organic compounds
1-Dimethylamino-9,10-anthraquinone
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: trzybinski@chem.univ.gda.pl
In the 16H13NO2, adjacent molecules are linked through C—H⋯π and π–π [centroid–centroid distances = 3.844 (2) Å] contacts. The anthracene ring system and dimethylamino group are oriented at a dihedral angle of 38.4 (1)°. In the crystal, the mean planes of adjacent anthracene units are inclined at angles of 59.3 (1), 75.7 (1) and 76.0 (1)°.
of the title compound, CRelated literature
For general background to anthraquinones, see: Arai et al. (1985); Dalliya et al. (2007); Gatto et al. (1996); Kowalczyk et al. (2010); Mori et al. (1990); Ossowski et al. (2005); Zoń et al. (2003). For a related structure, see: Yatsenko et al. (2000). For molecular interactions, see: Hunter et al. (2001); Spek (2009); Takahashi et al. (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811006829/ng5119sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006829/ng5119Isup2.hkl
1-(Dimethylamino)-9,10-anthraquinone was synthesized according to the procedure described below. The solution of 40% dimethylamine in water (2,21 ml, 12.36 mmol) was added to 1-chloro-9,10-anthraquinone (1 g, 4.12 mmol) in 15 ml toluene. The mixture was stirred at 130° for 4 h. The progress of the reaction was monitored by TLC (SiO2, dichloromethane) until the completion of reaction. The resulting mixture was concentrated to remove the solvent and dissolved in 100 ml of dichloromethane. The solution was washed with water (100 ml), the organic phase was dried over MgSO4 and concentrated. The resultant solid was purified by
using dichloromethane as a solvent obtaining the title compound as a red solid (921 mg, 89%). The product was recrystallized by slow evaporation from methanol to give red crystals suitable for X-ray diffraction (m.p. 137.5–137.9°C). Spectral data: IR (KBr): 3584, 2916, 2806, 1662, 1637, 1551, 1499, 1374, 1311,1270, 1180, 1024, 935, 793, 731,704 cm-1; 1H NMR (CDCl3, 400 MHz): 3.03 (6H, s, CH3), 7.34–7.36 (1H, d, J1 = 8.8 Hz, H-2-Ar), 7.54–7.58 (1H, t, J1 = J2 = 8.0 Hz, H-3-Ar), 7.69–7.72 (1H, t, J1 = 7.6 Hz, J1 = 6.8 Hz, J2 = 7.2 Hz, H-6-Ar), 7.74–7.76 (1H, d, J1 = 7.6 Hz, H-4-Ar), 7.78–7.82 (1H, t, J1 = 7.6 Hz, J1 = 8.4 Hz, J2 = 8.0 Hz, H-7-Ar), 8.22–8.24 (1H, t, J1 = 7.2 Hz, H-8-Ar). Elemental analysis: calculated for C16H13NO2: C 76.48, H 5.21, N 5.57; found: C 76.52, H 5.28, N 5.51.1063 Friedel pairs were merged. H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C16H13NO2 | F(000) = 528 |
Mr = 251.27 | Dx = 1.372 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1944 reflections |
a = 7.2823 (3) Å | θ = 3.1–29.0° |
b = 11.1519 (7) Å | µ = 0.09 mm−1 |
c = 14.9834 (7) Å | T = 295 K |
V = 1216.82 (11) Å3 | Prism, red |
Z = 4 | 0.45 × 0.20 × 0.18 mm |
Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer | 918 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.033 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −8→6 |
ω scans | k = −12→13 |
4683 measured reflections | l = −17→13 |
1258 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3 |
1258 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H13NO2 | V = 1216.82 (11) Å3 |
Mr = 251.27 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.2823 (3) Å | µ = 0.09 mm−1 |
b = 11.1519 (7) Å | T = 295 K |
c = 14.9834 (7) Å | 0.45 × 0.20 × 0.18 mm |
Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer | 918 reflections with I > 2σ(I) |
4683 measured reflections | Rint = 0.033 |
1258 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.12 e Å−3 |
1258 reflections | Δρmin = −0.18 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7457 (3) | 0.5675 (2) | 0.53415 (14) | 0.0349 (6) | |
C2 | 0.8768 (3) | 0.6609 (3) | 0.53396 (17) | 0.0437 (7) | |
H2 | 0.9738 | 0.6578 | 0.4937 | 0.052* | |
C3 | 0.8647 (4) | 0.7554 (3) | 0.59116 (18) | 0.0486 (7) | |
H3 | 0.9530 | 0.8155 | 0.5892 | 0.058* | |
C4 | 0.7235 (3) | 0.7630 (2) | 0.65179 (17) | 0.0422 (6) | |
H4 | 0.7206 | 0.8255 | 0.6928 | 0.051* | |
C5 | 0.1522 (4) | 0.6067 (3) | 0.78267 (16) | 0.0459 (7) | |
H5 | 0.1608 | 0.6622 | 0.8288 | 0.055* | |
C6 | 0.0081 (4) | 0.5277 (3) | 0.78088 (18) | 0.0487 (7) | |
H6 | −0.0795 | 0.5290 | 0.8260 | 0.058* | |
C7 | −0.0067 (3) | 0.4466 (3) | 0.71212 (17) | 0.0465 (7) | |
H7 | −0.1065 | 0.3946 | 0.7099 | 0.056* | |
C8 | 0.1262 (3) | 0.4422 (2) | 0.64640 (17) | 0.0409 (6) | |
H8 | 0.1164 | 0.3863 | 0.6006 | 0.049* | |
C9 | 0.4157 (3) | 0.5148 (2) | 0.57716 (15) | 0.0334 (6) | |
C10 | 0.4341 (4) | 0.6937 (2) | 0.71603 (16) | 0.0394 (7) | |
C11 | 0.5878 (3) | 0.5814 (2) | 0.58994 (14) | 0.0325 (6) | |
C12 | 0.5869 (3) | 0.6781 (2) | 0.65160 (16) | 0.0335 (6) | |
C13 | 0.2744 (3) | 0.5206 (2) | 0.64829 (15) | 0.0335 (6) | |
C14 | 0.2856 (3) | 0.6048 (2) | 0.71661 (14) | 0.0354 (6) | |
N15 | 0.7757 (3) | 0.4671 (2) | 0.48311 (13) | 0.0421 (6) | |
C16 | 0.7173 (4) | 0.3491 (2) | 0.51109 (19) | 0.0528 (8) | |
H16A | 0.6745 | 0.3525 | 0.5716 | 0.079* | |
H16B | 0.8189 | 0.2945 | 0.5072 | 0.079* | |
H16C | 0.6198 | 0.3219 | 0.4730 | 0.079* | |
C17 | 0.9195 (3) | 0.4667 (3) | 0.41526 (17) | 0.0552 (8) | |
H17A | 0.9068 | 0.5362 | 0.3780 | 0.083* | |
H17B | 0.9086 | 0.3957 | 0.3794 | 0.083* | |
H17C | 1.0376 | 0.4679 | 0.4437 | 0.083* | |
O18 | 0.3823 (2) | 0.45881 (18) | 0.50827 (11) | 0.0484 (5) | |
O19 | 0.4317 (3) | 0.77920 (19) | 0.76763 (15) | 0.0644 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0328 (13) | 0.0405 (16) | 0.0315 (12) | 0.0014 (14) | −0.0002 (12) | 0.0029 (12) |
C2 | 0.0356 (14) | 0.0555 (19) | 0.0400 (14) | −0.0071 (15) | 0.0045 (12) | 0.0082 (14) |
C3 | 0.0453 (14) | 0.0471 (17) | 0.0532 (16) | −0.0149 (15) | −0.0037 (15) | 0.0040 (17) |
C4 | 0.0427 (14) | 0.0392 (16) | 0.0448 (14) | −0.0052 (14) | −0.0053 (13) | −0.0071 (14) |
C5 | 0.0478 (15) | 0.0464 (18) | 0.0435 (14) | 0.0079 (15) | 0.0064 (13) | −0.0049 (14) |
C6 | 0.0377 (14) | 0.057 (2) | 0.0512 (15) | 0.0046 (16) | 0.0143 (12) | 0.0078 (17) |
C7 | 0.0345 (14) | 0.0513 (19) | 0.0538 (16) | −0.0061 (14) | −0.0005 (13) | 0.0095 (17) |
C8 | 0.0348 (13) | 0.0461 (16) | 0.0416 (13) | −0.0012 (13) | −0.0033 (12) | 0.0038 (14) |
C9 | 0.0339 (12) | 0.0348 (15) | 0.0314 (12) | 0.0014 (12) | −0.0027 (11) | 0.0011 (12) |
C10 | 0.0434 (15) | 0.0391 (16) | 0.0358 (14) | 0.0024 (13) | −0.0017 (13) | −0.0039 (13) |
C11 | 0.0296 (12) | 0.0372 (15) | 0.0306 (12) | 0.0010 (12) | −0.0026 (11) | 0.0048 (12) |
C12 | 0.0317 (12) | 0.0346 (14) | 0.0342 (12) | 0.0011 (13) | −0.0051 (12) | 0.0036 (12) |
C13 | 0.0284 (12) | 0.0364 (15) | 0.0358 (12) | 0.0050 (12) | −0.0062 (11) | 0.0035 (12) |
C14 | 0.0319 (13) | 0.0378 (15) | 0.0364 (12) | 0.0035 (12) | −0.0001 (12) | 0.0014 (13) |
N15 | 0.0347 (11) | 0.0497 (14) | 0.0418 (11) | −0.0001 (12) | 0.0084 (10) | −0.0042 (12) |
C16 | 0.0510 (16) | 0.0460 (18) | 0.0614 (17) | 0.0072 (16) | 0.0043 (15) | −0.0056 (16) |
C17 | 0.0407 (14) | 0.076 (2) | 0.0489 (15) | 0.0057 (17) | 0.0081 (13) | −0.0116 (16) |
O18 | 0.0404 (10) | 0.0629 (12) | 0.0418 (10) | −0.0084 (10) | 0.0001 (8) | −0.0145 (10) |
O19 | 0.0661 (13) | 0.0604 (14) | 0.0665 (13) | −0.0108 (11) | 0.0160 (11) | −0.0280 (13) |
C1—N15 | 1.373 (3) | C8—H8 | 0.9300 |
C1—C2 | 1.413 (4) | C9—O18 | 1.230 (3) |
C1—C11 | 1.430 (3) | C9—C11 | 1.469 (3) |
C2—C3 | 1.360 (4) | C9—C13 | 1.483 (3) |
C2—H2 | 0.9300 | C10—O19 | 1.227 (3) |
C3—C4 | 1.374 (4) | C10—C14 | 1.467 (4) |
C3—H3 | 0.9300 | C10—C12 | 1.483 (3) |
C4—C12 | 1.374 (3) | C11—C12 | 1.420 (3) |
C4—H4 | 0.9300 | C13—C14 | 1.392 (3) |
C5—C6 | 1.370 (4) | N15—C16 | 1.446 (3) |
C5—C14 | 1.387 (3) | N15—C17 | 1.459 (3) |
C5—H5 | 0.9300 | C16—H16A | 0.9600 |
C6—C7 | 1.375 (4) | C16—H16B | 0.9600 |
C6—H6 | 0.9300 | C16—H16C | 0.9600 |
C7—C8 | 1.382 (3) | C17—H17A | 0.9600 |
C7—H7 | 0.9300 | C17—H17B | 0.9600 |
C8—C13 | 1.389 (3) | C17—H17C | 0.9600 |
N15—C1—C2 | 119.5 (2) | C14—C10—C12 | 118.5 (2) |
N15—C1—C11 | 122.8 (2) | C12—C11—C1 | 117.8 (2) |
C2—C1—C11 | 117.7 (2) | C12—C11—C9 | 117.7 (2) |
C3—C2—C1 | 121.7 (2) | C1—C11—C9 | 123.7 (2) |
C3—C2—H2 | 119.1 | C4—C12—C11 | 121.4 (2) |
C1—C2—H2 | 119.1 | C4—C12—C10 | 117.5 (2) |
C2—C3—C4 | 120.8 (3) | C11—C12—C10 | 121.1 (2) |
C2—C3—H3 | 119.6 | C8—C13—C14 | 119.0 (2) |
C4—C3—H3 | 119.6 | C8—C13—C9 | 119.8 (2) |
C12—C4—C3 | 119.9 (2) | C14—C13—C9 | 121.1 (2) |
C12—C4—H4 | 120.1 | C5—C14—C13 | 119.6 (2) |
C3—C4—H4 | 120.1 | C5—C14—C10 | 120.7 (2) |
C6—C5—C14 | 120.9 (2) | C13—C14—C10 | 119.7 (2) |
C6—C5—H5 | 119.6 | C1—N15—C16 | 122.26 (19) |
C14—C5—H5 | 119.6 | C1—N15—C17 | 120.3 (2) |
C5—C6—C7 | 119.8 (2) | C16—N15—C17 | 114.2 (2) |
C5—C6—H6 | 120.1 | N15—C16—H16A | 109.5 |
C7—C6—H6 | 120.1 | N15—C16—H16B | 109.5 |
C6—C7—C8 | 120.2 (2) | H16A—C16—H16B | 109.5 |
C6—C7—H7 | 119.9 | N15—C16—H16C | 109.5 |
C8—C7—H7 | 119.9 | H16A—C16—H16C | 109.5 |
C7—C8—C13 | 120.5 (2) | H16B—C16—H16C | 109.5 |
C7—C8—H8 | 119.8 | N15—C17—H17A | 109.5 |
C13—C8—H8 | 119.8 | N15—C17—H17B | 109.5 |
O18—C9—C11 | 122.3 (2) | H17A—C17—H17B | 109.5 |
O18—C9—C13 | 119.2 (2) | N15—C17—H17C | 109.5 |
C11—C9—C13 | 118.4 (2) | H17A—C17—H17C | 109.5 |
O19—C10—C14 | 120.7 (2) | H17B—C17—H17C | 109.5 |
O19—C10—C12 | 120.8 (2) | ||
N15—C1—C2—C3 | −172.0 (2) | O19—C10—C12—C11 | −178.1 (2) |
C11—C1—C2—C3 | 6.6 (3) | C14—C10—C12—C11 | 1.8 (3) |
C1—C2—C3—C4 | 0.2 (4) | C7—C8—C13—C14 | −0.9 (3) |
C2—C3—C4—C12 | −3.7 (4) | C7—C8—C13—C9 | −179.9 (2) |
C14—C5—C6—C7 | −1.0 (4) | O18—C9—C13—C8 | 14.8 (3) |
C5—C6—C7—C8 | 1.9 (4) | C11—C9—C13—C8 | −168.1 (2) |
C6—C7—C8—C13 | −1.0 (4) | O18—C9—C13—C14 | −164.1 (2) |
N15—C1—C11—C12 | 168.8 (2) | C11—C9—C13—C14 | 12.9 (3) |
C2—C1—C11—C12 | −9.8 (3) | C6—C5—C14—C13 | −0.9 (4) |
N15—C1—C11—C9 | −21.7 (3) | C6—C5—C14—C10 | 176.6 (2) |
C2—C1—C11—C9 | 159.7 (2) | C8—C13—C14—C5 | 1.9 (3) |
O18—C9—C11—C12 | 155.6 (2) | C9—C13—C14—C5 | −179.2 (2) |
C13—C9—C11—C12 | −21.3 (3) | C8—C13—C14—C10 | −175.7 (2) |
O18—C9—C11—C1 | −13.8 (4) | C9—C13—C14—C10 | 3.3 (3) |
C13—C9—C11—C1 | 169.2 (2) | O19—C10—C14—C5 | −8.3 (4) |
C3—C4—C12—C11 | 0.2 (4) | C12—C10—C14—C5 | 171.8 (2) |
C3—C4—C12—C10 | −177.5 (2) | O19—C10—C14—C13 | 169.2 (2) |
C1—C11—C12—C4 | 6.6 (3) | C12—C10—C14—C13 | −10.7 (3) |
C9—C11—C12—C4 | −163.5 (2) | C2—C1—N15—C16 | 145.7 (2) |
C1—C11—C12—C10 | −175.8 (2) | C11—C1—N15—C16 | −32.9 (3) |
C9—C11—C12—C10 | 14.1 (3) | C2—C1—N15—C17 | −12.9 (3) |
O19—C10—C12—C4 | −0.4 (4) | C11—C1—N15—C17 | 168.5 (2) |
C14—C10—C12—C4 | 179.5 (2) |
Cg1 and Cg2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cg1i | 0.93 | 2.99 | 3.724 (3) | 137 |
C4—H4···Cg2ii | 0.93 | 2.81 | 3.678 (3) | 156 |
Symmetry codes: (i) −x, y+3/2, −z+3/2; (ii) x+3/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H13NO2 |
Mr | 251.27 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 7.2823 (3), 11.1519 (7), 14.9834 (7) |
V (Å3) | 1216.82 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4683, 1258, 918 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.079, 0.96 |
No. of reflections | 1258 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008, SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cg1i | 0.93 | 2.99 | 3.724 (3) | 137 |
C4—H4···Cg2ii | 0.93 | 2.81 | 3.678 (3) | 156 |
Symmetry codes: (i) −x, y+3/2, −z+3/2; (ii) x+3/2, −y+1/2, −z+1. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 2iii | 3.844 (2) | 11.13 (12) | 3.606 (10) | 1.334 (10) |
2 | 1iv | 3.844 (2) | 11.13 (12) | 3.606 (10) | 1.334 (10) |
Symmetry codes: (iii) x + 1, y, z; (iv) x – 1, y + 1, z + 1. Notes: Cg1 and Cg2 are the centroids of the C1-C4/C11/C12 and C5-C8/C13/C14 rings respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS/8210-4-0177-11).
References
Arai, S., Kato, S. & Hida, M. (1985). Bull. Chem. Soc. Jpn, 58, 1458–1463. CrossRef CAS Web of Science Google Scholar
Dalliya, P., Maity, D. K., Nayak, S. K., Mukherjee, T. & Pal, H. (2007). Photochem. Photobiol. A Chem. 186, 218–228. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122. CrossRef CAS PubMed Web of Science Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Kowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedziałkowski, P., Ossowski, T. & Stojek, Z. (2010). Electroanalysis, 22, 49–59. CrossRef CAS Google Scholar
Mori, H., Yoshimi, N., Iwata, H., Mori, Y., Hara, A., Tanaka, T. & Kawai, K. (1990). Carcinogenesis, 11, 799–802. CrossRef CAS PubMed Web of Science Google Scholar
Ossowski, T., Zarzeczańska, D., Zalewski, L., Niedziałkowski, P., Majewski, R. & Szymańska, A. (2005). Tetrahedron Lett. 46, 1735–1738. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542–546. Web of Science CSD CrossRef CAS Google Scholar
Zoń, A., Pałys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthraquinones, the largest group of naturally occurring quinones, present in bacteria, fungi and many higher plant families contain π-electrons, reducible p-quinone system and are redoxactive (Zoń et al., 2003). That is the reason why those found many practical applications (Kowalczyk et al., 2010; Ossowski et al., 2005). Both natural and synthetic derivatives have been used as colourants in food, cosmetics, textiles and hair dyes (Mori et al., 1990). In medicine they are known as antitumor drugs and antibacterial or anti-inflammatory agents (Gatto et al., 1996). Among anthraquinones, the amino-derivatives, due to the possibility of their chemical modification, reveal greatest potential of application. Here, we present the crystal structure of the 1-(dimethylamino)-9,10-anthraquinone – compound with interesting photophysical properties (Arai et al., 1985; Dalliya et al., 2007).
In the molecule of the title compound (Fig. 1), likewise in the 1-(methyl(phenyl)amino)anthraquinone (Yatsenko et al., 2000), relatively strong deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion (0.1274 (3) Å) is directly caused by the steric effect of the bulky –N(CH3)2 group (Dalliya et al., 2007). The dimethylamino group is twisted at an angle of 38.4 (1)° relative to the anthracene fragment. The neighboring anthracene moieties are inclined at an angle of 59.3 (1)°, 75.7 (1)° and 76.0 (1)° in the crystal lattice.
In the crystal structure, the adjacent molecules are linked by C–H···π (Table 2, Fig. 2) and π-π [centroid-centroid distances = 3.844 (2) Å] (Table 3, Fig. 3) contacts. All interactions demonstrated were found by PLATON (Spek, 2009). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the π-π (Hunter et al., 2001) interactions.