1 of the pyrrolidine ring [336.3°] is in accordance with sp3 hybridization. The short contacts H3···H24 (2.12 Å) and H4A···H31 (1.96 Å) result in substantial widening of the C24—C23—C22 and C31—C22—C3 bond angles [123.8 (2)° and 122.4 (2)°, respectively].

The indanedione moiety is planar with a maximum deviation of 0.051 (3) Å for atom C9. The keto O atoms O1 and O2 deviate from this system by 0.115 (2) and 0.177 (2) Å, respectively. The naphthyl group is also planar with a maximum deviation of 0.013 (2) Å for atom C30. This group is oriented at an angle of 58.9° with respect to the indanedione moiety.

Pyrrolidine ring is in an envelope conformation, with puckering parameters q2 = 0.406 (2) Å and ϕ = 5.3 (2) °, and with atom N1 deviating 0.601 (2) Å from the least-squares plane passing through the remaining four atoms (C1-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthalin ring system has a half-chair conformation with the lowest asymmetry parameters of ΔC2(C2-C13) = 0.070 (1)° (Nardelli, 1983).

The molecular structure is influenced by an intramolecular C—H···O hydrogen bonds and weak C—H···π interactions. In the molecular packing, C—H···O hydrogen bonds involving atoms C17 and O1 link symmetry related molecules to form a helical shape arrangement in the unit cell (Fig. 2 and Table 1). In addition to this another C—H···O hydrogen bonds form a C(10) chain motif in the unit cell.

Related literature top

For general background to pyrrolidine derivatives, see: Bello et al. (2010); Pettersson et al. (2011). For related structures, see: Abdul Ajees et al. (2002); Selvanayagam et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a mixture of ninhydrin (1mmol), sarcosine (1mmol) and 2-napthalidene- 1,2,3,4-tetrahydronaphthalene-1-ones (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N) for all other H atoms. Due to the lack of anomalous scatterers the absolute configuration was not determined from the X-ray diffraction data and Friedel pairs were merged. The absolute configuration of (I) is unknown.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
1'-Methyl-4'-(1-naphthyl)-1'',2'',3'',4''-tetrahydroindane-2-spiro-2'- pyrrolidine-3'-spiro-2''-naphthalene-1,3,1''-trione top
Crystal data top
C32H25NO3F(000) = 992
Mr = 471.53Dx = 1.311 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18128 reflections
a = 10.8442 (9) Åθ = 2.2–27.7°
b = 11.431 (1) ŵ = 0.08 mm1
c = 19.2701 (16) ÅT = 292 K
V = 2388.7 (3) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2941 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
ω scansh = 1414
28122 measured reflectionsk = 1514
3233 independent reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.0432P]
where P = (Fo2 + 2Fc2)/3
3233 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C32H25NO3V = 2388.7 (3) Å3
Mr = 471.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.8442 (9) ŵ = 0.08 mm1
b = 11.431 (1) ÅT = 292 K
c = 19.2701 (16) Å0.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2941 reflections with I > 2σ(I)
28122 measured reflectionsRint = 0.025
3233 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
3233 reflectionsΔρmin = 0.16 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39079 (16)0.65842 (13)0.26515 (8)0.0626 (4)
O20.27742 (18)1.00671 (13)0.15142 (9)0.0670 (4)
O30.19107 (14)0.83352 (13)0.03036 (7)0.0548 (4)
N10.42985 (14)0.79880 (14)0.13310 (8)0.0437 (3)
C10.32344 (15)0.80317 (14)0.17897 (8)0.0373 (3)
C20.22397 (15)0.73033 (13)0.13771 (8)0.0344 (3)
C30.30573 (15)0.64431 (14)0.09301 (8)0.0379 (3)
H30.29080.66440.04430.045*
C40.43936 (17)0.67881 (18)0.10855 (11)0.0500 (4)
H4A0.47470.62850.14390.060*
H4B0.48970.67430.06700.060*
C50.34951 (17)0.75451 (17)0.25266 (9)0.0453 (4)
C60.32235 (18)0.8468 (2)0.30327 (9)0.0526 (5)
C70.3266 (2)0.8410 (3)0.37595 (11)0.0731 (7)
H70.35160.77350.39890.088*
C80.2919 (3)0.9403 (4)0.41183 (14)0.0961 (12)
H80.29310.93880.46010.115*
C90.2557 (3)1.0410 (4)0.37891 (19)0.0943 (11)
H90.23231.10560.40510.113*
C100.2536 (2)1.0476 (2)0.30753 (15)0.0730 (7)
H100.23071.11610.28490.088*
C110.28692 (19)0.94840 (19)0.27055 (11)0.0530 (5)
C120.29105 (18)0.93236 (16)0.19442 (10)0.0463 (4)
C130.12866 (17)0.66910 (15)0.18410 (9)0.0412 (4)
H13A0.07670.61980.15540.049*
H13B0.17160.61880.21660.049*
C140.04745 (18)0.75315 (19)0.22442 (9)0.0474 (4)
H14A0.01660.70920.24800.057*
H14B0.09680.79210.25950.057*
C150.01132 (16)0.84350 (17)0.17879 (9)0.0451 (4)
C160.1179 (2)0.90178 (19)0.19927 (13)0.0607 (6)
H160.15240.88540.24240.073*
C170.17298 (18)0.9832 (2)0.15681 (15)0.0664 (6)
H170.24461.02080.17130.080*
C180.1227 (2)1.0096 (2)0.09295 (15)0.0639 (6)
H180.16021.06480.06440.077*
C190.01693 (18)0.95372 (18)0.07168 (11)0.0517 (4)
H190.01730.97160.02870.062*
C200.03943 (16)0.87038 (16)0.11414 (9)0.0417 (4)
C210.15470 (15)0.81437 (15)0.08854 (8)0.0379 (3)
C220.27640 (16)0.51479 (15)0.10044 (9)0.0392 (3)
C230.17262 (16)0.46728 (15)0.06386 (8)0.0394 (3)
C240.09433 (18)0.53423 (18)0.02056 (10)0.0481 (4)
H240.11110.61340.01440.058*
C250.0049 (2)0.4864 (2)0.01248 (12)0.0605 (5)
H250.05520.53320.04000.073*
C260.0314 (2)0.3677 (2)0.00510 (14)0.0702 (6)
H260.09850.33520.02810.084*
C270.0406 (2)0.3001 (2)0.03549 (13)0.0656 (6)
H270.02180.22110.04010.079*
C280.1443 (2)0.34598 (15)0.07131 (10)0.0480 (4)
C290.2201 (2)0.27509 (17)0.11260 (11)0.0577 (5)
H290.20240.19580.11690.069*
C300.3187 (2)0.32053 (19)0.14624 (12)0.0600 (5)
H300.36860.27250.17320.072*
C310.34582 (19)0.44138 (18)0.14031 (10)0.0509 (4)
H310.41300.47160.16440.061*
C320.54458 (19)0.8442 (2)0.16095 (12)0.0592 (5)
H32A0.53180.92240.17770.089*
H32B0.60610.84500.12510.089*
H32C0.57180.79540.19850.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0718 (9)0.0584 (8)0.0577 (8)0.0018 (8)0.0114 (7)0.0189 (7)
O20.0855 (12)0.0406 (7)0.0750 (10)0.0010 (8)0.0074 (9)0.0104 (7)
O30.0616 (8)0.0629 (8)0.0400 (6)0.0169 (7)0.0096 (6)0.0150 (6)
N10.0374 (7)0.0486 (8)0.0451 (7)0.0078 (6)0.0025 (6)0.0002 (7)
C10.0399 (8)0.0374 (8)0.0346 (7)0.0028 (7)0.0015 (6)0.0035 (6)
C20.0358 (7)0.0346 (7)0.0327 (7)0.0020 (6)0.0013 (6)0.0028 (6)
C30.0376 (8)0.0387 (8)0.0373 (7)0.0012 (6)0.0013 (6)0.0007 (6)
C40.0375 (8)0.0540 (10)0.0584 (10)0.0019 (8)0.0070 (8)0.0072 (9)
C50.0437 (9)0.0532 (10)0.0391 (8)0.0092 (8)0.0046 (7)0.0081 (7)
C60.0436 (9)0.0732 (13)0.0409 (8)0.0159 (9)0.0009 (7)0.0064 (9)
C70.0628 (13)0.115 (2)0.0416 (9)0.0265 (14)0.0014 (9)0.0075 (12)
C80.0746 (17)0.162 (3)0.0520 (13)0.036 (2)0.0115 (13)0.0458 (19)
C90.0712 (17)0.124 (3)0.0873 (19)0.0207 (19)0.0137 (15)0.062 (2)
C100.0568 (12)0.0728 (14)0.0895 (17)0.0096 (12)0.0046 (12)0.0365 (14)
C110.0445 (9)0.0590 (11)0.0554 (10)0.0092 (9)0.0025 (8)0.0154 (9)
C120.0448 (9)0.0405 (8)0.0535 (9)0.0047 (8)0.0013 (8)0.0034 (8)
C130.0425 (8)0.0435 (8)0.0377 (7)0.0075 (7)0.0048 (7)0.0055 (7)
C140.0445 (8)0.0577 (10)0.0399 (8)0.0105 (8)0.0119 (7)0.0032 (8)
C150.0366 (8)0.0483 (9)0.0505 (9)0.0072 (7)0.0051 (7)0.0137 (8)
C160.0459 (10)0.0619 (12)0.0744 (14)0.0072 (9)0.0156 (10)0.0261 (11)
C170.0381 (9)0.0605 (12)0.1007 (17)0.0060 (9)0.0001 (11)0.0292 (13)
C180.0488 (10)0.0517 (11)0.0913 (17)0.0112 (9)0.0177 (11)0.0161 (11)
C190.0484 (10)0.0489 (10)0.0577 (10)0.0064 (8)0.0114 (8)0.0061 (9)
C200.0362 (8)0.0430 (8)0.0459 (8)0.0014 (7)0.0026 (7)0.0069 (7)
C210.0363 (7)0.0403 (8)0.0370 (7)0.0020 (7)0.0021 (6)0.0024 (6)
C220.0406 (8)0.0386 (8)0.0383 (7)0.0046 (7)0.0025 (7)0.0006 (6)
C230.0432 (8)0.0371 (8)0.0379 (7)0.0018 (7)0.0034 (7)0.0026 (6)
C240.0519 (10)0.0474 (9)0.0449 (9)0.0006 (8)0.0057 (8)0.0011 (7)
C250.0532 (11)0.0731 (14)0.0551 (11)0.0015 (11)0.0117 (9)0.0020 (11)
C260.0621 (13)0.0746 (15)0.0740 (15)0.0168 (12)0.0070 (11)0.0181 (13)
C270.0706 (14)0.0475 (10)0.0789 (14)0.0110 (11)0.0082 (12)0.0151 (11)
C280.0580 (11)0.0361 (8)0.0501 (9)0.0004 (8)0.0097 (8)0.0059 (7)
C290.0759 (14)0.0347 (8)0.0625 (11)0.0090 (9)0.0135 (11)0.0012 (8)
C300.0762 (14)0.0471 (10)0.0566 (11)0.0250 (10)0.0023 (11)0.0087 (9)
C310.0531 (10)0.0507 (10)0.0488 (10)0.0124 (9)0.0060 (8)0.0002 (8)
C320.0446 (9)0.0717 (13)0.0613 (11)0.0167 (10)0.0039 (9)0.0028 (11)
Geometric parameters (Å, º) top
O1—C51.210 (3)C14—H14B0.9700
O2—C121.196 (2)C15—C161.391 (3)
O3—C211.208 (2)C15—C201.396 (3)
N1—C321.451 (2)C16—C171.376 (4)
N1—C11.454 (2)C16—H160.9300
N1—C41.455 (3)C17—C181.379 (4)
C1—C121.547 (2)C17—H170.9300
C1—C51.551 (2)C18—C191.376 (3)
C1—C21.578 (2)C18—H180.9300
C2—C131.535 (2)C19—C201.397 (3)
C2—C211.544 (2)C19—H190.9300
C2—C31.580 (2)C20—C211.489 (2)
C3—C221.521 (2)C22—C311.364 (3)
C3—C41.531 (2)C22—C231.435 (2)
C3—H30.9800C23—C241.415 (3)
C4—H4A0.9700C23—C281.428 (2)
C4—H4B0.9700C24—C251.365 (3)
C5—C61.466 (3)C24—H240.9300
C6—C111.376 (3)C25—C261.394 (4)
C6—C71.403 (3)C25—H250.9300
C7—C81.381 (5)C26—C271.348 (4)
C7—H70.9300C26—H260.9300
C8—C91.372 (5)C27—C281.419 (3)
C8—H80.9300C27—H270.9300
C9—C101.378 (5)C28—C291.402 (3)
C9—H90.9300C29—C301.354 (3)
C10—C111.387 (3)C29—H290.9300
C10—H100.9300C30—C311.417 (3)
C11—C121.479 (3)C30—H300.9300
C13—C141.517 (3)C31—H310.9300
C13—H13A0.9700C32—H32A0.9600
C13—H13B0.9700C32—H32B0.9600
C14—C151.499 (3)C32—H32C0.9600
C14—H14A0.9700
C32—N1—C1116.31 (15)C15—C14—H14B109.1
C32—N1—C4113.40 (16)C13—C14—H14B109.1
C1—N1—C4106.64 (14)H14A—C14—H14B107.8
N1—C1—C12109.27 (14)C16—C15—C20118.4 (2)
N1—C1—C5113.54 (14)C16—C15—C14121.12 (18)
C12—C1—C5101.98 (14)C20—C15—C14120.50 (16)
N1—C1—C2102.60 (12)C17—C16—C15121.1 (2)
C12—C1—C2116.46 (14)C17—C16—H16119.5
C5—C1—C2113.37 (13)C15—C16—H16119.5
C13—C2—C21108.26 (13)C16—C17—C18120.4 (2)
C13—C2—C1114.05 (12)C16—C17—H17119.8
C21—C2—C1108.27 (12)C18—C17—H17119.8
C13—C2—C3114.30 (13)C19—C18—C17119.6 (2)
C21—C2—C3109.00 (12)C19—C18—H18120.2
C1—C2—C3102.69 (12)C17—C18—H18120.2
C22—C3—C4115.47 (15)C18—C19—C20120.5 (2)
C22—C3—C2115.93 (13)C18—C19—H19119.8
C4—C3—C2105.32 (13)C20—C19—H19119.8
C22—C3—H3106.5C15—C20—C19120.02 (17)
C4—C3—H3106.5C15—C20—C21122.15 (17)
C2—C3—H3106.5C19—C20—C21117.83 (16)
N1—C4—C3103.85 (14)O3—C21—C20120.24 (16)
N1—C4—H4A111.0O3—C21—C2121.55 (15)
C3—C4—H4A111.0C20—C21—C2118.21 (14)
N1—C4—H4B111.0C31—C22—C23118.48 (17)
C3—C4—H4B111.0C31—C22—C3122.43 (17)
H4A—C4—H4B109.0C23—C22—C3119.09 (15)
O1—C5—C6126.50 (17)C24—C23—C28117.09 (17)
O1—C5—C1125.10 (17)C24—C23—C22123.75 (16)
C6—C5—C1108.31 (16)C28—C23—C22119.15 (16)
C11—C6—C7120.4 (2)C25—C24—C23122.1 (2)
C11—C6—C5111.01 (16)C25—C24—H24118.9
C7—C6—C5128.6 (2)C23—C24—H24118.9
C8—C7—C6116.9 (3)C24—C25—C26120.3 (2)
C8—C7—H7121.5C24—C25—H25119.9
C6—C7—H7121.5C26—C25—H25119.9
C9—C8—C7122.4 (3)C27—C26—C25119.9 (2)
C9—C8—H8118.8C27—C26—H26120.1
C7—C8—H8118.8C25—C26—H26120.1
C8—C9—C10120.8 (3)C26—C27—C28121.9 (2)
C8—C9—H9119.6C26—C27—H27119.0
C10—C9—H9119.6C28—C27—H27119.0
C9—C10—C11117.7 (3)C29—C28—C27121.79 (19)
C9—C10—H10121.2C29—C28—C23119.48 (19)
C11—C10—H10121.2C27—C28—C23118.72 (19)
C6—C11—C10121.8 (2)C30—C29—C28120.87 (18)
C6—C11—C12109.95 (17)C30—C29—H29119.6
C10—C11—C12128.2 (2)C28—C29—H29119.6
O2—C12—C11126.53 (19)C29—C30—C31119.94 (19)
O2—C12—C1124.96 (17)C29—C30—H30120.0
C11—C12—C1108.43 (16)C31—C30—H30120.0
C14—C13—C2113.59 (14)C22—C31—C30122.0 (2)
C14—C13—H13A108.8C22—C31—H31119.0
C2—C13—H13A108.8C30—C31—H31119.0
C14—C13—H13B108.8N1—C32—H32A109.5
C2—C13—H13B108.8N1—C32—H32B109.5
H13A—C13—H13B107.7H32A—C32—H32B109.5
C15—C14—C13112.50 (14)N1—C32—H32C109.5
C15—C14—H14A109.1H32A—C32—H32C109.5
C13—C14—H14A109.1H32B—C32—H32C109.5
C32—N1—C1—C1264.5 (2)C5—C1—C12—C115.58 (18)
C4—N1—C1—C12167.92 (15)C2—C1—C12—C11118.38 (16)
C32—N1—C1—C548.6 (2)C21—C2—C13—C1455.95 (19)
C4—N1—C1—C578.99 (18)C1—C2—C13—C1464.64 (19)
C32—N1—C1—C2171.34 (16)C3—C2—C13—C14177.63 (14)
C4—N1—C1—C243.74 (17)C2—C13—C14—C1551.9 (2)
N1—C1—C2—C13151.52 (14)C13—C14—C15—C16157.93 (17)
C12—C1—C2—C1389.21 (17)C13—C14—C15—C2021.5 (2)
C5—C1—C2—C1328.67 (19)C20—C15—C16—C170.6 (3)
N1—C1—C2—C2187.90 (15)C14—C15—C16—C17178.84 (18)
C12—C1—C2—C2131.37 (18)C15—C16—C17—C180.6 (3)
C5—C1—C2—C21149.25 (14)C16—C17—C18—C190.1 (3)
N1—C1—C2—C327.30 (15)C17—C18—C19—C200.3 (3)
C12—C1—C2—C3146.57 (14)C16—C15—C20—C190.2 (3)
C5—C1—C2—C395.55 (15)C14—C15—C20—C19179.24 (17)
C13—C2—C3—C221.7 (2)C16—C15—C20—C21178.65 (16)
C21—C2—C3—C22119.53 (15)C14—C15—C20—C211.9 (3)
C1—C2—C3—C22125.80 (14)C18—C19—C20—C150.2 (3)
C13—C2—C3—C4127.23 (16)C18—C19—C20—C21179.14 (17)
C21—C2—C3—C4111.49 (16)C15—C20—C21—O3174.69 (18)
C1—C2—C3—C43.18 (16)C19—C20—C21—O36.4 (3)
C32—N1—C4—C3171.27 (16)C15—C20—C21—C24.2 (2)
C1—N1—C4—C341.97 (18)C19—C20—C21—C2174.68 (16)
C22—C3—C4—N1151.38 (14)C13—C2—C21—O3146.97 (17)
C2—C3—C4—N122.13 (18)C1—C2—C21—O388.92 (19)
N1—C1—C5—O154.7 (2)C3—C2—C21—O322.1 (2)
C12—C1—C5—O1172.11 (18)C13—C2—C21—C2031.93 (19)
C2—C1—C5—O161.9 (2)C1—C2—C21—C2092.19 (16)
N1—C1—C5—C6122.12 (16)C3—C2—C21—C20156.82 (14)
C12—C1—C5—C64.71 (18)C4—C3—C22—C3122.4 (2)
C2—C1—C5—C6121.30 (15)C2—C3—C22—C31101.47 (19)
O1—C5—C6—C11174.55 (19)C4—C3—C22—C23157.10 (15)
C1—C5—C6—C112.2 (2)C2—C3—C22—C2379.05 (19)
O1—C5—C6—C76.6 (3)C31—C22—C23—C24179.52 (17)
C1—C5—C6—C7176.6 (2)C3—C22—C23—C240.0 (3)
C11—C6—C7—C81.1 (3)C31—C22—C23—C281.1 (2)
C5—C6—C7—C8177.6 (2)C3—C22—C23—C28179.40 (15)
C6—C7—C8—C90.6 (4)C28—C23—C24—C250.6 (3)
C7—C8—C9—C100.6 (5)C22—C23—C24—C25178.80 (18)
C8—C9—C10—C111.3 (4)C23—C24—C25—C260.9 (3)
C7—C6—C11—C100.5 (3)C24—C25—C26—C270.8 (4)
C5—C6—C11—C10178.48 (18)C25—C26—C27—C280.3 (4)
C7—C6—C11—C12179.53 (19)C26—C27—C28—C29179.0 (2)
C5—C6—C11—C121.5 (2)C26—C27—C28—C230.1 (3)
C9—C10—C11—C60.7 (4)C24—C23—C28—C29178.86 (18)
C9—C10—C11—C12179.3 (2)C22—C23—C28—C291.7 (3)
C6—C11—C12—O2172.2 (2)C24—C23—C28—C270.1 (3)
C10—C11—C12—O27.8 (4)C22—C23—C28—C27179.34 (17)
C6—C11—C12—C14.7 (2)C27—C28—C29—C30179.9 (2)
C10—C11—C12—C1175.3 (2)C23—C28—C29—C300.9 (3)
N1—C1—C12—O250.9 (2)C28—C29—C30—C310.4 (3)
C5—C1—C12—O2171.4 (2)C23—C22—C31—C300.3 (3)
C2—C1—C12—O264.7 (2)C3—C22—C31—C30179.19 (18)
N1—C1—C12—C11126.03 (16)C29—C30—C31—C221.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C1/C5/C6/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.982.232.772 (2)114
C4—H4A···O10.972.533.072 (3)115
C13—H13B···O10.972.593.246 (3)125
C29—H29···O2i0.932.403.218 (2)146
C17—H17···O1ii0.932.553.442 (3)163
C14—H14B···Cg10.972.513.146 (2)123
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H25NO3
Mr471.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)10.8442 (9), 11.431 (1), 19.2701 (16)
V3)2388.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28122, 3233, 2941
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.10
No. of reflections3233
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C1/C5/C6/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.982.232.772 (2)114
C4—H4A···O10.972.533.072 (3)115
C13—H13B···O10.972.593.246 (3)125
C29—H29···O2i0.932.403.218 (2)146
C17—H17···O1ii0.932.553.442 (3)163
C14—H14B···Cg10.972.513.146 (2)123
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme and also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationAbdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestro, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320–3334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPettersson, M., Campbell, B. M., Dounary, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865–868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J. & Raghunathan, R. (2005). Acta Cryst. E61, o1582–o1584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds