organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-methyl-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carbo­nitrile

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 25 January 2011; accepted 17 February 2011; online 23 February 2011)

In the title compound, C10H12N2S, one of the C atoms of the cyclo­hexene ring (at position 6) and the methyl group attached to it are disordered over two sets of sites in a 0.650 (3):0.350 (3) ratio. The cyclo­hexene ring in both the major and minor occupancy conformers adopts a half-chair conformation. The thio­phene ring is essentially planar (r.m.s. deviation = 0.05 Å). In the crystal, N—H⋯N hydrogen bonds involving the amino groups result in inversion dimers with R22(12) graph-set motif. Further N—H⋯N hydrogen bonds involving the amino and carbonitrile groups generate zigzag chains along the a axis.

Related literature

For preparation of the title compound, see: Shetty et al. (2009[Shetty, N. S., Lamani, R. S. & Khazi, I. M. (2009). J. Chem. Sci. 121, 301-307.]). For general background to benzothio­phenes, see: Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry, Vol. 2, pp. 679-729. Oxford: Pergamon Press.]); Shishoo & Jain (1992[Shishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883-893.]). For related structures, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732-o3734.]); Vasu et al. (2004[Vasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1654-o1655.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2S

  • Mr = 192.29

  • Monoclinic, P 21 /c

  • a = 9.0415 (2) Å

  • b = 8.3294 (2) Å

  • c = 13.1283 (3) Å

  • β = 90.169 (2)°

  • V = 988.69 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 123 K

  • 0.16 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.957, Tmax = 0.962

  • 11284 measured reflections

  • 2441 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.07

  • 2441 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.88 2.22 3.087 (2) 170
N2—H2B⋯N1ii 0.88 2.41 3.247 (2) 160
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzothiophenes are important heterocycles either as biological active molecules or as luminescent components used in organic materials (Shishoo & Jain, 1992; Katritzky et al., 1996). In this paper, we report the crystal structure of a benzothiophene derivative.

In the title compound (Fig. 1), the fused benzothiophene ring system is substituted with amino, methyl and carbonitrile groups. The carbon atoms C9 and C10 are disordered over two sites (C9A/C9B and C10A/C10B) with site occupancy factors 0.650 (3) and 0.350 (3) resulting in a major and a minor conformers. The cyclohexene ring in both conformers is in a half-chair conformation with C9A and C9B 0.547 (4) and 0.506 (6) Å, respectively, displaced on the opposite sides from the plane formed by the rest of the ring C-atoms (max. deviation being 0.063 (2) Å for C6). The thiophene ring is essentially planar. In several benzothiophene derivatives the cyclohexyl ring adopts half-chair conformation (Akkurt et al., 2008; Harrison et al., 2006; Vasu et al., 2004). The crystal structure is stabilized by two types of N—H···N intermolecular interactions (Table 1); N2—H2A···N1 hydrogen bond forms centrosymmetric, head-to-head dimers about inversion centers corresponding to graph set R22(12) motif(Bernstein et al., 1995) while N2—H2B···N1 hydrogen bonds generate chains of molecules in a zigzag pattern along the a axis (Fig. 2).

Related literature top

For preparation of the title compound, see: Shetty et al. (2009). For general background to benzothiophenes, see: Katritzky et al. (1996); Shishoo & Jain (1992). For related structures, see: Akkurt et al. (2008); Harrison et al. (2006); Vasu et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by following the procedure reported earlier (Shetty et al., 2009).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.88 Å and C—H = 0.98, 0.99 and 1.00 Å for methylene, methyl and methyne type H-atoms, respectively; Uiso(H) = 1.2Ueq(N/non-methyl C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1999) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme; C-atoms C9b and C10b represent the minor conformer.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
2-Amino-6-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile top
Crystal data top
C10H12N2SF(000) = 408
Mr = 192.29Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2441 reflections
a = 9.0415 (2) Åθ = 2.9–29.2°
b = 8.3294 (2) ŵ = 0.28 mm1
c = 13.1283 (3) ÅT = 123 K
β = 90.169 (2)°Block, yellow
V = 988.69 (4) Å30.16 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2441 independent reflections
Radiation source: Enhance (Mo) X-ray Source1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1112
Tmin = 0.957, Tmax = 0.962k = 1110
11284 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2028P]
where P = (Fo2 + 2Fc2)/3
2441 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H12N2SV = 988.69 (4) Å3
Mr = 192.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0415 (2) ŵ = 0.28 mm1
b = 8.3294 (2) ÅT = 123 K
c = 13.1283 (3) Å0.16 × 0.16 × 0.14 mm
β = 90.169 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2441 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1878 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.962Rint = 0.039
11284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
2441 reflectionsΔρmin = 0.30 e Å3
127 parameters
Special details top

Experimental. The compound was synthesized by following the procedure given in NitinKumar et al., (2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.68698 (5)0.02703 (5)0.34885 (3)0.02519 (15)
N10.5603 (2)0.40456 (18)0.60740 (11)0.0378 (4)
N20.54766 (17)0.25706 (17)0.33230 (10)0.0292 (4)
H2A0.51290.34800.35650.035*
H2B0.53620.23360.26740.035*
C10.5991 (2)0.3000 (2)0.55684 (12)0.0263 (4)
C20.64719 (19)0.16794 (19)0.49726 (12)0.0224 (4)
C30.61829 (18)0.15372 (19)0.39455 (12)0.0217 (3)
C40.75534 (19)0.0810 (2)0.46849 (12)0.0251 (4)
C50.72696 (19)0.0328 (2)0.53858 (12)0.0236 (4)
C60.7762 (2)0.0180 (2)0.64700 (13)0.0303 (4)
H6A0.83120.11580.66700.036*
H6B0.68850.00880.69160.036*
C70.8734 (3)0.1266 (3)0.66129 (16)0.0514 (6)
H7A0.86880.15720.73410.062*0.650 (3)
H7B0.97640.09310.64740.062*0.650 (3)
C80.8387 (2)0.2343 (2)0.48637 (13)0.0328 (4)
H8A0.78920.32360.45000.039*0.650 (3)
H8B0.94050.22410.45960.039*0.650 (3)
C9A0.8440 (3)0.2705 (3)0.6012 (2)0.0296 (5)0.650 (3)
H9AA0.74340.30940.62090.036*0.650 (3)
C10A0.9518 (5)0.4053 (5)0.6248 (3)0.0429 (10)0.650 (3)
H10A0.95440.42410.69850.064*0.650 (3)
H10B0.91990.50340.59000.064*0.650 (3)
H10C1.05080.37530.60130.064*0.650 (3)
H7C0.81280.20720.69770.062*0.350 (3)
H7D0.95270.09370.70910.062*0.350 (3)
H8C0.76900.32380.49880.039*0.350 (3)
H8D0.89970.26110.42620.039*0.350 (3)
C9B0.9414 (6)0.2065 (6)0.5837 (4)0.0296 (5)0.350 (3)
H9BA1.02210.13340.56010.036*0.350 (3)
C10B1.0183 (9)0.3644 (11)0.6111 (7)0.0429 (10)0.350 (3)
H10D0.94490.45080.61400.064*0.350 (3)
H10E1.09240.38970.55920.064*0.350 (3)
H10F1.06690.35370.67750.064*0.350 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (3)0.0257 (2)0.0171 (2)0.00706 (18)0.00294 (16)0.00388 (16)
N10.0684 (12)0.0241 (8)0.0207 (8)0.0089 (8)0.0066 (7)0.0026 (6)
N20.0453 (9)0.0247 (8)0.0175 (7)0.0093 (7)0.0035 (6)0.0003 (6)
C10.0395 (10)0.0207 (8)0.0187 (8)0.0005 (7)0.0035 (7)0.0027 (7)
C20.0287 (9)0.0203 (8)0.0183 (8)0.0000 (7)0.0001 (6)0.0010 (6)
C30.0241 (8)0.0207 (8)0.0203 (8)0.0003 (6)0.0011 (6)0.0004 (6)
C40.0296 (9)0.0270 (9)0.0185 (8)0.0053 (7)0.0033 (7)0.0010 (7)
C50.0263 (9)0.0243 (8)0.0202 (8)0.0017 (7)0.0011 (7)0.0004 (7)
C60.0427 (11)0.0294 (9)0.0189 (9)0.0041 (8)0.0057 (7)0.0030 (7)
C70.0744 (17)0.0471 (13)0.0327 (11)0.0244 (12)0.0248 (11)0.0067 (9)
C80.0418 (11)0.0330 (10)0.0237 (9)0.0159 (8)0.0040 (8)0.0028 (7)
C9A0.0321 (14)0.0302 (13)0.0265 (12)0.0074 (10)0.0027 (11)0.0028 (10)
C10A0.047 (3)0.052 (2)0.0294 (16)0.029 (2)0.0007 (19)0.0052 (15)
C7A0.0744 (17)0.0471 (13)0.0327 (11)0.0244 (12)0.0248 (11)0.0067 (9)
C8A0.0418 (11)0.0330 (10)0.0237 (9)0.0159 (8)0.0040 (8)0.0028 (7)
C9B0.0321 (14)0.0302 (13)0.0265 (12)0.0074 (10)0.0027 (11)0.0028 (10)
C10B0.047 (3)0.052 (2)0.0294 (16)0.029 (2)0.0007 (19)0.0052 (15)
Geometric parameters (Å, º) top
S1—C31.7363 (16)C7—H7A0.9900
S1—C41.7451 (17)C7—H7B0.9900
N1—C11.150 (2)C8—C9A1.538 (3)
N2—C31.347 (2)C8—H8A0.9900
N2—H2A0.8800C8—H8B0.9900
N2—H2B0.8800C9A—C10A1.519 (5)
C1—C21.419 (2)C9A—H9AA1.0000
C2—C31.378 (2)C10A—H10A0.9800
C2—C51.442 (2)C10A—H10B0.9800
C4—C51.346 (2)C10A—H10C0.9800
C4—C81.501 (2)C9B—C10B1.530 (10)
C5—C61.495 (2)C9B—H9BA1.0000
C6—C71.502 (3)C10B—H10D0.9800
C6—H6A0.9900C10B—H10E0.9800
C6—H6B0.9900C10B—H10F0.9800
C7—C9A1.459 (3)
C3—S1—C492.20 (8)C9A—C7—H7A107.6
C3—N2—H2A120.0C6—C7—H7A107.6
C3—N2—H2B120.0C9A—C7—H7B107.6
H2A—N2—H2B120.0C6—C7—H7B107.6
N1—C1—C2178.19 (17)H7A—C7—H7B107.0
C3—C2—C1123.28 (15)C4—C8—C9A109.52 (16)
C3—C2—C5113.22 (14)C4—C8—H8A109.8
C1—C2—C5123.47 (14)C9A—C8—H8A109.8
N2—C3—C2128.84 (15)C4—C8—H8B109.8
N2—C3—S1120.93 (12)C9A—C8—H8B109.8
C2—C3—S1110.22 (12)H8A—C8—H8B108.2
C5—C4—C8126.07 (15)C7—C9A—C10A112.4 (3)
C5—C4—S1111.48 (13)C7—C9A—C8112.0 (2)
C8—C4—S1122.42 (12)C10A—C9A—C8111.3 (2)
C4—C5—C2112.86 (15)C7—C9A—H9AA106.9
C4—C5—C6122.40 (15)C10A—C9A—H9AA106.9
C2—C5—C6124.73 (15)C8—C9A—H9AA106.9
C5—C6—C7110.93 (15)C10B—C9B—H9BA105.4
C5—C6—H6A109.5C9B—C10B—H10D109.5
C7—C6—H6A109.5C9B—C10B—H10E109.5
C5—C6—H6B109.5H10D—C10B—H10E109.5
C7—C6—H6B109.5C9B—C10B—H10F109.5
H6A—C6—H6B108.0H10D—C10B—H10F109.5
C9A—C7—C6119.06 (19)H10E—C10B—H10F109.5
C1—C2—C3—N22.3 (3)C1—C2—C5—C4177.32 (17)
C5—C2—C3—N2179.55 (17)C3—C2—C5—C6178.44 (17)
C1—C2—C3—S1177.36 (14)C1—C2—C5—C63.4 (3)
C5—C2—C3—S10.78 (19)C4—C5—C6—C76.7 (3)
C4—S1—C3—N2179.86 (15)C2—C5—C6—C7172.46 (19)
C4—S1—C3—C20.45 (13)C5—C6—C7—C9A34.4 (3)
C3—S1—C4—C50.01 (14)C5—C4—C8—C9A18.3 (3)
C3—S1—C4—C8178.33 (16)S1—C4—C8—C9A163.68 (16)
C8—C4—C5—C2178.70 (17)C6—C7—C9A—C10A179.9 (3)
S1—C4—C5—C20.5 (2)C6—C7—C9A—C853.9 (3)
C8—C4—C5—C60.6 (3)C4—C8—C9A—C742.0 (3)
S1—C4—C5—C6178.83 (14)C4—C8—C9A—C10A168.8 (3)
C3—C2—C5—C40.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.223.087 (2)170
N2—H2B···N1ii0.882.413.247 (2)160
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2S
Mr192.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.0415 (2), 8.3294 (2), 13.1283 (3)
β (°) 90.169 (2)
V3)988.69 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.957, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
11284, 2441, 1878
Rint0.039
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.07
No. of reflections2441
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.223.087 (2)170
N2—H2B···N1ii0.882.413.247 (2)160
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y1/2, z1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program.

References

First citationAkkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry, Vol. 2, pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, N. S., Lamani, R. S. & Khazi, I. M. (2009). J. Chem. Sci. 121, 301–307.  CrossRef CAS Google Scholar
First citationShishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationVasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1654–o1655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds