metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m384-m385

(2,2′-Bi­pyridyl-κ2N,N′)bis­­(N-butyl-N-methyl­di­thio­carbamato-κ2S,S′)cadmium(II)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 February 2011; accepted 22 February 2011; online 26 February 2011)

The CdII atom in the title compound, [Cd(C6H12NS2)2(C10H8N2)], is hexa­coordinated by two dithio­carbamate ligands and the N atoms from a bidentate 2,2′-bipyridyl mol­ecule. The coordination geometry is based on a distorted trigonal–prismatic arrangement of the N2S4 donor set. Supra­molecular chains, aligned along the a-axis direction, are mediated by C—H⋯S inter­actions and these are connected into layers that stack along the c axis via ππ inter­actions [Cg(pyrid­yl)⋯Cg(pyrid­yl) = 3.6587 (13) Å].

Related literature

For background to supra­molecular polymers of zinc-triad 1,1-dithiol­ates, including dithio­carbamates, see: Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]). For a closely related 2,2′-bipyridyl adduct, see: Song & Tiekink (2009[Song, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669-m1670.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H12NS2)2(C10H8N2)]

  • Mr = 593.16

  • Triclinic, [P \overline 1]

  • a = 10.3215 (4) Å

  • b = 10.6465 (4) Å

  • c = 12.4546 (5) Å

  • α = 81.566 (3)°

  • β = 74.790 (3)°

  • γ = 83.641 (3)°

  • V = 1302.64 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 150 K

  • 0.27 × 0.16 × 0.01 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.829, Tmax = 0.990

  • 15837 measured reflections

  • 5393 independent reflections

  • 4623 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.06

  • 5393 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Cd—S1 2.6104 (7)
Cd—S2 2.7685 (7)
Cd—S3 2.6468 (7)
Cd—S4 2.6783 (7)
Cd—N3 2.379 (2)
Cd—N4 2.441 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯S3i 0.95 2.74 3.685 (3) 172
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Adducts related to the title compound, (I), attract attention in crystal engineering studies (Chen et al., 2006; Benson et al., 2007). The CdII atom in (I) is six-coordinated, being chelated by two almost symmetrically coordinating dithiocarbamate ligands, and the N donor atoms of 2,2'-bipyridyl ligand, Fig. 1 and Table 1. The coordination geometry is intermediate between trigonal prismatic and octahedral with a leaning towards the former. The angle between the triangular faces defined by the S1,S3,N4 and S2,S4,N3 atoms is 5.36 (9) °, and these are twisted by approximately 13 ° about the axis through them, compared to 0 ° for an an ideal trigonal prism and 60 ° for an ideal octahedron. The symmetric mode of coordination of the dithiocarbamate ligands is reflected in the associated CS bond distances which lie in the narrow range of 1.721 (2) to 1.733 (3) Å. The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry observed for (I) matches a literature precedent (Song & Tiekink, 2009).

Linear supramolecular chains along the a axis are formed in the crystal structure via C—H···S interactions, Table 2 and Fig. 2. These are consolidated into layers in the ab plane by ππ interactions formed between the pyridyl rings [Cg(N3,C14–C18)···Cg(N4,C19–C23)i = 3.6587 (13) Å with angle between rings = 5.35 (11) ° for i: 2 - x, 1 - y, 1 - z]. Supramolecular layers stack along the c axis, Fig. 3.

Related literature top

For background to supramolecular polymers of zinc-triad 1,1-dithiolates, including dithiocarbamates, see: Chen et al. (2006); Benson et al. (2007). For a closely related 2,2'-bipyridyl adduct, see: Song & Tiekink (2009).

Experimental top

The title compound was prepared using an in situ method. The first step was the addition of carbon disulfide (0.03 mol) to an ethanolic solution (20 ml) of butylmethylamine (0.03 mol) in ethanol (20 ml). The mixture was stirred for 1 h at 277 K. The resulting solution was added drop wise to a solution of cadmium(II) dichloride (0.015 mol) in ethanol (20 ml) followed by stirring for 4 h. A white precipitate was formed, filtered and washed with cold ethanol. The precipitate, Cd(C6H12NS2)2 (0.01 mol), and 2,2'-bipyridyl (0.01 mol) were dissolved together in chloroform (20 ml) and stirred for 1 h. A yellowish precipitate was formed, filtered and dried in a desiccator. Crystallization was from its ethanol:chloroform (1:2) solution. Yield 86%; M.pt. 424–426 K. Elemental analysis. Found (calculated) for C22H32CdN4S4: C, 44.21 (44.156); H 5.32 (5.40); Cd 18.54 (18.96); N 9.23 (9.40); S 21.45 (21.63) %. UV (CHCl3) λmax 284 (L(π) L(π*)). IR (KBr): ν(C—H) 2929m; ν(CN) 1485m; ν(N—C) 1158 s; ν(CS) 974 s; ν(Cd—S) 354 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis in (I) showing C—H···S contacts shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I) showing supramolecular layers stacking along the c axis. The intermolecular C–H···S and ππ contacts are shown as orange and purple dashed lines, respectively.
(2,2'-Bipyridyl-κ2N,N')bis(N-butyl-N- methyldithiocarbamato-κ2S,S')cadmium(II) top
Crystal data top
[Cd(C6H12NS2)2(C10H8N2)]Z = 2
Mr = 593.16F(000) = 608
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3215 (4) ÅCell parameters from 8976 reflections
b = 10.6465 (4) Åθ = 2.0–29.0°
c = 12.4546 (5) ŵ = 1.18 mm1
α = 81.566 (3)°T = 150 K
β = 74.790 (3)°Plate, colourless
γ = 83.641 (3)°0.27 × 0.16 × 0.01 mm
V = 1302.64 (9) Å3
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5393 independent reflections
Radiation source: fine-focus sealed tube4623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1952 pixels mm-1θmax = 26.5°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.829, Tmax = 0.990l = 1515
15837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
5393 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(C6H12NS2)2(C10H8N2)]γ = 83.641 (3)°
Mr = 593.16V = 1302.64 (9) Å3
Triclinic, P1Z = 2
a = 10.3215 (4) ÅMo Kα radiation
b = 10.6465 (4) ŵ = 1.18 mm1
c = 12.4546 (5) ÅT = 150 K
α = 81.566 (3)°0.27 × 0.16 × 0.01 mm
β = 74.790 (3)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5393 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4623 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.990Rint = 0.042
15837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.90 e Å3
5393 reflectionsΔρmin = 0.51 e Å3
284 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.669262 (17)0.668974 (17)0.664886 (14)0.02060 (7)
S10.60096 (7)0.69901 (6)0.47470 (5)0.02501 (15)
S20.73388 (7)0.90040 (6)0.53865 (5)0.02474 (15)
S30.47202 (7)0.54259 (7)0.80306 (6)0.02816 (16)
S40.56208 (7)0.77897 (6)0.85175 (5)0.02633 (15)
N10.6294 (2)0.93184 (19)0.36194 (16)0.0217 (5)
N20.3637 (2)0.6493 (2)0.98885 (17)0.0274 (5)
N30.8838 (2)0.62383 (19)0.70520 (15)0.0188 (4)
N40.7756 (2)0.46118 (19)0.61699 (16)0.0220 (5)
C10.6525 (2)0.8525 (2)0.44916 (19)0.0208 (5)
C20.6688 (3)1.0633 (2)0.3422 (2)0.0274 (6)
H2A0.61561.11020.40320.041*
H2B0.65251.10480.27080.041*
H2C0.76471.06260.33930.041*
C30.5565 (3)0.9003 (2)0.2837 (2)0.0261 (6)
H3A0.48580.96930.27540.031*
H3B0.51140.82090.31560.031*
C40.6490 (3)0.8829 (3)0.1684 (2)0.0286 (6)
H4A0.59300.87650.11620.034*
H4B0.70020.95930.14010.034*
C50.7477 (3)0.7662 (3)0.1679 (2)0.0300 (6)
H5A0.69680.68930.19400.036*
H5B0.80260.77130.22120.036*
C60.8409 (3)0.7531 (3)0.0524 (2)0.0453 (8)
H6A0.78720.74660.00060.068*
H6B0.90210.67640.05650.068*
H6C0.89330.82800.02690.068*
C70.4562 (2)0.6567 (2)0.8919 (2)0.0232 (6)
C80.2758 (3)0.5432 (3)1.0244 (2)0.0350 (7)
H8A0.20200.55920.98700.053*
H8B0.23870.53581.10580.053*
H8C0.32810.46381.00410.053*
C90.3423 (3)0.7429 (3)1.0687 (2)0.0329 (7)
H9A0.41180.80511.04100.039*
H9B0.35360.69861.14170.039*
C110.2043 (3)0.8137 (3)1.0860 (2)0.0350 (7)
H11A0.13470.75211.11660.042*
H11B0.19160.85601.01280.042*
C120.1862 (3)0.9133 (3)1.1660 (2)0.0400 (7)
H12A0.21770.87481.23280.048*
H12B0.24270.98431.12850.048*
C130.0408 (3)0.9657 (3)1.2032 (3)0.0484 (9)
H13A0.01191.01201.13830.073*
H13B0.03291.02371.25920.073*
H13C0.01650.89531.23610.073*
C140.9307 (3)0.7054 (2)0.7554 (2)0.0249 (6)
H140.87360.77750.77970.030*
C151.0578 (3)0.6896 (3)0.7734 (2)0.0299 (6)
H151.08720.74860.81060.036*
C161.1413 (3)0.5869 (3)0.7364 (2)0.0327 (7)
H161.23030.57490.74590.039*
C171.0942 (3)0.5005 (2)0.6848 (2)0.0257 (6)
H171.15040.42850.65900.031*
C180.9638 (2)0.5211 (2)0.67166 (18)0.0185 (5)
C190.9038 (2)0.4298 (2)0.62209 (19)0.0190 (5)
C200.9733 (3)0.3185 (2)0.5849 (2)0.0243 (6)
H201.06490.29950.58670.029*
C210.9076 (3)0.2359 (2)0.5453 (2)0.0299 (6)
H210.95350.15920.52000.036*
C220.7746 (3)0.2662 (3)0.5428 (2)0.0304 (6)
H220.72650.21010.51770.037*
C230.7136 (3)0.3805 (3)0.5781 (2)0.0287 (6)
H230.62310.40300.57440.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01478 (10)0.02502 (11)0.02106 (10)0.00349 (7)0.00428 (8)0.00391 (7)
S10.0271 (4)0.0231 (3)0.0261 (3)0.0007 (3)0.0104 (3)0.0012 (3)
S20.0229 (3)0.0269 (4)0.0250 (3)0.0008 (3)0.0077 (3)0.0042 (3)
S30.0179 (3)0.0379 (4)0.0285 (4)0.0019 (3)0.0040 (3)0.0068 (3)
S40.0222 (3)0.0264 (4)0.0254 (3)0.0025 (3)0.0001 (3)0.0016 (3)
N10.0219 (12)0.0217 (11)0.0210 (11)0.0041 (9)0.0064 (9)0.0031 (9)
N20.0221 (12)0.0335 (13)0.0215 (11)0.0001 (10)0.0003 (10)0.0018 (9)
N30.0158 (11)0.0228 (11)0.0161 (10)0.0001 (9)0.0010 (9)0.0037 (8)
N40.0172 (11)0.0250 (12)0.0240 (11)0.0005 (9)0.0045 (9)0.0050 (9)
C10.0137 (12)0.0230 (13)0.0221 (13)0.0065 (10)0.0000 (10)0.0050 (10)
C20.0314 (15)0.0216 (14)0.0284 (14)0.0027 (11)0.0085 (12)0.0022 (11)
C30.0248 (14)0.0284 (15)0.0270 (14)0.0011 (12)0.0123 (12)0.0009 (11)
C40.0344 (16)0.0305 (15)0.0232 (13)0.0031 (12)0.0128 (13)0.0002 (11)
C50.0317 (16)0.0310 (15)0.0271 (14)0.0011 (12)0.0055 (13)0.0069 (12)
C60.048 (2)0.054 (2)0.0311 (16)0.0015 (16)0.0035 (15)0.0122 (14)
C70.0152 (13)0.0302 (14)0.0215 (13)0.0075 (11)0.0060 (11)0.0014 (11)
C80.0290 (16)0.0405 (17)0.0288 (15)0.0032 (13)0.0003 (13)0.0053 (12)
C90.0273 (15)0.0460 (18)0.0215 (13)0.0018 (13)0.0010 (12)0.0041 (12)
C110.0304 (16)0.0350 (16)0.0338 (16)0.0017 (13)0.0018 (13)0.0003 (13)
C120.0358 (18)0.0343 (17)0.0392 (17)0.0016 (14)0.0066 (15)0.0009 (13)
C130.0395 (19)0.0323 (18)0.061 (2)0.0016 (15)0.0080 (17)0.0069 (15)
C140.0211 (14)0.0278 (14)0.0253 (13)0.0004 (11)0.0039 (11)0.0073 (11)
C150.0240 (15)0.0383 (17)0.0312 (15)0.0058 (13)0.0098 (13)0.0086 (12)
C160.0184 (14)0.0440 (18)0.0383 (16)0.0010 (13)0.0133 (13)0.0032 (13)
C170.0200 (14)0.0277 (14)0.0282 (14)0.0059 (11)0.0071 (12)0.0036 (11)
C180.0153 (12)0.0236 (13)0.0136 (11)0.0004 (10)0.0012 (10)0.0022 (10)
C190.0173 (13)0.0191 (13)0.0172 (12)0.0008 (10)0.0007 (10)0.0005 (9)
C200.0189 (13)0.0248 (14)0.0242 (13)0.0002 (11)0.0009 (11)0.0003 (11)
C210.0354 (16)0.0219 (14)0.0283 (14)0.0002 (12)0.0004 (13)0.0054 (11)
C220.0337 (16)0.0295 (15)0.0290 (14)0.0090 (13)0.0048 (13)0.0064 (12)
C230.0217 (14)0.0325 (16)0.0325 (15)0.0020 (12)0.0057 (12)0.0075 (12)
Geometric parameters (Å, º) top
Cd—S12.6104 (7)C6—H6C0.9800
Cd—S22.7685 (7)C8—H8A0.9800
Cd—S32.6468 (7)C8—H8B0.9800
Cd—S42.6783 (7)C8—H8C0.9800
Cd—N32.379 (2)C9—C111.514 (4)
Cd—N42.441 (2)C9—H9A0.9900
S1—C11.733 (3)C9—H9B0.9900
S2—C11.721 (2)C11—C121.522 (4)
S3—C71.727 (3)C11—H11A0.9900
S4—C71.725 (3)C11—H11B0.9900
N1—C11.332 (3)C12—C131.518 (4)
N1—C21.469 (3)C12—H12A0.9900
N1—C31.471 (3)C12—H12B0.9900
N2—C71.327 (3)C13—H13A0.9800
N2—C91.469 (3)C13—H13B0.9800
N2—C81.472 (3)C13—H13C0.9800
N3—C141.338 (3)C14—C151.377 (4)
N3—C181.344 (3)C14—H140.9500
N4—C231.337 (3)C15—C161.372 (4)
N4—C191.344 (3)C15—H150.9500
C2—H2A0.9800C16—C171.389 (4)
C2—H2B0.9800C16—H160.9500
C2—H2C0.9800C17—C181.388 (3)
C3—C41.526 (3)C17—H170.9500
C3—H3A0.9900C18—C191.489 (3)
C3—H3B0.9900C19—C201.390 (3)
C4—C51.516 (4)C20—C211.382 (4)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C21—C221.383 (4)
C5—C61.522 (4)C21—H210.9500
C5—H5A0.9900C22—C231.383 (4)
C5—H5B0.9900C22—H220.9500
C6—H6A0.9800C23—H230.9500
C6—H6B0.9800
N3—Cd—N467.00 (7)N2—C7—S4121.3 (2)
N3—Cd—S1130.89 (5)N2—C7—S3119.9 (2)
N4—Cd—S187.19 (5)S4—C7—S3118.79 (14)
N3—Cd—S3115.46 (5)N2—C8—H8A109.5
N4—Cd—S386.24 (5)N2—C8—H8B109.5
S1—Cd—S3102.91 (2)H8A—C8—H8B109.5
N3—Cd—S493.32 (5)N2—C8—H8C109.5
N4—Cd—S4137.16 (5)H8A—C8—H8C109.5
S1—Cd—S4130.38 (2)H8B—C8—H8C109.5
S3—Cd—S467.82 (2)N2—C9—C11112.8 (2)
N3—Cd—S294.02 (5)N2—C9—H9A109.0
N4—Cd—S2125.32 (5)C11—C9—H9A109.0
S1—Cd—S267.03 (2)N2—C9—H9B109.0
S3—Cd—S2144.43 (2)C11—C9—H9B109.0
S4—Cd—S292.26 (2)H9A—C9—H9B107.8
C1—S1—Cd89.21 (8)C9—C11—C12111.9 (3)
C1—S2—Cd84.39 (8)C9—C11—H11A109.2
C7—S3—Cd87.18 (9)C12—C11—H11A109.2
C7—S4—Cd86.21 (9)C9—C11—H11B109.2
C1—N1—C2120.7 (2)C12—C11—H11B109.2
C1—N1—C3124.2 (2)H11A—C11—H11B107.9
C2—N1—C3114.95 (19)C13—C12—C11112.5 (3)
C7—N2—C9123.5 (2)C13—C12—H12A109.1
C7—N2—C8121.3 (2)C11—C12—H12A109.1
C9—N2—C8115.2 (2)C13—C12—H12B109.1
C14—N3—C18118.6 (2)C11—C12—H12B109.1
C14—N3—Cd120.22 (16)H12A—C12—H12B107.8
C18—N3—Cd121.00 (15)C12—C13—H13A109.5
C23—N4—C19118.4 (2)C12—C13—H13B109.5
C23—N4—Cd122.04 (16)H13A—C13—H13B109.5
C19—N4—Cd119.35 (15)C12—C13—H13C109.5
N1—C1—S2120.62 (19)H13A—C13—H13C109.5
N1—C1—S1120.58 (19)H13B—C13—H13C109.5
S2—C1—S1118.80 (14)N3—C14—C15123.0 (2)
N1—C2—H2A109.5N3—C14—H14118.5
N1—C2—H2B109.5C15—C14—H14118.5
H2A—C2—H2B109.5C16—C15—C14118.6 (2)
N1—C2—H2C109.5C16—C15—H15120.7
H2A—C2—H2C109.5C14—C15—H15120.7
H2B—C2—H2C109.5C15—C16—C17119.3 (2)
N1—C3—C4112.5 (2)C15—C16—H16120.3
N1—C3—H3A109.1C17—C16—H16120.3
C4—C3—H3A109.1C18—C17—C16118.9 (2)
N1—C3—H3B109.1C18—C17—H17120.6
C4—C3—H3B109.1C16—C17—H17120.6
H3A—C3—H3B107.8N3—C18—C17121.5 (2)
C5—C4—C3113.9 (2)N3—C18—C19116.3 (2)
C5—C4—H4A108.8C17—C18—C19122.1 (2)
C3—C4—H4A108.8N4—C19—C20121.6 (2)
C5—C4—H4B108.8N4—C19—C18115.3 (2)
C3—C4—H4B108.8C20—C19—C18123.1 (2)
H4A—C4—H4B107.7C21—C20—C19119.2 (2)
C4—C5—C6112.7 (2)C21—C20—H20120.4
C4—C5—H5A109.1C19—C20—H20120.4
C6—C5—H5A109.1C20—C21—C22119.3 (2)
C4—C5—H5B109.1C20—C21—H21120.3
C6—C5—H5B109.1C22—C21—H21120.3
H5A—C5—H5B107.8C21—C22—C23118.0 (2)
C5—C6—H6A109.5C21—C22—H22121.0
C5—C6—H6B109.5C23—C22—H22121.0
H6A—C6—H6B109.5N4—C23—C22123.4 (2)
C5—C6—H6C109.5N4—C23—H23118.3
H6A—C6—H6C109.5C22—C23—H23118.3
H6B—C6—H6C109.5
N3—Cd—S1—C178.98 (10)Cd—S2—C1—S17.09 (13)
N4—Cd—S1—C1134.92 (9)Cd—S1—C1—N1172.43 (19)
S3—Cd—S1—C1139.60 (8)Cd—S1—C1—S27.49 (13)
S4—Cd—S1—C167.87 (8)C1—N1—C3—C4108.9 (3)
S2—Cd—S1—C14.42 (8)C2—N1—C3—C475.2 (3)
N3—Cd—S2—C1137.55 (9)N1—C3—C4—C568.0 (3)
N4—Cd—S2—C173.04 (10)C3—C4—C5—C6178.6 (2)
S1—Cd—S2—C14.47 (8)C9—N2—C7—S40.6 (3)
S3—Cd—S2—C175.42 (9)C8—N2—C7—S4178.37 (19)
S4—Cd—S2—C1128.96 (8)C9—N2—C7—S3179.28 (19)
N3—Cd—S3—C782.82 (10)C8—N2—C7—S31.8 (3)
N4—Cd—S3—C7145.11 (9)Cd—S4—C7—N2179.9 (2)
S1—Cd—S3—C7128.65 (8)Cd—S4—C7—S30.02 (13)
S4—Cd—S3—C70.01 (8)Cd—S3—C7—N2179.86 (19)
S2—Cd—S3—C760.22 (9)Cd—S3—C7—S40.02 (13)
N3—Cd—S4—C7116.17 (9)C7—N2—C9—C11116.6 (3)
N4—Cd—S4—C757.04 (11)C8—N2—C9—C1164.4 (3)
S1—Cd—S4—C788.29 (8)N2—C9—C11—C12178.0 (2)
S3—Cd—S4—C70.01 (8)C9—C11—C12—C13168.1 (3)
S2—Cd—S4—C7149.67 (8)C18—N3—C14—C150.6 (4)
N4—Cd—N3—C14176.21 (19)Cd—N3—C14—C15174.99 (19)
S1—Cd—N3—C14119.77 (16)N3—C14—C15—C161.2 (4)
S3—Cd—N3—C14102.54 (17)C14—C15—C16—C171.7 (4)
S4—Cd—N3—C1435.56 (17)C15—C16—C17—C180.3 (4)
S2—Cd—N3—C1456.94 (17)C14—N3—C18—C172.1 (3)
N4—Cd—N3—C188.28 (16)Cd—N3—C18—C17173.52 (17)
S1—Cd—N3—C1855.74 (19)C14—N3—C18—C19176.7 (2)
S3—Cd—N3—C1881.95 (17)Cd—N3—C18—C197.7 (3)
S4—Cd—N3—C18148.92 (16)C16—C17—C18—N31.6 (4)
S2—Cd—N3—C18118.57 (16)C16—C17—C18—C19177.1 (2)
N3—Cd—N4—C23176.6 (2)C23—N4—C19—C202.0 (3)
S1—Cd—N4—C2346.31 (18)Cd—N4—C19—C20173.34 (17)
S3—Cd—N4—C2356.83 (18)C23—N4—C19—C18177.0 (2)
S4—Cd—N4—C23107.98 (18)Cd—N4—C19—C187.6 (3)
S2—Cd—N4—C23105.41 (18)N3—C18—C19—N40.2 (3)
N3—Cd—N4—C198.27 (16)C17—C18—C19—N4178.6 (2)
S1—Cd—N4—C19128.86 (17)N3—C18—C19—C20179.2 (2)
S3—Cd—N4—C19128.00 (17)C17—C18—C19—C200.4 (4)
S4—Cd—N4—C1976.85 (19)N4—C19—C20—C212.3 (4)
S2—Cd—N4—C1969.76 (18)C18—C19—C20—C21176.7 (2)
C2—N1—C1—S22.0 (3)C19—C20—C21—C220.4 (4)
C3—N1—C1—S2177.74 (18)C20—C21—C22—C231.5 (4)
C2—N1—C1—S1177.93 (18)C19—N4—C23—C220.1 (4)
C3—N1—C1—S12.2 (3)Cd—N4—C23—C22175.32 (19)
Cd—S2—C1—N1172.83 (19)C21—C22—C23—N41.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S3i0.952.743.685 (3)172
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H12NS2)2(C10H8N2)]
Mr593.16
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.3215 (4), 10.6465 (4), 12.4546 (5)
α, β, γ (°)81.566 (3), 74.790 (3), 83.641 (3)
V3)1302.64 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.27 × 0.16 × 0.01
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.829, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15837, 5393, 4623
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.06
No. of reflections5393
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd—S12.6104 (7)Cd—S42.6783 (7)
Cd—S22.7685 (7)Cd—N32.379 (2)
Cd—S32.6468 (7)Cd—N42.441 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S3i0.952.743.685 (3)172
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010), UPM and the University of Malaya for supporting this study.

References

First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669–m1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m384-m385
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds