organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-meth­­oxy­phen­yl)meth­yl]piperazin-1-yl}-3-(4-fluoro­phen­yl)prop-2-en-1-one

aSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 13 January 2011; accepted 18 February 2011; online 23 February 2011)

In the title compound, C28H29FN2O3, the conformation about the ethene bond is E. The piperazine ring adopts a chair conformation. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For properties of cinnamic acid derivatives, see: Shi et al. (2005[Shi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707-712.]); Point et al. (1998[Point, D., Coudert, P., Leal, F., Rubat, C., Sautou-Miranda, V., Chopineau, J. & Couquelet, J. (1998). Farmaco, 53, 85-88.]). For synthetic procedures, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]). For a related structure, see: Mouillé et al. (1975[Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.]).

[Scheme 1]

Experimental

Crystal data
  • C28H29FN2O3

  • Mr = 460.53

  • Monoclinic, P 21 /c

  • a = 10.235 (2) Å

  • b = 7.8420 (16) Å

  • c = 30.385 (6) Å

  • β = 96.65 (3)°

  • V = 2422.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.983, Tmax = 0.991

  • 4730 measured reflections

  • 4463 independent reflections

  • 2366 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.170

  • S = 1.01

  • 4463 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.28 3.131 (4) 152
C17—H17A⋯O3ii 0.93 2.60 3.499 (4) 163
Symmetry codes: (i) -x+1, -y-1, -z; (ii) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cinnamic acid derivatives have been reported to possess many useful properties, including alpha-glucosidase inhibition, acyl-CoA inhibition, LDL-oxidation inhibition, tyrosinase inhibition, antioxidant, antimicrobial, neuroprotective activities (Shi et al., 2005; Point et al., 1998). We report here the synthesis and crystal structure of a novel cinnamic acid derivative.

In the title molecule (Fig. 1), the conformation about the ethene bond C7C8 is E. The piperazine ring adopts a chair conformation. There are intramolecular and intermolecular C—H···O hydrogen bonds in the title compound (Fig. 2) which consilidate the crystal structure. The bond lenths and angles in the title compound agree well with the corresponding bond lengths and angles in a closely related compound, trans-cinnamyl-1-diphenylmethyl-4-piperazine (Mouillé et al., 1975).

Related literature top

For properties of cinnamic acid derivatives, see: Shi et al. (2005); Point et al. (1998). For synthetic procedures, see: Wu et al. (2008). For a related structure, see: Mouillé et al. (1975).

Experimental top

The synthesis follows the method of Wu et al. (2008). A mixture of (E)-3-(4-fluoro phenyl)acrylic acid (1.66 g; 10 mmol), dimethyl sulfoxide (4 ml) and dichloromethane (60 ml) was stirred for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (60 ml) and reacted with 1-(bis(4-methoxyphenyl)methyl) piperazine (4.69 g; 15 mmol) in the presence of triethylamine (12 ml) for 5 h at room temperature. The resultant mixture was cooled. The solid thus obtained was filtered and recrystallized from ethanol to afford the title compound. Pale-yellow single crystals of the title compound suitable for X-ray diffraction studies were grown from a mixture of CHCl3 and hexane (1:1) by slow evaporation at room temperature.

Refinement top

All H atoms were placed geometrically at distances C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne type H-atoms, respectively, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and 70% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound showing hydrogen bonds as dashed lines.
(E)-1-{4-[Bis(4-methoxyphenyl)methyl]piperazin-1-yl}- 3-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C28H29FN2O3F(000) = 976
Mr = 460.53Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.235 (2) Åθ = 10–13°
b = 7.8420 (16) ŵ = 0.09 mm1
c = 30.385 (6) ÅT = 293 K
β = 96.65 (3)°Block, pale-yellow
V = 2422.4 (8) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2366 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω and 2θ scansh = 012
Absorption correction: multi-scan
ψ scan
k = 09
Tmin = 0.983, Tmax = 0.991l = 3636
4730 measured reflections3 standard reflections every 200 reflections
4463 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
4463 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C28H29FN2O3V = 2422.4 (8) Å3
Mr = 460.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.235 (2) ŵ = 0.09 mm1
b = 7.8420 (16) ÅT = 293 K
c = 30.385 (6) Å0.20 × 0.10 × 0.10 mm
β = 96.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2366 reflections with I > 2σ(I)
Absorption correction: multi-scan
ψ scan
Rint = 0.031
Tmin = 0.983, Tmax = 0.9913 standard reflections every 200 reflections
4730 measured reflections intensity decay: 1%
4463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
4463 reflectionsΔρmin = 0.18 e Å3
307 parameters
Special details top

Experimental. (North et al., 1968)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1.1036 (2)0.8047 (3)0.03071 (8)0.1138 (8)
N10.5564 (2)0.0310 (3)0.08123 (8)0.0606 (7)
O10.4552 (2)0.1690 (3)0.03651 (7)0.0783 (7)
C10.9101 (3)0.4669 (4)0.06924 (11)0.0723 (10)
H1A0.91960.37700.08930.087*
O20.06003 (19)0.8563 (3)0.14269 (7)0.0658 (6)
N20.5216 (2)0.3082 (3)0.13971 (8)0.0540 (6)
C21.0149 (4)0.5726 (5)0.06570 (13)0.0838 (11)
H2A1.09480.55630.08310.101*
O30.93784 (18)0.7764 (3)0.25379 (7)0.0653 (6)
C30.9982 (4)0.7018 (5)0.03591 (13)0.0779 (10)
C40.8809 (4)0.7385 (5)0.01176 (12)0.0841 (11)
H4A0.87120.83330.00670.101*
C50.7775 (4)0.6302 (5)0.01579 (11)0.0755 (10)
H5A0.69670.65120.00070.091*
C60.7909 (3)0.4905 (4)0.04381 (10)0.0592 (8)
C70.6790 (3)0.3740 (4)0.04508 (10)0.0636 (9)
H7A0.59820.41550.03240.076*
C80.6773 (3)0.2193 (4)0.06162 (10)0.0619 (9)
H8A0.75510.17310.07550.074*
C90.5553 (3)0.1162 (4)0.05889 (10)0.0574 (8)
C100.4434 (3)0.1440 (4)0.07401 (10)0.0677 (9)
H10A0.36880.08140.05950.081*
H10B0.46290.23650.05460.081*
C110.4086 (3)0.2162 (4)0.11695 (10)0.0633 (9)
H11A0.33450.29320.11120.076*
H11B0.38340.12460.13570.076*
C120.6265 (3)0.1835 (4)0.15010 (11)0.0662 (9)
H12A0.59620.09440.16860.079*
H12B0.70160.23870.16660.079*
C130.6676 (3)0.1057 (4)0.10871 (11)0.0658 (9)
H13A0.70750.19270.09190.079*
H13B0.73310.01820.11670.079*
C140.4907 (3)0.4005 (4)0.17929 (9)0.0539 (8)
H14A0.46540.31700.20080.065*
C150.3763 (3)0.5219 (4)0.16789 (10)0.0496 (7)
C160.2791 (3)0.5383 (4)0.19576 (10)0.0562 (8)
H16A0.28370.47230.22130.067*
C170.1757 (3)0.6503 (4)0.18645 (10)0.0588 (8)
H17A0.11130.65870.20560.071*
C180.1677 (3)0.7490 (4)0.14916 (10)0.0517 (7)
C190.2627 (3)0.7373 (4)0.12093 (10)0.0564 (8)
H19A0.25790.80450.09560.068*
C200.3658 (3)0.6239 (4)0.13073 (10)0.0576 (8)
H20A0.43020.61650.11160.069*
C210.0545 (3)0.9718 (4)0.10672 (11)0.0739 (10)
H21A0.02461.03820.10560.111*
H21B0.05480.90930.07960.111*
H21C0.12951.04610.11060.111*
C220.6118 (3)0.4964 (4)0.20031 (9)0.0487 (7)
C230.6794 (3)0.6068 (4)0.17551 (10)0.0654 (9)
H23A0.65120.62090.14550.078*
C240.7869 (3)0.6956 (4)0.19426 (10)0.0640 (9)
H24A0.83110.76790.17680.077*
C250.8303 (3)0.6793 (4)0.23854 (10)0.0516 (7)
C260.7663 (3)0.5699 (4)0.26369 (10)0.0594 (8)
H26A0.79560.55550.29360.071*
C270.6569 (3)0.4799 (4)0.24439 (10)0.0583 (8)
H27A0.61340.40660.26190.070*
C280.9994 (3)0.7437 (5)0.29707 (11)0.0853 (11)
H28A1.07220.82030.30370.128*
H28B1.03050.62820.29890.128*
H28C0.93720.76060.31800.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.1173 (18)0.1002 (17)0.1298 (19)0.0444 (15)0.0391 (15)0.0195 (15)
N10.0469 (15)0.0636 (17)0.0693 (17)0.0060 (14)0.0021 (13)0.0110 (15)
O10.0608 (14)0.0883 (17)0.0834 (16)0.0077 (13)0.0015 (12)0.0212 (13)
C10.075 (2)0.053 (2)0.084 (2)0.0013 (19)0.0119 (19)0.0117 (18)
O20.0542 (12)0.0670 (14)0.0768 (15)0.0124 (12)0.0106 (10)0.0043 (12)
N20.0361 (13)0.0562 (15)0.0682 (16)0.0014 (12)0.0003 (11)0.0075 (13)
C20.075 (2)0.059 (2)0.113 (3)0.006 (2)0.010 (2)0.003 (2)
O30.0502 (12)0.0750 (15)0.0689 (14)0.0098 (12)0.0008 (10)0.0058 (12)
C30.087 (3)0.067 (3)0.083 (3)0.019 (2)0.026 (2)0.017 (2)
C40.109 (3)0.079 (3)0.066 (2)0.015 (3)0.017 (2)0.018 (2)
C50.081 (2)0.080 (3)0.065 (2)0.004 (2)0.0024 (18)0.019 (2)
C60.067 (2)0.0534 (19)0.0571 (18)0.0045 (17)0.0063 (16)0.0043 (16)
C70.059 (2)0.069 (2)0.062 (2)0.0046 (18)0.0049 (16)0.0068 (18)
C80.0550 (19)0.060 (2)0.070 (2)0.0064 (17)0.0063 (15)0.0123 (18)
C90.0530 (19)0.063 (2)0.0568 (19)0.0047 (17)0.0098 (15)0.0026 (17)
C100.0502 (18)0.075 (2)0.074 (2)0.0085 (18)0.0097 (16)0.0102 (18)
C110.0391 (16)0.067 (2)0.081 (2)0.0023 (16)0.0036 (15)0.0091 (18)
C120.0475 (18)0.063 (2)0.085 (2)0.0043 (16)0.0082 (16)0.0163 (18)
C130.0429 (17)0.064 (2)0.089 (2)0.0022 (16)0.0026 (16)0.0136 (19)
C140.0489 (17)0.0533 (18)0.0598 (19)0.0024 (15)0.0077 (14)0.0045 (16)
C150.0384 (15)0.0494 (17)0.0606 (18)0.0038 (14)0.0045 (13)0.0015 (15)
C160.0540 (18)0.0579 (19)0.0587 (18)0.0039 (16)0.0150 (15)0.0081 (16)
C170.0470 (17)0.065 (2)0.066 (2)0.0046 (16)0.0166 (15)0.0020 (17)
C180.0414 (16)0.0525 (18)0.0610 (19)0.0016 (15)0.0059 (14)0.0063 (16)
C190.0553 (18)0.0559 (19)0.0588 (19)0.0031 (16)0.0096 (15)0.0058 (16)
C200.0430 (16)0.067 (2)0.066 (2)0.0037 (16)0.0170 (14)0.0057 (17)
C210.059 (2)0.074 (2)0.088 (3)0.0111 (18)0.0009 (18)0.006 (2)
C220.0414 (15)0.0493 (17)0.0557 (18)0.0038 (14)0.0063 (13)0.0022 (15)
C230.062 (2)0.085 (2)0.0485 (18)0.0180 (19)0.0023 (15)0.0081 (17)
C240.0528 (18)0.079 (2)0.061 (2)0.0176 (18)0.0077 (15)0.0101 (18)
C250.0406 (16)0.0512 (18)0.063 (2)0.0044 (15)0.0061 (15)0.0050 (16)
C260.0550 (18)0.073 (2)0.0476 (17)0.0007 (18)0.0041 (15)0.0037 (16)
C270.0533 (18)0.062 (2)0.0598 (19)0.0049 (17)0.0067 (15)0.0113 (17)
C280.063 (2)0.100 (3)0.086 (3)0.003 (2)0.0217 (19)0.003 (2)
Geometric parameters (Å, º) top
F—C31.370 (4)C12—H12A0.9700
N1—C91.338 (4)C12—H12B0.9700
N1—C101.453 (4)C13—H13A0.9700
N1—C131.455 (4)C13—H13B0.9700
O1—C91.235 (3)C14—C151.517 (4)
C1—C21.370 (4)C14—C221.525 (4)
C1—C61.379 (4)C14—H14A0.9800
C1—H1A0.9300C15—C201.378 (4)
O2—C181.382 (3)C15—C161.385 (4)
O2—C211.416 (3)C16—C171.380 (4)
N2—C121.459 (3)C16—H16A0.9300
N2—C111.466 (3)C17—C181.367 (4)
N2—C141.469 (3)C17—H17A0.9300
C2—C31.357 (5)C18—C191.372 (4)
C2—H2A0.9300C19—C201.386 (4)
O3—C251.374 (3)C19—H19A0.9300
O3—C281.414 (3)C20—H20A0.9300
C3—C41.364 (5)C21—H21A0.9600
C4—C51.373 (5)C21—H21B0.9600
C4—H4A0.9300C21—H21C0.9600
C5—C61.385 (4)C22—C271.372 (4)
C5—H5A0.9300C22—C231.384 (4)
C6—C71.469 (4)C23—C241.370 (4)
C7—C81.314 (4)C23—H23A0.9300
C7—H7A0.9300C24—C251.373 (4)
C8—C91.482 (4)C24—H24A0.9300
C8—H8A0.9300C25—C261.365 (4)
C10—C111.503 (4)C26—C271.394 (4)
C10—H10A0.9700C26—H26A0.9300
C10—H10B0.9700C27—H27A0.9300
C11—H11A0.9700C28—H28A0.9600
C11—H11B0.9700C28—H28B0.9600
C12—C131.501 (4)C28—H28C0.9600
C9—N1—C10119.3 (2)C12—C13—H13B109.3
C9—N1—C13126.8 (3)H13A—C13—H13B108.0
C10—N1—C13113.4 (2)N2—C14—C15110.8 (2)
C2—C1—C6121.7 (3)N2—C14—C22110.1 (2)
C2—C1—H1A119.2C15—C14—C22110.8 (2)
C6—C1—H1A119.2N2—C14—H14A108.3
C18—O2—C21117.3 (2)C15—C14—H14A108.3
C12—N2—C11107.0 (2)C22—C14—H14A108.3
C12—N2—C14112.1 (2)C20—C15—C16117.0 (3)
C11—N2—C14113.3 (2)C20—C15—C14122.4 (3)
C3—C2—C1117.7 (3)C16—C15—C14120.6 (3)
C3—C2—H2A121.1C17—C16—C15121.5 (3)
C1—C2—H2A121.1C17—C16—H16A119.3
C25—O3—C28117.8 (3)C15—C16—H16A119.3
C2—C3—C4123.5 (4)C18—C17—C16120.1 (3)
C2—C3—F118.5 (4)C18—C17—H17A120.0
C4—C3—F118.0 (4)C16—C17—H17A120.0
C3—C4—C5117.5 (3)C17—C18—C19120.1 (3)
C3—C4—H4A121.3C17—C18—O2115.6 (3)
C5—C4—H4A121.3C19—C18—O2124.3 (3)
C4—C5—C6121.5 (3)C18—C19—C20119.1 (3)
C4—C5—H5A119.3C18—C19—H19A120.5
C6—C5—H5A119.3C20—C19—H19A120.5
C1—C6—C5118.0 (3)C15—C20—C19122.3 (3)
C1—C6—C7122.9 (3)C15—C20—H20A118.9
C5—C6—C7119.1 (3)C19—C20—H20A118.9
C8—C7—C6129.0 (3)O2—C21—H21A109.5
C8—C7—H7A115.5O2—C21—H21B109.5
C6—C7—H7A115.5H21A—C21—H21B109.5
C7—C8—C9122.1 (3)O2—C21—H21C109.5
C7—C8—H8A119.0H21A—C21—H21C109.5
C9—C8—H8A119.0H21B—C21—H21C109.5
O1—C9—N1121.8 (3)C27—C22—C23117.2 (3)
O1—C9—C8119.2 (3)C27—C22—C14121.9 (3)
N1—C9—C8119.0 (3)C23—C22—C14120.9 (3)
N1—C10—C11111.3 (2)C24—C23—C22121.3 (3)
N1—C10—H10A109.4C24—C23—H23A119.3
C11—C10—H10A109.4C22—C23—H23A119.3
N1—C10—H10B109.4C23—C24—C25120.9 (3)
C11—C10—H10B109.4C23—C24—H24A119.6
H10A—C10—H10B108.0C25—C24—H24A119.6
N2—C11—C10110.0 (2)C26—C25—C24119.0 (3)
N2—C11—H11A109.7C26—C25—O3125.2 (3)
C10—C11—H11A109.7C24—C25—O3115.8 (3)
N2—C11—H11B109.7C25—C26—C27119.8 (3)
C10—C11—H11B109.7C25—C26—H26A120.1
H11A—C11—H11B108.2C27—C26—H26A120.1
N2—C12—C13111.2 (3)C22—C27—C26121.8 (3)
N2—C12—H12A109.4C22—C27—H27A119.1
C13—C12—H12A109.4C26—C27—H27A119.1
N2—C12—H12B109.4O3—C28—H28A109.5
C13—C12—H12B109.4O3—C28—H28B109.5
H12A—C12—H12B108.0H28A—C28—H28B109.5
N1—C13—C12111.6 (2)O3—C28—H28C109.5
N1—C13—H13A109.3H28A—C28—H28C109.5
C12—C13—H13A109.3H28B—C28—H28C109.5
N1—C13—H13B109.3
C6—C1—C2—C30.4 (5)N2—C14—C15—C2043.6 (4)
C1—C2—C3—C44.6 (6)C22—C14—C15—C2079.0 (3)
C1—C2—C3—F177.5 (3)N2—C14—C15—C16138.6 (3)
C2—C3—C4—C54.9 (6)C22—C14—C15—C1698.9 (3)
F—C3—C4—C5177.2 (3)C20—C15—C16—C170.7 (4)
C3—C4—C5—C61.0 (5)C14—C15—C16—C17178.7 (3)
C2—C1—C6—C53.1 (5)C15—C16—C17—C180.4 (4)
C2—C1—C6—C7176.5 (3)C16—C17—C18—C190.1 (4)
C4—C5—C6—C12.8 (5)C16—C17—C18—O2179.6 (2)
C4—C5—C6—C7176.9 (3)C21—O2—C18—C17174.3 (3)
C1—C6—C7—C815.0 (5)C21—O2—C18—C195.9 (4)
C5—C6—C7—C8164.7 (3)C17—C18—C19—C200.2 (4)
C6—C7—C8—C9178.1 (3)O2—C18—C19—C20179.5 (3)
C10—N1—C9—O19.2 (4)C16—C15—C20—C190.6 (4)
C13—N1—C9—O1179.7 (3)C14—C15—C20—C19178.6 (3)
C10—N1—C9—C8171.6 (3)C18—C19—C20—C150.2 (4)
C13—N1—C9—C80.6 (5)N2—C14—C22—C27128.0 (3)
C7—C8—C9—O17.7 (5)C15—C14—C22—C27109.0 (3)
C7—C8—C9—N1171.5 (3)N2—C14—C22—C2353.2 (4)
C9—N1—C10—C11137.5 (3)C15—C14—C22—C2369.8 (3)
C13—N1—C10—C1150.3 (4)C27—C22—C23—C240.0 (5)
C12—N2—C11—C1063.1 (3)C14—C22—C23—C24178.9 (3)
C14—N2—C11—C10172.9 (2)C22—C23—C24—C250.7 (5)
N1—C10—C11—N257.9 (3)C23—C24—C25—C261.4 (5)
C11—N2—C12—C1362.0 (3)C23—C24—C25—O3179.1 (3)
C14—N2—C12—C13173.2 (2)C28—O3—C25—C269.6 (4)
C9—N1—C13—C12139.8 (3)C28—O3—C25—C24169.8 (3)
C10—N1—C13—C1248.7 (4)C24—C25—C26—C271.4 (4)
N2—C12—C13—N155.2 (4)O3—C25—C26—C27179.2 (3)
C12—N2—C14—C15176.8 (2)C23—C22—C27—C260.0 (4)
C11—N2—C14—C1555.6 (3)C14—C22—C27—C26178.9 (3)
C12—N2—C14—C2260.3 (3)C25—C26—C27—C220.7 (5)
C11—N2—C14—C22178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.283.131 (4)152
C17—H17A···O3ii0.932.603.499 (4)163
C10—H10A···O10.972.302.715 (4)105
C7—H7A···O10.932.432.786 (4)102
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H29FN2O3
Mr460.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.235 (2), 7.8420 (16), 30.385 (6)
β (°) 96.65 (3)
V3)2422.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
ψ scan
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4730, 4463, 2366
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.170, 1.01
No. of reflections4463
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.283.131 (4)152
C17—H17A···O3ii0.932.603.499 (4)163
C10—H10A···O10.972.302.715 (4)105
C7—H7A···O10.932.432.786 (4)102
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.
 

Acknowledgements

This study was supported financially by grant No. BK2010538 from the Natural Science Foundation of Jiangsu Province. The authors extend special thanks to Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the data collection.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPoint, D., Coudert, P., Leal, F., Rubat, C., Sautou-Miranda, V., Chopineau, J. & Couquelet, J. (1998). Farmaco, 53, 85–88.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707–712.  CrossRef CAS Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds