metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl­chlorido(N,N-di­benzyl­di­thio­carbamato)tin(IV)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 February 2011; accepted 22 February 2011; online 26 February 2011)

The SnIV atom in the title diorganotin dithio­carbamate, [Sn(C4H9)2(C15H14NS2)Cl], is penta­coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former.

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For a recently reported related structure, see: Abdul Muthalib et al. (2010[Abdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C15H14NS2)Cl]

  • Mr = 540.76

  • Monoclinic, P 21

  • a = 9.0600 (2) Å

  • b = 10.9238 (2) Å

  • c = 12.7845 (3) Å

  • β = 102.759 (2)°

  • V = 1234.03 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 150 K

  • 0.26 × 0.15 × 0.06 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.820, Tmax = 0.924

  • 15537 measured reflections

  • 5443 independent reflections

  • 5087 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.072

  • S = 1.05

  • 5443 reflections

  • 259 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2497 Friedel pairs

  • Flack parameter: −0.035 (18)

Table 1
Selected bond lengths (Å)

Sn—Cl1 2.4942 (9)
Sn—S1 2.4857 (10)
Sn—S2 2.7366 (10)
Sn—C16 2.191 (4)
Sn—C20 2.188 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin dithiocarbamates attract attention as they exhibit properties suggesting their potential as anti-cancer agents, anti-microbials and insecticides (Tiekink, 2008). In continuation of structural studies of these systems (Abdul Muthalib et al., 2010), the analysis of the title compound, (I), was undertaken.

The SnIV atom in (I) is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups, Fig. 1 and Table 1. The disparity in the C1–S1,2 bond distances reflects the asymmetric mode of coordination observed for the dithiocarbamate ligand, Table 1.

The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a very slight leaning towards the former description. This assignment is based on the value calculated for τ of 0.49 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry observed for (I) matches with the literature precedents (Tiekink, 2008).

No specific intermolecular interactions are noted in the crystal packing.

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For additional structural analysis, see: Addison et al. (1984); Spek (2009). For a recently reported related structure, see: Abdul Muthalib et al. (2010).

Experimental top

The title compound was prepared using an in situ method by addition of carbon disulfide (0.01 mol) to an ethanolic solution (20 ml) of dibenzylamine (0.01 mol). The mixture was stirred for 1 h at 277 K. The resulting solution was then added drop wise to a solution of di-tert-butyltin(IV) dichloride (0.005 mol) in ethanol (20 ml) and stirred again for 1 h. The white precipitate was filtered, washed with cold ethanol and dried in a desiccator. Crystallization was from its ethanol:chloroform (1:2) solution. Yield 71%; M.pt. 475–477 K. Elemental analysis. Found (calculated) for C23H32ClNS2Sn: C, 50.94 (51.50); H 5.89 (5.92); N 2.59 (2.93); S 11.59 (11.86); Sn 21.25 (21.90) %. UV (CHCl3) λmax 228 (L(π) L(π*)). IR(KBr): ν(C—H) 2939m, 2849m; ν(CN) 1487m; ν(N—C) 1154 s; ν(CS) 988 s; ν(Sn—S) 351 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Di-tert-butylchlorido(N,N-dibenzyldithiocarbamato)tin(IV) top
Crystal data top
[Sn(C4H9)2(C15H14NS2)Cl]F(000) = 552
Mr = 540.76Dx = 1.455 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10382 reflections
a = 9.0600 (2) Åθ = 2.0–29.0°
b = 10.9238 (2) ŵ = 1.32 mm1
c = 12.7845 (3) ÅT = 150 K
β = 102.759 (2)°Prism, colourless
V = 1234.03 (5) Å30.26 × 0.15 × 0.06 mm
Z = 2
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5443 independent reflections
Radiation source: fine-focus sealed tube5087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1413
Tmin = 0.820, Tmax = 0.924l = 1616
15537 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5443 reflectionsΔρmax = 0.78 e Å3
259 parametersΔρmin = 0.66 e Å3
1 restraintAbsolute structure: Flack (1983), 2497 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.035 (18)
Crystal data top
[Sn(C4H9)2(C15H14NS2)Cl]V = 1234.03 (5) Å3
Mr = 540.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.0600 (2) ŵ = 1.32 mm1
b = 10.9238 (2) ÅT = 150 K
c = 12.7845 (3) Å0.26 × 0.15 × 0.06 mm
β = 102.759 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5443 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5087 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.924Rint = 0.046
15537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.78 e Å3
S = 1.05Δρmin = 0.66 e Å3
5443 reflectionsAbsolute structure: Flack (1983), 2497 Friedel pairs
259 parametersAbsolute structure parameter: 0.035 (18)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.25541 (2)0.701510 (17)0.187046 (15)0.02052 (7)
Cl10.25531 (12)0.53028 (10)0.31609 (8)0.0317 (2)
S10.30831 (12)0.83033 (9)0.35137 (8)0.0254 (2)
S20.30370 (12)0.94068 (9)0.14035 (8)0.0306 (2)
N10.3893 (3)1.0614 (3)0.3258 (2)0.0234 (6)
C10.3381 (4)0.9583 (3)0.2768 (3)0.0238 (8)
C20.4241 (4)1.0768 (3)0.4447 (3)0.0238 (8)
H2A0.51871.12450.46700.029*
H2B0.44110.99520.47910.029*
C30.2986 (5)1.1410 (4)0.4836 (4)0.0242 (10)
C40.2986 (6)1.2679 (4)0.4919 (4)0.0280 (11)
H40.37681.31420.47200.034*
C50.1848 (6)1.3273 (5)0.5292 (4)0.0354 (12)
H50.18471.41410.53420.043*
C60.0719 (7)1.2598 (5)0.5588 (4)0.0389 (13)
H60.00611.30070.58410.047*
C70.0709 (6)1.1341 (6)0.5523 (4)0.0409 (13)
H70.00611.08810.57400.049*
C80.1841 (6)1.0751 (5)0.5135 (4)0.0325 (11)
H80.18270.98840.50740.039*
C90.4247 (4)1.1692 (3)0.2665 (3)0.0295 (9)
H9A0.38461.24360.29480.035*
H9B0.37371.16100.18990.035*
C100.5930 (4)1.1841 (4)0.2756 (3)0.0268 (9)
C110.6844 (5)1.0857 (4)0.2644 (4)0.0343 (11)
H110.64151.00610.25270.041*
C120.8369 (6)1.1017 (5)0.2698 (4)0.0401 (12)
H120.89841.03280.26340.048*
C130.9007 (5)1.2160 (6)0.2844 (3)0.0426 (12)
H131.00541.22680.28640.051*
C140.8115 (6)1.3152 (5)0.2963 (4)0.0426 (13)
H140.85491.39470.30620.051*
C150.6585 (6)1.2997 (4)0.2939 (4)0.0347 (11)
H150.59861.36800.30470.042*
C160.4451 (4)0.6314 (3)0.1240 (3)0.0264 (8)
C170.4057 (5)0.5006 (4)0.0873 (4)0.0399 (11)
H17A0.32210.50140.02390.060*
H17B0.37540.45480.14510.060*
H17C0.49430.46150.06940.060*
C180.4710 (4)0.7083 (6)0.0303 (3)0.0384 (9)
H18A0.55100.67090.00030.058*
H18B0.50160.79120.05530.058*
H18C0.37720.71220.02520.058*
C190.5852 (4)0.6347 (4)0.2167 (3)0.0345 (10)
H19A0.67110.59770.19340.052*
H19B0.56460.58870.27780.052*
H19C0.60920.71980.23810.052*
C200.0212 (3)0.6974 (5)0.0950 (2)0.0256 (6)
C210.0476 (5)0.5706 (4)0.1105 (4)0.0349 (11)
H21A0.05040.55970.18610.052*
H21B0.01470.50610.08890.052*
H21C0.15060.56570.06630.052*
C220.0276 (4)0.7156 (5)0.0218 (3)0.0379 (10)
H22A0.07550.72310.06550.057*
H22B0.07760.64510.04640.057*
H22C0.08460.79020.02880.057*
C230.0699 (5)0.7973 (4)0.1328 (4)0.0368 (11)
H23A0.02210.87670.12690.055*
H23B0.07370.78240.20780.055*
H23C0.17290.79750.08830.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02131 (11)0.01858 (11)0.02188 (12)0.00037 (13)0.00521 (8)0.00032 (13)
Cl10.0404 (6)0.0249 (5)0.0314 (6)0.0007 (4)0.0112 (5)0.0098 (4)
S10.0309 (5)0.0229 (5)0.0229 (5)0.0029 (4)0.0071 (4)0.0003 (4)
S20.0448 (6)0.0238 (5)0.0221 (5)0.0044 (4)0.0052 (4)0.0002 (4)
N10.0296 (16)0.0181 (14)0.0230 (16)0.0007 (13)0.0071 (13)0.0008 (12)
C10.0210 (17)0.0223 (19)0.027 (2)0.0001 (15)0.0031 (15)0.0009 (15)
C20.0272 (19)0.0202 (18)0.0226 (19)0.0006 (15)0.0026 (16)0.0022 (15)
C30.029 (2)0.020 (2)0.022 (2)0.0015 (19)0.0013 (19)0.0019 (18)
C40.031 (3)0.027 (2)0.025 (2)0.004 (2)0.004 (2)0.000 (2)
C50.047 (3)0.027 (2)0.031 (3)0.018 (2)0.005 (2)0.0026 (19)
C60.042 (3)0.051 (3)0.026 (3)0.015 (3)0.011 (2)0.004 (2)
C70.032 (3)0.059 (4)0.033 (3)0.005 (3)0.010 (2)0.005 (3)
C80.039 (3)0.032 (2)0.026 (2)0.000 (2)0.007 (2)0.003 (2)
C90.040 (2)0.020 (2)0.027 (2)0.0029 (14)0.0044 (17)0.0019 (13)
C100.0390 (19)0.021 (2)0.0202 (17)0.0046 (18)0.0064 (14)0.0024 (16)
C110.041 (3)0.023 (2)0.040 (3)0.0027 (19)0.013 (2)0.005 (2)
C120.043 (3)0.041 (3)0.038 (3)0.001 (2)0.014 (2)0.008 (2)
C130.042 (2)0.059 (3)0.028 (2)0.018 (3)0.0092 (17)0.001 (3)
C140.052 (3)0.031 (2)0.044 (3)0.020 (2)0.010 (2)0.002 (2)
C150.046 (3)0.023 (2)0.033 (3)0.005 (2)0.005 (2)0.0005 (18)
C160.0282 (19)0.0257 (19)0.028 (2)0.0031 (16)0.0110 (17)0.0038 (16)
C170.044 (3)0.028 (2)0.049 (3)0.0033 (19)0.015 (2)0.0148 (19)
C180.0387 (19)0.049 (2)0.032 (2)0.008 (3)0.0173 (16)0.001 (3)
C190.025 (2)0.038 (2)0.042 (3)0.0033 (18)0.0096 (18)0.000 (2)
C200.0210 (14)0.0275 (16)0.0262 (16)0.000 (2)0.0010 (12)0.001 (2)
C210.029 (2)0.030 (2)0.043 (3)0.0082 (19)0.0025 (19)0.004 (2)
C220.0338 (19)0.048 (3)0.031 (2)0.001 (2)0.0042 (15)0.004 (2)
C230.028 (2)0.034 (3)0.045 (3)0.0035 (19)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn—Cl12.4942 (9)C12—C131.372 (7)
Sn—S12.4857 (10)C12—H120.9500
Sn—S22.7366 (10)C13—C141.380 (8)
Sn—C162.191 (4)C13—H130.9500
Sn—C202.188 (3)C14—C151.389 (8)
S1—C11.746 (4)C14—H140.9500
S2—C11.714 (4)C15—H150.9500
N1—C11.321 (5)C16—C171.521 (5)
N1—C91.474 (5)C16—C181.524 (6)
N1—C21.493 (4)C16—C191.533 (6)
C2—C31.510 (6)C17—H17A0.9800
C2—H2A0.9900C17—H17B0.9800
C2—H2B0.9900C17—H17C0.9800
C3—C81.384 (6)C18—H18A0.9800
C3—C41.390 (4)C18—H18B0.9800
C4—C51.389 (6)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.381 (8)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—C71.376 (5)C20—C231.510 (6)
C6—H60.9500C20—C221.519 (5)
C7—C81.392 (7)C20—C211.550 (6)
C7—H70.9500C21—H21A0.9800
C8—H80.9500C21—H21B0.9800
C9—C101.512 (5)C21—H21C0.9800
C9—H9A0.9900C22—H22A0.9800
C9—H9B0.9900C22—H22B0.9800
C10—C111.383 (6)C22—H22C0.9800
C10—C151.394 (6)C23—H23A0.9800
C11—C121.380 (7)C23—H23B0.9800
C11—H110.9500C23—H23C0.9800
C20—Sn—C16122.78 (14)C12—C13—C14119.3 (4)
C20—Sn—S1116.70 (11)C12—C13—H13120.3
C16—Sn—S1119.21 (10)C14—C13—H13120.3
C20—Sn—Cl1101.46 (13)C13—C14—C15120.5 (4)
C16—Sn—Cl195.51 (10)C13—C14—H14119.7
S1—Sn—Cl183.90 (4)C15—C14—H14119.7
C20—Sn—S294.87 (14)C14—C15—C10120.0 (4)
C16—Sn—S294.43 (10)C14—C15—H15120.0
S1—Sn—S268.51 (3)C10—C15—H15120.0
Cl1—Sn—S2152.09 (3)C17—C16—C18110.0 (4)
C1—S1—Sn90.91 (13)C17—C16—C19111.0 (3)
C1—S2—Sn83.51 (12)C18—C16—C19110.5 (3)
C1—N1—C9122.1 (3)C17—C16—Sn107.0 (3)
C1—N1—C2123.5 (3)C18—C16—Sn111.5 (3)
C9—N1—C2114.4 (3)C19—C16—Sn106.9 (2)
N1—C1—S2122.9 (3)C16—C17—H17A109.5
N1—C1—S1120.3 (3)C16—C17—H17B109.5
S2—C1—S1116.8 (2)H17A—C17—H17B109.5
N1—C2—C3112.5 (3)C16—C17—H17C109.5
N1—C2—H2A109.1H17A—C17—H17C109.5
C3—C2—H2A109.1H17B—C17—H17C109.5
N1—C2—H2B109.1C16—C18—H18A109.5
C3—C2—H2B109.1C16—C18—H18B109.5
H2A—C2—H2B107.8H18A—C18—H18B109.5
C8—C3—C4119.0 (5)C16—C18—H18C109.5
C8—C3—C2120.9 (4)H18A—C18—H18C109.5
C4—C3—C2120.1 (5)H18B—C18—H18C109.5
C5—C4—C3120.3 (5)C16—C19—H19A109.5
C5—C4—H4119.8C16—C19—H19B109.5
C3—C4—H4119.8H19A—C19—H19B109.5
C6—C5—C4119.7 (5)C16—C19—H19C109.5
C6—C5—H5120.1H19A—C19—H19C109.5
C4—C5—H5120.1H19B—C19—H19C109.5
C7—C6—C5120.7 (6)C23—C20—C22111.2 (4)
C7—C6—H6119.6C23—C20—C21109.9 (3)
C5—C6—H6119.6C22—C20—C21110.3 (4)
C6—C7—C8119.3 (6)C23—C20—Sn110.3 (3)
C6—C7—H7120.4C22—C20—Sn106.5 (2)
C8—C7—H7120.4C21—C20—Sn108.6 (3)
C3—C8—C7120.9 (5)C20—C21—H21A109.5
C3—C8—H8119.6C20—C21—H21B109.5
C7—C8—H8119.6H21A—C21—H21B109.5
N1—C9—C10112.1 (3)C20—C21—H21C109.5
N1—C9—H9A109.2H21A—C21—H21C109.5
C10—C9—H9A109.2H21B—C21—H21C109.5
N1—C9—H9B109.2C20—C22—H22A109.5
C10—C9—H9B109.2C20—C22—H22B109.5
H9A—C9—H9B107.9H22A—C22—H22B109.5
C11—C10—C15118.6 (4)C20—C22—H22C109.5
C11—C10—C9121.7 (4)H22A—C22—H22C109.5
C15—C10—C9119.7 (4)H22B—C22—H22C109.5
C12—C11—C10120.8 (4)C20—C23—H23A109.5
C12—C11—H11119.6C20—C23—H23B109.5
C10—C11—H11119.6H23A—C23—H23B109.5
C13—C12—C11120.6 (5)C20—C23—H23C109.5
C13—C12—H12119.7H23A—C23—H23C109.5
C11—C12—H12119.7H23B—C23—H23C109.5
C20—Sn—S1—C187.69 (18)C15—C10—C11—C120.7 (6)
C16—Sn—S1—C179.62 (17)C9—C10—C11—C12178.1 (4)
Cl1—Sn—S1—C1172.53 (12)C10—C11—C12—C131.3 (7)
S2—Sn—S1—C13.20 (12)C11—C12—C13—C141.5 (7)
C20—Sn—S2—C1120.10 (15)C12—C13—C14—C150.2 (7)
C16—Sn—S2—C1116.43 (16)C13—C14—C15—C102.3 (7)
S1—Sn—S2—C13.28 (12)C11—C10—C15—C142.5 (6)
Cl1—Sn—S2—C15.82 (15)C9—C10—C15—C14176.3 (4)
C9—N1—C1—S21.6 (5)C20—Sn—C16—C1753.6 (3)
C2—N1—C1—S2178.1 (3)S1—Sn—C16—C17139.9 (2)
C9—N1—C1—S1176.3 (3)Cl1—Sn—C16—C1753.8 (3)
C2—N1—C1—S10.2 (5)S2—Sn—C16—C17152.3 (3)
Sn—S2—C1—N1173.1 (3)C20—Sn—C16—C1866.6 (3)
Sn—S2—C1—S14.87 (18)S1—Sn—C16—C1899.9 (3)
Sn—S1—C1—N1172.7 (3)Cl1—Sn—C16—C18174.0 (3)
Sn—S1—C1—S25.3 (2)S2—Sn—C16—C1832.1 (3)
C1—N1—C2—C399.7 (4)C20—Sn—C16—C19172.6 (3)
C9—N1—C2—C383.5 (4)S1—Sn—C16—C1920.9 (3)
N1—C2—C3—C891.7 (5)Cl1—Sn—C16—C1965.1 (3)
N1—C2—C3—C489.6 (5)S2—Sn—C16—C1988.7 (3)
C8—C3—C4—C50.3 (9)C16—Sn—C20—C23154.4 (3)
C2—C3—C4—C5179.0 (3)S1—Sn—C20—C2312.4 (3)
C3—C4—C5—C60.5 (8)Cl1—Sn—C20—C23101.3 (3)
C4—C5—C6—C70.2 (9)S2—Sn—C20—C2355.9 (3)
C5—C6—C7—C81.1 (10)C16—Sn—C20—C2233.6 (5)
C4—C3—C8—C70.6 (8)S1—Sn—C20—C22133.2 (3)
C2—C3—C8—C7178.1 (4)Cl1—Sn—C20—C22137.9 (4)
C6—C7—C8—C31.3 (9)S2—Sn—C20—C2264.9 (4)
C1—N1—C9—C10102.5 (4)C16—Sn—C20—C2185.1 (3)
C2—N1—C9—C1074.3 (4)S1—Sn—C20—C21108.0 (3)
N1—C9—C10—C1144.6 (5)Cl1—Sn—C20—C2119.2 (3)
N1—C9—C10—C15136.6 (4)S2—Sn—C20—C21176.4 (2)

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C15H14NS2)Cl]
Mr540.76
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)9.0600 (2), 10.9238 (2), 12.7845 (3)
β (°) 102.759 (2)
V3)1234.03 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.26 × 0.15 × 0.06
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.820, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
15537, 5443, 5087
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.05
No. of reflections5443
No. of parameters259
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.66
Absolute structureFlack (1983), 2497 Friedel pairs
Absolute structure parameter0.035 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—Cl12.4942 (9)Sn—C202.188 (3)
Sn—S12.4857 (10)S1—C11.746 (4)
Sn—S22.7366 (10)S2—C11.714 (4)
Sn—C162.191 (4)
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010), UPM and the University of Malaya for supporting this study.

References

First citationAbdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds