metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Azido{4,4′-di­bromo-2,2′-[ethane-1,2-diyl­bis­(nitrilo­methanylyl­idene)]diphenol­ato-κ4O,N,N′,O′}manganese(III)

aSchool of Environmental and Material Engineering, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: liuyxytu@gmail.com

(Received 13 January 2011; accepted 7 February 2011; online 12 February 2011)

In the title compound, [Mn(C16H12Br2N2O2)(N3)], the MnIII ion is chelated by a tetra­dentate Schiff base ligand and coordinated by the N atom of an azide ligand in a distorted square-pyramidal arrangement. It forms phenolate-bridged out-of-plane dimers with Mn⋯Ophenolate distances of 2.667 (2) Å between pairs of inversion-related mol­ecules. In the crystal, there are offset inter-complex face-to-face ππ inter­actions [centroid–centroid distances = 3.598 (2) Å] involving one of the benzene rings of the ligands.

Related literature

For related structures, see: Mikuriya et al. (1992[Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466-1468.]); Li et al. (1997[Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183-189.]); Lu et al. (2006[Lu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538-3548.]); Wang et al. (2008[Wang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C16H12Br2N2O2)(N3)]

  • Mr = 1042.13

  • Monoclinic, P 21 /n

  • a = 8.7068 (17) Å

  • b = 15.269 (3) Å

  • c = 13.684 (3) Å

  • β = 107.47 (3)°

  • V = 1735.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.39 mm−1

  • T = 153 K

  • 0.20 × 0.17 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.352, Tmax = 0.583

  • 7747 measured reflections

  • 3961 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.04

  • 3961 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and maXus (Mackay et al., 1998[Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stewart, N. & Shankland, K. (1998). maXus. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade there has been much interest in the magneto-chemistry of manganese because of its special magnetic properties. As is well known, manganese (III) Schiff base complexes display interesting structural, magnetic properties and electronic effects which rank it among the most appealing candidates as a building paramagnetic motif for multidimensional expanded structures. The variation of in-plane chelating and axial sites often leads to a change in the spin state of the metal ions: high-spin, low-spin or spin-crossover state. The nature and the tuning of magnetic interactions between metal centers are crucial points in the conception of molecular-based magnetic materials.

The molecular structure of the title compound is shown in Figure 1. The MnIII ion is involved in a distorted square-pyramidal arrangement by a N3O2 unit, in which the four basal sites are occupied by two N atoms and two O atoms from the Schiff base ligand, and the apical position is occupied by the N atom of an azido ligand. The bond distances are comparable to those found in related structures (Lu, et al., 2006; Mikuriya, et al., 1992; Li, et al., 1997; Wang, et al., 2008). The MnIII ion lies above the basal plane formed by N2O2 unit by 0.228 (1) Å. The short intermolecular distance of Mn···Ophenolate 2.667 (2) Å indicates that there exists weak interaction between the two complexes related by inversion centers in the crystal (Figure 2). The phenyl groups of the Schiff base are involved in an offset face-to-face π-π inter-complexes stacking interaction (ring centroid separation Cg···Cgi, 3.598 (2) Å) [symmetry code: 2 - x,1 - y,1 - z].

Related literature top

For related structures, see: Mikuriya et al. (1992); Li et al. (1997); Lu et al. (2006); Wang et al. (2008).

Experimental top

This compound was synthesized by mixing a solution of Schiff base (2,2'-((1E,1'E)-(ethane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(4-bromophenol)) (0.5 mmol) in methanol (5 ml) with a solution of MnCl2.4H2O (0.5 mmol) in methanol (5 ml), followed by the dropwise addition of an aqueous solution NaN3(0.6 mmol, 2 mL) without stirring. The black mixture was allowed to stand for several days until good quality black block crystals of the compound were obtained in a yield of 68.3%.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL97 (Sheldrick, 2008) with C—H distances of 0.93 and 0.97 Å, respectively, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure (30% thermal probability ellipsoids) of the compound showing the atom numbering.
[Figure 2] Fig. 2. A pair of inversion-related molecules, showing the intermolecular weak interactions between Mn and Ophenolate atoms. The 'A' molecule is related to the 'B' molecule by [A: (x, y, z) —> B: (2-x, 1-y, -z)].
Azido{4,4'-dibromo-2,2'-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}manganese(III) top
Crystal data top
[Mn(C16H12Br2N2O2)(N3)]F(000) = 1016
Mr = 1042.13Dx = 1.994 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19417 reflections
a = 8.7068 (17) Åθ = 3.4–27.5°
b = 15.269 (3) ŵ = 5.39 mm1
c = 13.684 (3) ÅT = 153 K
β = 107.47 (3)°Block, black
V = 1735.4 (6) Å30.20 × 0.17 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3961 independent reflections
Radiation source: fine-focus sealed tube3093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.352, Tmax = 0.583k = 1919
7747 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.8161P]
where P = (Fo2 + 2Fc2)/3
3961 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Mn(C16H12Br2N2O2)(N3)]V = 1735.4 (6) Å3
Mr = 1042.13Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7068 (17) ŵ = 5.39 mm1
b = 15.269 (3) ÅT = 153 K
c = 13.684 (3) Å0.20 × 0.17 × 0.10 mm
β = 107.47 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3961 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3093 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.583Rint = 0.015
7747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
3961 reflectionsΔρmin = 0.90 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.85052 (5)0.50918 (2)0.38001 (3)0.02912 (10)
Br11.11255 (4)0.95137 (2)0.37896 (3)0.05433 (11)
Br20.43251 (4)0.106181 (19)0.44904 (2)0.04785 (10)
C10.9787 (3)0.67065 (17)0.46365 (19)0.0282 (5)
C20.9438 (3)0.74469 (17)0.5129 (2)0.0323 (6)
H20.89190.73810.56270.039*
C30.9851 (3)0.82750 (18)0.4890 (2)0.0358 (6)
H30.95800.87640.52080.043*
C41.0675 (3)0.83713 (17)0.4168 (2)0.0336 (6)
C51.1113 (3)0.76578 (18)0.3710 (2)0.0321 (6)
H51.17150.77320.32580.039*
C61.0655 (3)0.68135 (17)0.39187 (19)0.0279 (5)
C71.1100 (3)0.60754 (17)0.33963 (19)0.0307 (5)
H71.19280.61470.31040.037*
C81.0902 (4)0.45714 (18)0.2823 (2)0.0403 (7)
H8A1.16030.41910.33330.048*
H8B1.14760.47630.23540.048*
C90.9380 (4)0.4093 (2)0.2250 (2)0.0446 (7)
H9A0.88130.44110.16340.054*
H9B0.96360.35120.20560.054*
C100.7619 (3)0.33187 (17)0.30160 (19)0.0314 (5)
H100.77300.28450.26150.038*
C110.6617 (3)0.32053 (16)0.36746 (19)0.0274 (5)
C120.6028 (3)0.23581 (17)0.37468 (19)0.0309 (5)
H120.62890.18980.33800.037*
C130.5066 (3)0.22139 (16)0.4361 (2)0.0316 (6)
C140.4649 (3)0.28895 (18)0.4908 (2)0.0348 (6)
H140.39860.27800.53150.042*
C150.5215 (3)0.37191 (18)0.4848 (2)0.0344 (6)
H150.49120.41730.52040.041*
C160.6248 (3)0.38931 (16)0.4256 (2)0.0285 (5)
N11.0407 (3)0.53307 (14)0.33190 (16)0.0304 (5)
N20.8372 (3)0.40293 (14)0.29446 (16)0.0314 (5)
N30.7109 (3)0.60055 (17)0.2717 (2)0.0449 (6)
N40.5810 (3)0.62722 (17)0.26329 (18)0.0412 (6)
N50.4533 (4)0.6552 (3)0.2518 (3)0.0747 (10)
O10.9342 (2)0.59151 (11)0.48779 (14)0.0333 (4)
O20.6852 (2)0.46910 (12)0.42930 (15)0.0362 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0366 (2)0.02311 (19)0.0337 (2)0.00517 (16)0.01976 (18)0.00327 (16)
Br10.0655 (2)0.02778 (16)0.0791 (3)0.00838 (14)0.03595 (19)0.00547 (15)
Br20.0672 (2)0.02952 (16)0.05173 (19)0.01626 (14)0.02536 (16)0.00135 (13)
C10.0296 (12)0.0273 (13)0.0273 (12)0.0038 (10)0.0079 (11)0.0013 (10)
C20.0329 (13)0.0305 (13)0.0362 (14)0.0032 (11)0.0147 (12)0.0028 (11)
C30.0336 (14)0.0287 (14)0.0472 (16)0.0010 (11)0.0154 (13)0.0036 (12)
C40.0332 (14)0.0243 (12)0.0417 (15)0.0062 (11)0.0090 (12)0.0028 (11)
C50.0304 (13)0.0330 (14)0.0331 (14)0.0066 (11)0.0096 (11)0.0033 (11)
C60.0284 (12)0.0273 (13)0.0285 (13)0.0026 (10)0.0092 (11)0.0025 (10)
C70.0322 (13)0.0331 (14)0.0293 (13)0.0012 (11)0.0129 (11)0.0040 (11)
C80.0549 (18)0.0305 (14)0.0490 (17)0.0016 (13)0.0359 (15)0.0012 (12)
C90.070 (2)0.0367 (16)0.0416 (16)0.0095 (14)0.0383 (16)0.0092 (13)
C100.0389 (14)0.0269 (13)0.0282 (13)0.0003 (11)0.0101 (11)0.0034 (10)
C110.0288 (12)0.0250 (13)0.0282 (13)0.0032 (10)0.0080 (11)0.0008 (10)
C120.0363 (14)0.0244 (13)0.0305 (13)0.0038 (11)0.0076 (11)0.0027 (10)
C130.0355 (14)0.0239 (13)0.0327 (13)0.0065 (10)0.0061 (12)0.0009 (10)
C140.0326 (14)0.0335 (14)0.0417 (15)0.0060 (11)0.0162 (13)0.0004 (12)
C150.0349 (14)0.0295 (14)0.0438 (16)0.0020 (11)0.0194 (13)0.0047 (12)
C160.0290 (12)0.0219 (12)0.0357 (14)0.0037 (10)0.0112 (11)0.0011 (10)
N10.0386 (12)0.0272 (11)0.0309 (11)0.0008 (9)0.0189 (10)0.0017 (9)
N20.0432 (12)0.0282 (11)0.0283 (11)0.0045 (10)0.0190 (10)0.0033 (9)
N30.0442 (15)0.0419 (15)0.0490 (15)0.0026 (12)0.0146 (12)0.0109 (12)
N40.0473 (15)0.0413 (14)0.0349 (13)0.0036 (12)0.0121 (12)0.0038 (11)
N50.061 (2)0.105 (3)0.060 (2)0.028 (2)0.0223 (17)0.0147 (19)
O10.0480 (11)0.0255 (9)0.0327 (9)0.0090 (8)0.0215 (9)0.0016 (7)
O20.0427 (11)0.0239 (9)0.0514 (12)0.0061 (8)0.0283 (10)0.0083 (8)
Geometric parameters (Å, º) top
Mn1—O21.8669 (18)C8—C91.511 (4)
Mn1—O11.9083 (19)C8—H8A0.9700
Mn1—N21.984 (2)C8—H8B0.9700
Mn1—N11.991 (2)C9—N21.478 (3)
Mn1—N32.130 (3)C9—H9A0.9700
Br1—C41.894 (3)C9—H9B0.9700
Br2—C131.900 (2)C10—N21.286 (3)
C1—O11.340 (3)C10—C111.441 (3)
C1—C21.396 (4)C10—H100.9300
C1—C61.418 (3)C11—C121.406 (3)
C2—C31.381 (4)C11—C161.411 (3)
C2—H20.9300C12—C131.371 (4)
C3—C41.392 (4)C12—H120.9300
C3—H30.9300C13—C141.385 (4)
C4—C51.367 (4)C14—C151.371 (4)
C5—C61.404 (4)C14—H140.9300
C5—H50.9300C15—C161.405 (4)
C6—C71.448 (4)C15—H150.9300
C7—N11.277 (3)C16—O21.322 (3)
C7—H70.9300N3—N41.175 (3)
C8—N11.472 (3)N4—N51.157 (4)
O2—Mn1—O195.38 (8)N2—C9—C8107.2 (2)
O2—Mn1—N291.73 (8)N2—C9—H9A110.3
O1—Mn1—N2159.40 (9)C8—C9—H9A110.3
O2—Mn1—N1171.04 (9)N2—C9—H9B110.3
O1—Mn1—N188.41 (9)C8—C9—H9B110.3
N2—Mn1—N182.06 (9)H9A—C9—H9B108.5
O2—Mn1—N397.19 (10)N2—C10—C11124.5 (2)
O1—Mn1—N396.43 (10)N2—C10—H10117.7
N2—Mn1—N3101.83 (10)C11—C10—H10117.7
N1—Mn1—N390.43 (9)C12—C11—C16119.7 (2)
O1—C1—C2119.4 (2)C12—C11—C10117.2 (2)
O1—C1—C6121.9 (2)C16—C11—C10123.1 (2)
C2—C1—C6118.7 (2)C13—C12—C11119.6 (2)
C3—C2—C1121.2 (2)C13—C12—H12120.2
C3—C2—H2119.4C11—C12—H12120.2
C1—C2—H2119.4C12—C13—C14121.3 (2)
C2—C3—C4119.4 (3)C12—C13—Br2119.5 (2)
C2—C3—H3120.3C14—C13—Br2119.22 (19)
C4—C3—H3120.3C15—C14—C13119.9 (2)
C5—C4—C3121.0 (2)C15—C14—H14120.0
C5—C4—Br1119.94 (19)C13—C14—H14120.0
C3—C4—Br1119.0 (2)C14—C15—C16120.9 (2)
C4—C5—C6120.2 (2)C14—C15—H15119.6
C4—C5—H5119.9C16—C15—H15119.6
C6—C5—H5119.9O2—C16—C15117.9 (2)
C5—C6—C1119.3 (2)O2—C16—C11123.6 (2)
C5—C6—C7118.7 (2)C15—C16—C11118.5 (2)
C1—C6—C7122.0 (2)C7—N1—C8122.9 (2)
N1—C7—C6123.0 (2)C7—N1—Mn1123.72 (18)
N1—C7—H7118.5C8—N1—Mn1113.33 (16)
C6—C7—H7118.5C10—N2—C9121.2 (2)
N1—C8—C9106.7 (2)C10—N2—Mn1125.88 (17)
N1—C8—H8A110.4C9—N2—Mn1112.66 (17)
C9—C8—H8A110.4N4—N3—Mn1128.8 (2)
N1—C8—H8B110.4N5—N4—N3177.5 (3)
C9—C8—H8B110.4C1—O1—Mn1118.36 (16)
H8A—C8—H8B108.6C16—O2—Mn1128.97 (16)
O1—C1—C2—C3178.9 (3)O1—Mn1—N1—C733.1 (2)
C6—C1—C2—C33.3 (4)N2—Mn1—N1—C7165.2 (2)
C1—C2—C3—C42.1 (4)N3—Mn1—N1—C763.3 (2)
C2—C3—C4—C51.4 (4)O2—Mn1—N1—C834.1 (7)
C2—C3—C4—Br1176.4 (2)O1—Mn1—N1—C8149.32 (19)
C3—C4—C5—C63.6 (4)N2—Mn1—N1—C812.37 (19)
Br1—C4—C5—C6174.3 (2)N3—Mn1—N1—C8114.3 (2)
C4—C5—C6—C12.3 (4)C11—C10—N2—C9179.9 (3)
C4—C5—C6—C7178.2 (2)C11—C10—N2—Mn16.0 (4)
O1—C1—C6—C5178.9 (2)C8—C9—N2—C10137.6 (3)
C2—C1—C6—C51.2 (4)C8—C9—N2—Mn137.1 (3)
O1—C1—C6—C70.6 (4)O2—Mn1—N2—C1013.6 (2)
C2—C1—C6—C7178.3 (2)O1—Mn1—N2—C1096.7 (3)
C5—C6—C7—N1161.0 (3)N1—Mn1—N2—C10159.9 (2)
C1—C6—C7—N119.5 (4)N3—Mn1—N2—C10111.3 (2)
N1—C8—C9—N245.4 (3)O2—Mn1—N2—C9172.0 (2)
N2—C10—C11—C12173.0 (3)O1—Mn1—N2—C977.7 (3)
N2—C10—C11—C165.3 (4)N1—Mn1—N2—C914.4 (2)
C16—C11—C12—C131.7 (4)N3—Mn1—N2—C974.3 (2)
C10—C11—C12—C13179.9 (2)O2—Mn1—N3—N412.9 (3)
C11—C12—C13—C140.5 (4)O1—Mn1—N3—N483.4 (3)
C11—C12—C13—Br2178.1 (2)N2—Mn1—N3—N4106.2 (3)
C12—C13—C14—C150.7 (4)N1—Mn1—N3—N4171.8 (3)
Br2—C13—C14—C15178.0 (2)Mn1—N3—N4—N5177 (100)
C13—C14—C15—C161.5 (4)C2—C1—O1—Mn1139.8 (2)
C14—C15—C16—O2174.8 (3)C6—C1—O1—Mn142.5 (3)
C14—C15—C16—C113.7 (4)O2—Mn1—O1—C1138.02 (18)
C12—C11—C16—O2174.7 (2)N2—Mn1—O1—C1112.3 (3)
C10—C11—C16—O23.6 (4)N1—Mn1—O1—C150.12 (18)
C12—C11—C16—C153.8 (4)N3—Mn1—O1—C140.14 (19)
C10—C11—C16—C15177.9 (2)C15—C16—O2—Mn1168.3 (2)
C6—C7—N1—C8177.5 (2)C11—C16—O2—Mn110.2 (4)
C6—C7—N1—Mn15.1 (4)O1—Mn1—O2—C16144.9 (2)
C9—C8—N1—C7142.4 (3)N2—Mn1—O2—C1615.7 (2)
C9—C8—N1—Mn135.2 (3)N1—Mn1—O2—C1630.2 (7)
O2—Mn1—N1—C7148.3 (5)N3—Mn1—O2—C16117.9 (2)

Experimental details

Crystal data
Chemical formula[Mn(C16H12Br2N2O2)(N3)]
Mr1042.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)8.7068 (17), 15.269 (3), 13.684 (3)
β (°) 107.47 (3)
V3)1735.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)5.39
Crystal size (mm)0.20 × 0.17 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.352, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
7747, 3961, 3093
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.04
No. of reflections3961
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.90

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183–189.  CrossRef CAS Web of Science Google Scholar
First citationLu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stewart, N. & Shankland, K. (1998). maXus. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466–1468.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds