organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o637-o638

Ethane-1,2-diaminium dipicrate dihydrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 6 January 2011; accepted 8 February 2011; online 16 February 2011)

The title compound, C2H10N22+·2C6H2N3O7·2H2O, crystallizes with a complete picrate anion and half an ethyl­enediammonium dication on a mirror plane, and two half-water mol­ecules (both on a mirror plane) in the asymmetric unit. The N atoms from separate half ethyl­enediammonium dications are in near proximity to a phenolate O atom and two o-NO2 groups from the picrate anion, which, along with the water mol­ecule form N—H⋯O, O—H⋯O and weak intermolecular C—H⋯O hydrogen bonds that create cyclic patterns with graph-set descriptors R24(8), R44(12), and R44(16). The crystal packing is strongly influenced by these inter­molecular inter­actions between symmetry-related water mol­ecules, the half ethyl­enediammonium dication and the picrate anion, forming a three-dimensional supermolecular structure.

Related literature

For related structures, see: Muthamizhchelvan et al. (2005a[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1546-o1548.],b[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2887-o2890.],c[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005c). Acta Cryst. E61, o2987-o2989.]); Subashini et al. (2006[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847-o3849.]); Narayana et al. (2008[Narayana, B., Sarojini, B. K., Prakash Kamath, K., Yathirajan, H. S. & Bolte, M. (2008). Acta Cryst. E64, o117-o118.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19. ]). For picrates of biologically important molecules, see: Harrison et al. (2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C6H2N3O7·2H2O

  • Mr = 554.36

  • Orthorhombic, P n m a

  • a = 13.4795 (4) Å

  • b = 20.4372 (7) Å

  • c = 8.0410 (3) Å

  • V = 2215.16 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 K

  • 0.52 × 0.42 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.837, Tmax = 0.960

  • 16775 measured reflections

  • 3846 independent reflections

  • 2322 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.196

  • S = 1.03

  • 3846 reflections

  • 207 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯O2Wi 0.87 (1) 2.06 (2) 2.872 (4) 156 (3)
N4—H42⋯O1 0.86 (1) 1.98 (1) 2.815 (2) 164 (2)
N4—H42⋯O7 0.86 (1) 2.41 (2) 2.9166 (16) 118 (2)
N5—H51⋯O1Wii 0.87 (1) 1.91 (1) 2.778 (3) 176 (3)
N5—H52⋯O1iii 0.86 (1) 2.18 (2) 2.892 (2) 140 (2)
N5—H52⋯O2iii 0.86 (1) 2.34 (2) 3.018 (3) 136 (2)
C3—H3⋯O6iv 0.93 2.53 3.337 (3) 145
C7—H7⋯O2v 0.96 2.39 3.128 (3) 134
C7—H7⋯O7vi 0.96 2.56 3.1203 (19) 117
O1W—H1W2⋯O3 0.84 (1) 2.21 (3) 3.008 (2) 159 (6)
O1W—H1W2⋯O2 0.84 (1) 2.52 (4) 3.243 (3) 145 (5)
O2W—H2W2⋯O5 0.85 (1) 2.26 (2) 3.082 (2) 163 (7)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structures of compounds similar to ethylenediammonium picrate, 3-(dimethylammonio)propanaminium dipicrate and triethylaminium picrate (Muthamizhchelvan et al., 2005a, 2005b, 2005c), 2-amino-4,6-dimethylpyrimidinium picrate (Subashini et al., 2006) and 2-aminopyrimidinium picrate (Narayana et al., 2008) have been reported. In continuation of our work on picrates of biologically important molecules (Harrison et al., 2007; Swamy et al., 2007), we have prepared a new picrate of ethylenediammonium hydrate, [C7H8N4O8] and its crystal structure is reported.

The title compound, 0.5(C2H10N22+), C6H2N3O7-, H2O, crystallizes with a complete picrate anion and a half-ethylenediammonium group on a mirror plane thus producing a 0.5 di-cation (i.e. protonated at both ends), and two half-water molecules (both on a mirror plane) in the asymmetric unit (Fig. 1). Bond distances and angles are in normal ranges (Allen et al., 1998). In the picrate anion the depronated phenolate oxygen atom is slightly deviated from the plane of the benzene ring (torsion angle O1/C1/C2/C3 = 177.84 (17) Å). The twist angles between the mean plane of the benzene ring and the two o-NO2 groups are 20.3 (0)° (N1) and 39.6 (7)° (N3). The p-NO2group is twisted by 3.3 (4)° and most likely influenced by a weak hydrogen bond interaction (O2W—H2W2···O5). The deviation of the p-NO2 groups from the plane of the benzene ring is due to a network of hydrogen bond interactions with the half-ethylenediammonium di-cation involving both nitrogen atoms (N4 and N5 lying across a morror plane). The position of N4 and N5 from separate half-ethylenediammonium di-cations, in near proximity to a phenolate oxygen atom and two o-NO2 groups from the picrate anion, along with the water molecule form N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) that create cyclic patterns with graph-set descriptors R24(8), R44(12) and R44(16). These intermolecular interactions of symmetry-related molecules link the cations and anions through a half-water molecule (on a mirror plane), the half-ethylenediammonium di-cation and the picrate anion forming a 3-D supermolecular structure (Fig. 2).

Related literature top

For related structures, see: Muthamizhchelvan et al. (2005a,b,c); Subashini et al. (2006); Narayana et al. (2008). For standard bond lengths, see: Allen et al. (1987). For the biological relevance [of what?], see: Harrison et al. (2007); Swamy et al. (2007). These are both Acta E papers. Are they actually related structures?

Experimental top

Ethylenediamine dihydrochloride (1.33 g, 0.01 mol) was dissolved in 25 ml of water. Picric acid (2.29 g, 0.01 mol) was dissolved in 50 ml of water. Both the solutions were mixed and stirred for few minutes. The formed complex was filtered and dried. Good quality crystals were grown from ethanol solution by slow evaporation (m. p.: 476–478 K). Composition: Found (Calculated): C: 30.44 (30.40); H: 2.92 (2.96); N: 20.29% (20.36%).

Refinement top

The H atoms on the water O atoms and N atoms were located by difference Fourier maps, fixed at 0.84Å (O-H) and 1.36° (O···O), or 0.86Å (N-H) and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93 or 0.95Å (CH). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, 0.5(C2H10N22+), C6H2N3O7-, H2O, showing the atom labeling scheme and 30% probability displacement ellipsoids. The asymmetric unit consists of a complete picrate anion, a half-ethylenediammonium group on a mirror plane thus producing a 0.5 di-cation (i.e. protonated at both ends), and two half-water molecules (both on a mirror plane). Dashed lines indicate O—H···O hydrogen bond interactions with a disordered water molecule..
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions which produces a 3-D superstructure. Disordered water molecules are displayed.
Ethane-1,2-diaminium bis(2,4,6-trinitrophenolate) dihydrate top
Crystal data top
C2H10N22+·2C6H2N3O7·2H2OF(000) = 1144
Mr = 554.36Dx = 1.662 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5241 reflections
a = 13.4795 (4) Åθ = 4.6–32.5°
b = 20.4372 (7) ŵ = 0.15 mm1
c = 8.0410 (3) ÅT = 295 K
V = 2215.16 (13) Å3Chunk, pale orange
Z = 40.52 × 0.42 × 0.27 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
3846 independent reflections
Radiation source: fine-focus sealed tube2322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.50 pixels mm-1θmax = 32.5°, θmin = 5.0°
ϕ and ω scansh = 1914
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2923
Tmin = 0.837, Tmax = 0.960l = 119
16775 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.110P)2 + 0.1282P]
where P = (Fo2 + 2Fc2)/3
3846 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.37 e Å3
10 restraintsΔρmin = 0.27 e Å3
Crystal data top
C2H10N22+·2C6H2N3O7·2H2OV = 2215.16 (13) Å3
Mr = 554.36Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.4795 (4) ŵ = 0.15 mm1
b = 20.4372 (7) ÅT = 295 K
c = 8.0410 (3) Å0.52 × 0.42 × 0.27 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
3846 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2322 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.960Rint = 0.026
16775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06310 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3846 reflectionsΔρmin = 0.27 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17845 (10)0.65746 (6)0.24678 (18)0.0483 (4)
O20.27913 (16)0.67547 (9)0.5303 (2)0.0816 (6)
O30.22821 (17)0.62252 (9)0.7372 (2)0.0797 (6)
O40.11929 (14)0.40318 (8)0.6662 (2)0.0745 (5)
O50.05313 (14)0.37346 (7)0.4353 (3)0.0707 (5)
O60.10573 (12)0.51165 (8)0.0500 (2)0.0590 (4)
O70.05455 (14)0.60949 (7)0.0004 (2)0.0663 (5)
N10.23259 (12)0.63071 (7)0.5874 (2)0.0435 (4)
N20.09604 (12)0.41363 (7)0.5211 (3)0.0472 (4)
N30.09158 (12)0.55764 (8)0.0443 (2)0.0452 (4)
C10.16145 (11)0.60249 (8)0.3089 (2)0.0350 (4)
C20.18375 (12)0.58407 (8)0.4784 (2)0.0343 (4)
C30.16198 (12)0.52426 (8)0.5472 (2)0.0374 (4)
H30.17600.51600.65840.045*
C40.11908 (12)0.47672 (8)0.4495 (2)0.0373 (4)
C50.09762 (12)0.48793 (8)0.2839 (3)0.0378 (4)
H50.07050.45500.21820.045*
C60.11716 (12)0.54860 (8)0.2185 (2)0.0365 (4)
N40.08177 (14)0.75000.0444 (3)0.0373 (5)
H410.092 (2)0.75000.0622 (14)0.049 (9)*
H420.1081 (14)0.7162 (8)0.092 (3)0.052 (6)*
N50.15992 (16)0.75000.2772 (3)0.0368 (5)
H510.171 (2)0.75000.3843 (14)0.039 (7)*
H520.1861 (13)0.7149 (7)0.237 (2)0.041 (5)*
C70.02674 (18)0.75000.0673 (3)0.0439 (6)
H70.05490.78810.01580.053*
C80.05052 (18)0.75000.2490 (3)0.0383 (6)
H80.02190.78800.30010.046*
O1W0.2964 (2)0.75000.8852 (3)0.0739 (7)
H1W10.349 (3)0.764 (3)0.845 (7)0.111*0.50
H1W20.274 (4)0.721 (2)0.821 (6)0.111*0.50
O2W0.0548 (2)0.25000.3099 (4)0.0840 (8)
H2W10.007 (3)0.234 (3)0.254 (8)0.126*0.50
H2W20.031 (4)0.282 (3)0.364 (8)0.126*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0535 (8)0.0364 (7)0.0551 (9)0.0132 (6)0.0188 (6)0.0128 (6)
O20.1095 (14)0.0797 (11)0.0556 (11)0.0613 (11)0.0105 (10)0.0031 (9)
O30.1239 (16)0.0683 (11)0.0470 (10)0.0350 (11)0.0241 (10)0.0044 (9)
O40.1063 (13)0.0433 (9)0.0739 (13)0.0095 (8)0.0225 (10)0.0227 (8)
O50.0867 (12)0.0409 (8)0.0846 (14)0.0227 (8)0.0085 (10)0.0033 (8)
O60.0713 (10)0.0602 (9)0.0454 (9)0.0108 (7)0.0001 (7)0.0100 (7)
O70.0900 (13)0.0520 (9)0.0568 (10)0.0035 (8)0.0298 (8)0.0076 (8)
N10.0470 (8)0.0382 (8)0.0453 (10)0.0081 (6)0.0098 (7)0.0002 (7)
N20.0442 (8)0.0300 (7)0.0674 (13)0.0006 (6)0.0024 (8)0.0078 (8)
N30.0483 (9)0.0453 (9)0.0419 (9)0.0102 (7)0.0065 (7)0.0009 (8)
C10.0308 (7)0.0314 (8)0.0430 (10)0.0024 (6)0.0051 (7)0.0021 (7)
C20.0321 (7)0.0297 (7)0.0411 (10)0.0021 (6)0.0050 (7)0.0012 (7)
C30.0358 (8)0.0339 (8)0.0427 (10)0.0013 (6)0.0045 (7)0.0054 (7)
C40.0343 (8)0.0274 (7)0.0501 (11)0.0014 (6)0.0004 (7)0.0038 (7)
C50.0340 (8)0.0320 (8)0.0475 (10)0.0034 (6)0.0041 (7)0.0033 (8)
C60.0366 (8)0.0337 (8)0.0392 (10)0.0020 (6)0.0047 (7)0.0008 (7)
N40.0278 (9)0.0434 (12)0.0407 (13)0.0000.0018 (9)0.000
N50.0405 (11)0.0317 (10)0.0383 (12)0.0000.0094 (9)0.000
C70.0315 (11)0.0627 (17)0.0377 (14)0.0000.0010 (10)0.000
C80.0399 (12)0.0387 (12)0.0363 (14)0.0000.0001 (10)0.000
O1W0.110 (2)0.0650 (16)0.0466 (14)0.0000.0253 (14)0.000
O2W0.099 (2)0.094 (2)0.0583 (18)0.0000.0144 (15)0.000
Geometric parameters (Å, º) top
O1—C11.251 (2)C5—C61.373 (2)
O2—N11.201 (2)C5—H50.9300
O3—N11.218 (2)N4—C71.474 (3)
O4—N21.227 (3)N4—H410.869 (10)
O5—N21.218 (2)N4—H420.864 (9)
O6—N31.222 (2)N5—C81.492 (3)
O7—N31.223 (2)N5—H510.874 (10)
N1—C21.452 (2)N5—H520.863 (9)
N2—C41.446 (2)C7—C81.496 (4)
N3—C61.454 (2)C7—H70.9599
C1—C21.445 (2)C8—H80.9598
C1—C61.449 (2)O1W—H1W10.833 (10)
C2—C31.373 (2)O1W—H1W20.842 (10)
C3—C41.377 (3)O2W—H2W10.847 (10)
C3—H30.9300O2W—H2W20.846 (10)
C4—C51.382 (3)
O2—N1—O3120.56 (17)C6—C5—C4118.62 (16)
O2—N1—C2120.41 (17)C6—C5—H5120.7
O3—N1—C2118.99 (15)C4—C5—H5120.7
O5—N2—O4122.85 (18)C5—C6—C1124.98 (17)
O5—N2—C4118.51 (19)C5—C6—N3116.01 (16)
O4—N2—C4118.63 (17)C1—C6—N3119.00 (15)
O6—N3—O7123.42 (18)C7—N4—H41107 (2)
O6—N3—C6117.55 (16)C7—N4—H42110.7 (14)
O7—N3—C6118.99 (17)H41—N4—H42111 (2)
O1—C1—C2124.93 (16)C8—N5—H51108.3 (19)
O1—C1—C6123.89 (17)C8—N5—H52110.3 (13)
C2—C1—C6111.18 (14)H51—N5—H52107.7 (17)
C3—C2—C1124.54 (15)N4—C7—C8109.5 (2)
C3—C2—N1115.98 (16)N4—C7—H7109.8
C1—C2—N1119.48 (14)C8—C7—H7109.7
C2—C3—C4119.21 (17)N5—C8—C7111.1 (2)
C2—C3—H3120.4N5—C8—H8109.4
C4—C3—H3120.4C7—C8—H8109.4
C3—C4—C5121.40 (15)H1W1—O1W—H1W2108.3 (18)
C3—C4—N2119.49 (18)H2W1—O2W—H2W2106.5 (17)
C5—C4—N2119.12 (16)
O1—C1—C2—C3177.84 (17)O4—N2—C4—C5176.88 (18)
C6—C1—C2—C32.6 (2)C3—C4—C5—C62.0 (3)
O1—C1—C2—N12.2 (3)N2—C4—C5—C6178.14 (15)
C6—C1—C2—N1177.34 (15)C4—C5—C6—C11.6 (3)
O2—N1—C2—C3158.7 (2)C4—C5—C6—N3179.11 (16)
O3—N1—C2—C319.0 (3)O1—C1—C6—C5179.87 (17)
O2—N1—C2—C121.3 (3)C2—C1—C6—C50.6 (2)
O3—N1—C2—C1161.01 (18)O1—C1—C6—N30.9 (3)
C1—C2—C3—C42.4 (3)C2—C1—C6—N3178.70 (15)
N1—C2—C3—C4177.56 (15)O6—N3—C6—C537.8 (2)
C2—C3—C4—C50.1 (3)O7—N3—C6—C5140.02 (18)
C2—C3—C4—N2179.96 (16)O6—N3—C6—C1141.56 (16)
O5—N2—C4—C3175.99 (18)O7—N3—C6—C140.6 (2)
O4—N2—C4—C33.0 (3)N4—C7—C8—N5180.0
O5—N2—C4—C54.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O2Wi0.87 (1)2.06 (2)2.872 (4)156 (3)
N4—H42···O10.86 (1)1.98 (1)2.815 (2)164 (2)
N4—H42···O70.86 (1)2.41 (2)2.9166 (16)118 (2)
N5—H51···O1Wii0.87 (1)1.91 (1)2.778 (3)176 (3)
N5—H52···O1iii0.86 (1)2.18 (2)2.892 (2)140 (2)
N5—H52···O2iii0.86 (1)2.34 (2)3.018 (3)136 (2)
C3—H3···O6iv0.932.533.337 (3)145
C7—H7···O2v0.962.393.128 (3)134
C7—H7···O7vi0.962.563.1203 (19)117
O1W—H1W2···O30.84 (1)2.21 (3)3.008 (2)159 (6)
O1W—H1W2···O20.84 (1)2.52 (4)3.243 (3)145 (5)
O2W—H2W2···O50.85 (1)2.26 (2)3.082 (2)163 (7)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y, z+3/2; (iii) x1/2, y, z+1/2; (iv) x, y, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C6H2N3O7·2H2O
Mr554.36
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)13.4795 (4), 20.4372 (7), 8.0410 (3)
V3)2215.16 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.52 × 0.42 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.837, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
16775, 3846, 2322
Rint0.026
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.196, 1.03
No. of reflections3846
No. of parameters207
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O2Wi0.869 (10)2.055 (16)2.872 (4)156 (3)
N4—H42···O10.864 (9)1.975 (12)2.815 (2)164 (2)
N4—H42···O70.864 (9)2.41 (2)2.9166 (16)117.8 (18)
N5—H51···O1Wii0.874 (10)1.906 (11)2.778 (3)176 (3)
N5—H52···O1iii0.863 (9)2.175 (15)2.892 (2)140.2 (18)
N5—H52···O2iii0.863 (9)2.340 (16)3.018 (3)135.6 (18)
C3—H3···O6iv0.932.533.337 (3)145
C7—H7···O2v0.962.393.128 (3)134
C7—H7···O7vi0.962.563.1203 (19)117
O1W—H1W2···O30.842 (10)2.21 (3)3.008 (2)159 (6)
O1W—H1W2···O20.842 (10)2.52 (4)3.243 (3)145 (5)
O2W—H2W2···O50.846 (10)2.26 (2)3.082 (2)163 (7)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y, z+3/2; (iii) x1/2, y, z+1/2; (iv) x, y, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x, y+3/2, z.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.   CrossRef Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1546–o1548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2887–o2890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005c). Acta Cryst. E61, o2987–o2989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Sarojini, B. K., Prakash Kamath, K., Yathirajan, H. S. & Bolte, M. (2008). Acta Cryst. E64, o117–o118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o637-o638
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds