metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­tris­­(μ4-1,3-phenyl­ene­di­acetato)­dicerium(III)]

aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 25 January 2011; accepted 30 January 2011; online 9 February 2011)

In the title coordination polymer, [Ce2(C10H8O4)3(H2O)2]n, each CeIII atom is nine-coordinated by eight O atoms from six different 1,3-phenyl­enediacetate (pda) bivalent anions and one O atom from a coordinated water mol­ecule, forming a distorted tricapped trigonal–prismatic coordination geometry. Eight CeIII ions and twelve pda ligands form a large [Ce8(pda)12] ring, and four CeIII ions and six pda ligands form a small [Ce4(pda)6] ring. The rings are further connected by the coordination inter­actions of pda ligands and CeIII, generating a three-dimensional supra­molecular framework.

Related literature

For the structures and properties of lanthanide coordination compounds, see: Chen et al. (2008[Chen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382-386.]); Lv et al. (2010[Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694-m1695.]). For bond lengths and angles in other complexes with nine-coordinate CeIII, see: Chen et al. (2008[Chen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382-386.]); Ramya et al. (2010[Ramya, A. R., Reddy, M. L. P., Cowley, A. H. & Vasudevant, K. V. (2010). Inorg. Chem. 49, 2407-2415.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C10H8O4)3(H2O)2]

  • Mr = 892.76

  • Triclinic, [P \overline 1]

  • a = 10.5552 (2) Å

  • b = 12.0275 (2) Å

  • c = 12.4612 (2) Å

  • α = 105.686 (1)°

  • β = 96.748 (1)°

  • γ = 92.949 (1)°

  • V = 1506.77 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.516, Tmax = 0.580

  • 8224 measured reflections

  • 5545 independent reflections

  • 4673 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.054

  • S = 1.01

  • 5545 reflections

  • 431 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H1W⋯O6i 0.86 (1) 2.03 (2) 2.860 (4) 161 (4)
O14—H4W⋯O1ii 0.87 (4) 2.23 (2) 3.051 (4) 159 (5)
O14—H3W⋯O9iii 0.86 (4) 2.62 (4) 3.180 (4) 123 (4)
O14—H3W⋯O1iv 0.86 (4) 2.07 (5) 2.873 (4) 155 (5)
O13—H2W⋯O9 0.86 (5) 2.81 (7) 3.037 (4) 97 (5)
O13—H2W⋯O1ii 0.86 (5) 2.75 (5) 2.898 (4) 91 (3)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The lanthanide coordination polymers have shown not only versatile architectures but also desirable properties, e.g., luminescent, magnetic, catalytic, and gas absorption and separation properties (Chen et al., 2008; Lv et al., 2010). In order to extend the investigation in this field, we have designed and synthesized the title lanthanide coordination polymer by choosing 1,3-phenylendiacetic acid as a functional ligand, and report its crystal structure in this paper.

The asymmetric unit of the title complex (Fig. 1) contains two crystallographically unique CeIII ions, three 1,3-phenylenediacetate (pda) ligands, and two coordinated water molecules. Both Ce1 and Ce2 are nine-coordinated with a distorted tricapped trigonal-prismatic geometry; the nine coordination sites are occupied by one oxygen atom from one coordinated water molecule and eight O atoms from six different pda ligands.

The Ce—O bond distances in the title complex are in the range 2.445 (2)–2.764 (3) Å, which are comparable to those reported for other Ce—O complexes (Chen et al., 2008; Ramya et al., 2010). The pda ligands adopt two coordination modes of µ4-hexadentate and µ4-pentadentate. Eight CeIII ions and twelve pda ligands form a large [Ce8(pda)12] ring, and four CeIII ions and six pda ligands form a small [Ce4(pda)6] ring (Fig. 2). The rings are further connected by the coordination interactions of pda ligands and CeIII to generate a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For the structures and properties of lanthanide coordination compounds, see: Chen et al. (2008); Lv et al. (2010). For bond lengths and angles in other nine-coordinate CeIII complexes, see: Chen et al. (2008); Ramya et al. (2010).

Experimental top

To a solution of cerium nitrate hexahydrate (0.087 g, 0.2 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.058 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. Upon cooling, the solution yielded single crystals of the title complex in ca 70% yield.

Refinement top

The coordinated water H atoms were located from a different Fourier map and refined with distance constraints O–H = 0.83 (3) Å. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 and 0.97 Å for aryl and methylene H-atoms, respectively, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title complex showing three dimensional framework formed by a large [Ce8(pda)12] and a small [Ce4(pda)6] ring.
Poly[diaquatris(µ4-1,3-phenylenediacetato)dicerium(III)] top
Crystal data top
[Ce2(C10H8O4)3(H2O)2]Z = 2
Mr = 892.76F(000) = 872
Triclinic, P1Dx = 1.968 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5552 (2) ÅCell parameters from 3826 reflections
b = 12.0275 (2) Åθ = 2.8–28.1°
c = 12.4612 (2) ŵ = 3.06 mm1
α = 105.686 (1)°T = 296 K
β = 96.748 (1)°Block, colorless
γ = 92.949 (1)°0.25 × 0.23 × 0.20 mm
V = 1506.77 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5545 independent reflections
Radiation source: fine-focus sealed tube4673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1210
Tmin = 0.516, Tmax = 0.580k = 1214
8224 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0178P)2 + 1.4251P]
where P = (Fo2 + 2Fc2)/3
5545 reflections(Δ/σ)max = 0.001
431 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ce2(C10H8O4)3(H2O)2]γ = 92.949 (1)°
Mr = 892.76V = 1506.77 (5) Å3
Triclinic, P1Z = 2
a = 10.5552 (2) ÅMo Kα radiation
b = 12.0275 (2) ŵ = 3.06 mm1
c = 12.4612 (2) ÅT = 296 K
α = 105.686 (1)°0.25 × 0.23 × 0.20 mm
β = 96.748 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5545 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4673 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.580Rint = 0.018
8224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0256 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.53 e Å3
5545 reflectionsΔρmin = 0.38 e Å3
431 parameters
Special details top

Experimental. Anal. Calcd for C30H28Ce2O14: C, 40.36; H, 3.16. Found: C, 40.68; H, 3.45.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.969885 (19)0.972983 (17)0.817505 (16)0.01890 (6)
Ce20.693423 (19)0.963262 (18)0.545875 (17)0.02092 (6)
C10.8215 (4)0.1335 (3)0.3896 (3)0.0252 (9)
C20.7819 (4)0.2362 (3)0.3509 (3)0.0304 (9)
H2A0.71530.20930.28690.036*
H2B0.85470.26880.32530.036*
C30.7333 (4)0.3315 (3)0.4388 (3)0.0252 (9)
C40.6200 (4)0.3156 (3)0.4807 (4)0.0323 (10)
H40.57040.24520.45330.039*
C50.5802 (4)0.4039 (4)0.5630 (4)0.0382 (11)
H50.50450.39250.59150.046*
C60.6527 (4)0.5085 (4)0.6023 (4)0.0420 (11)
H60.62570.56730.65800.050*
C70.7643 (4)0.5279 (3)0.5609 (4)0.0343 (10)
C80.8041 (4)0.4383 (3)0.4799 (4)0.0308 (9)
H80.88030.45000.45230.037*
C90.8450 (4)0.6422 (4)0.6046 (5)0.0529 (14)
H9A0.87110.65500.68460.063*
H9B0.92220.63520.56890.063*
C100.7854 (4)0.7485 (3)0.5882 (3)0.0276 (9)
C110.6407 (4)0.9107 (4)0.8043 (3)0.0297 (9)
C120.5345 (4)0.8419 (4)0.8368 (4)0.0418 (11)
H12A0.46690.89250.85570.050*
H12B0.49940.77980.77060.050*
C130.5660 (4)0.7886 (4)0.9325 (3)0.0326 (10)
C140.6567 (5)0.7105 (4)0.9286 (4)0.0480 (13)
H140.70210.69100.86750.058*
C150.6803 (6)0.6612 (5)1.0154 (5)0.0671 (17)
H150.74290.60931.01310.081*
C160.6130 (5)0.6871 (5)1.1058 (4)0.0553 (14)
H160.62910.65091.16250.066*
C170.5223 (4)0.7657 (4)1.1136 (3)0.0310 (9)
C180.4988 (4)0.8160 (4)1.0256 (3)0.0313 (9)
H180.43710.86881.02860.038*
C190.4520 (4)0.7942 (4)1.2146 (3)0.0329 (10)
H19A0.41760.72231.22550.040*
H19B0.38020.83721.19910.040*
C200.5324 (4)0.8637 (4)1.3227 (3)0.0295 (9)
C210.9293 (4)1.1831 (3)0.7398 (3)0.0243 (8)
C220.8979 (4)1.2973 (3)0.7189 (4)0.0355 (10)
H22A0.82431.32280.75570.043*
H22B0.87351.28460.63870.043*
C231.0052 (4)1.3934 (3)0.7592 (3)0.0282 (9)
C241.1166 (4)1.3857 (4)0.7107 (4)0.0380 (11)
H241.12581.32100.65210.046*
C251.2141 (5)1.4732 (4)0.7485 (4)0.0431 (12)
H251.28871.46730.71510.052*
C261.2020 (4)1.5698 (4)0.8358 (4)0.0380 (11)
H261.26921.62770.86150.046*
C271.0919 (4)1.5808 (3)0.8847 (3)0.0284 (9)
C280.9938 (4)1.4923 (3)0.8464 (3)0.0307 (9)
H280.91891.49900.87930.037*
C291.0769 (5)1.6894 (3)0.9753 (3)0.0395 (11)
H29A1.15721.71251.02530.047*
H29B1.01241.67231.01930.047*
C301.0393 (4)1.7894 (3)0.9306 (3)0.0260 (9)
H1W1.231 (4)1.050 (4)0.9665 (10)0.056 (16)*
H2W1.245 (5)1.061 (5)0.856 (3)0.12 (3)*
H3W0.905 (4)0.933 (4)0.408 (3)0.059 (16)*
H4W0.965 (3)0.898 (5)0.502 (4)0.11 (3)*
O10.9012 (3)0.0713 (2)0.3390 (2)0.0325 (7)
O20.7753 (3)0.1133 (2)0.4708 (3)0.0439 (8)
O30.8387 (2)0.8457 (2)0.6504 (2)0.0283 (6)
O40.6920 (3)0.7436 (2)0.5162 (2)0.0348 (7)
O50.6106 (3)0.9377 (2)0.7151 (2)0.0345 (7)
O60.7483 (3)0.9369 (3)0.8664 (2)0.0370 (7)
O70.6493 (3)0.8820 (3)1.3289 (2)0.0519 (9)
O80.4748 (2)0.8997 (2)1.4094 (2)0.0289 (6)
O91.0327 (3)1.1711 (2)0.7907 (2)0.0337 (7)
O100.8427 (3)1.0968 (2)0.7048 (2)0.0312 (6)
O111.0126 (3)1.7751 (2)0.8285 (2)0.0411 (8)
O121.0372 (3)1.8880 (2)0.9995 (2)0.0336 (7)
O131.2073 (3)1.0241 (3)0.8950 (3)0.0448 (8)
O140.8946 (3)0.8976 (3)0.4580 (3)0.0353 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02518 (12)0.01494 (11)0.01602 (11)0.00166 (9)0.00181 (9)0.00381 (8)
Ce20.02308 (12)0.02296 (13)0.01748 (11)0.00208 (9)0.00230 (9)0.00709 (9)
C10.027 (2)0.023 (2)0.024 (2)0.0039 (17)0.0053 (17)0.0038 (16)
C20.038 (2)0.031 (2)0.025 (2)0.0049 (19)0.0041 (18)0.0119 (18)
C30.031 (2)0.020 (2)0.025 (2)0.0041 (17)0.0026 (17)0.0075 (16)
C40.033 (2)0.022 (2)0.042 (3)0.0004 (18)0.0025 (19)0.0112 (19)
C50.036 (2)0.036 (3)0.046 (3)0.007 (2)0.014 (2)0.014 (2)
C60.050 (3)0.031 (3)0.041 (3)0.015 (2)0.005 (2)0.002 (2)
C70.034 (2)0.021 (2)0.043 (3)0.0067 (18)0.010 (2)0.0059 (19)
C80.026 (2)0.023 (2)0.046 (3)0.0031 (17)0.0003 (19)0.0162 (19)
C90.044 (3)0.022 (2)0.079 (4)0.003 (2)0.021 (3)0.003 (2)
C100.028 (2)0.022 (2)0.030 (2)0.0006 (17)0.0058 (18)0.0021 (17)
C110.030 (2)0.034 (2)0.029 (2)0.0025 (18)0.0098 (18)0.0119 (19)
C120.035 (2)0.058 (3)0.032 (2)0.012 (2)0.001 (2)0.017 (2)
C130.032 (2)0.039 (3)0.025 (2)0.007 (2)0.0004 (18)0.0096 (19)
C140.061 (3)0.055 (3)0.032 (3)0.018 (3)0.021 (2)0.009 (2)
C150.092 (4)0.070 (4)0.061 (4)0.050 (3)0.043 (3)0.032 (3)
C160.081 (4)0.062 (4)0.037 (3)0.031 (3)0.023 (3)0.027 (3)
C170.037 (2)0.035 (2)0.021 (2)0.0040 (19)0.0017 (18)0.0074 (18)
C180.030 (2)0.032 (2)0.031 (2)0.0026 (18)0.0007 (18)0.0094 (18)
C190.031 (2)0.041 (3)0.027 (2)0.0002 (19)0.0084 (18)0.0084 (19)
C200.032 (2)0.036 (2)0.021 (2)0.0065 (19)0.0037 (17)0.0073 (18)
C210.035 (2)0.017 (2)0.020 (2)0.0015 (17)0.0055 (17)0.0031 (16)
C220.048 (3)0.018 (2)0.036 (3)0.0030 (19)0.006 (2)0.0066 (18)
C230.040 (2)0.019 (2)0.027 (2)0.0046 (18)0.0004 (18)0.0106 (17)
C240.063 (3)0.021 (2)0.032 (2)0.008 (2)0.016 (2)0.0064 (18)
C250.049 (3)0.034 (3)0.057 (3)0.009 (2)0.022 (2)0.023 (2)
C260.043 (3)0.024 (2)0.049 (3)0.0022 (19)0.001 (2)0.017 (2)
C270.049 (3)0.015 (2)0.021 (2)0.0047 (18)0.0012 (18)0.0079 (16)
C280.046 (3)0.023 (2)0.027 (2)0.0088 (19)0.0104 (19)0.0114 (17)
C290.068 (3)0.025 (2)0.025 (2)0.008 (2)0.001 (2)0.0085 (18)
C300.033 (2)0.018 (2)0.026 (2)0.0004 (17)0.0030 (17)0.0054 (17)
O10.0348 (16)0.0353 (17)0.0328 (16)0.0105 (13)0.0152 (13)0.0126 (13)
O20.069 (2)0.0309 (17)0.0450 (19)0.0187 (15)0.0341 (17)0.0200 (14)
O30.0362 (16)0.0195 (14)0.0251 (15)0.0021 (12)0.0011 (12)0.0024 (12)
O40.0334 (16)0.0261 (16)0.0386 (17)0.0045 (13)0.0105 (14)0.0061 (13)
O50.0346 (16)0.0446 (18)0.0312 (16)0.0050 (14)0.0096 (13)0.0195 (14)
O60.0315 (16)0.0486 (19)0.0291 (16)0.0073 (14)0.0031 (13)0.0106 (14)
O70.0293 (18)0.090 (3)0.0269 (17)0.0011 (17)0.0046 (13)0.0015 (17)
O80.0347 (16)0.0355 (16)0.0174 (14)0.0093 (13)0.0063 (12)0.0065 (12)
O90.0329 (16)0.0245 (15)0.0441 (18)0.0023 (13)0.0017 (14)0.0139 (13)
O100.0388 (16)0.0208 (15)0.0312 (16)0.0048 (12)0.0050 (13)0.0077 (12)
O110.077 (2)0.0238 (16)0.0200 (16)0.0086 (15)0.0031 (15)0.0050 (12)
O120.0596 (19)0.0134 (14)0.0252 (15)0.0051 (13)0.0078 (14)0.0002 (12)
O130.0350 (18)0.056 (2)0.038 (2)0.0053 (16)0.0049 (16)0.0100 (18)
O140.0346 (17)0.0395 (19)0.0366 (18)0.0087 (14)0.0080 (15)0.0165 (15)
Geometric parameters (Å, º) top
Ce1—O32.445 (2)C14—C151.371 (7)
Ce1—O12i2.448 (2)C14—H140.9300
Ce1—O1ii2.465 (3)C15—C161.376 (6)
Ce1—O11iii2.482 (3)C15—H150.9300
Ce1—O62.531 (3)C16—C171.372 (6)
Ce1—O132.558 (3)C16—H160.9300
Ce1—O92.559 (3)C17—C181.393 (5)
Ce1—O102.624 (3)C17—C191.505 (5)
Ce1—O12iii2.764 (3)C18—H180.9300
Ce1—C30iii3.001 (4)C19—C201.511 (5)
Ce2—O2iv2.412 (3)C19—H19A0.9700
Ce2—O52.462 (3)C19—H19B0.9700
Ce2—O8v2.494 (3)C20—O71.232 (5)
Ce2—O102.504 (3)C20—O81.285 (4)
Ce2—O42.565 (3)C20—Ce2vii2.989 (4)
Ce2—O142.566 (3)C21—O91.231 (4)
Ce2—O7vi2.590 (3)C21—O101.291 (4)
Ce2—O32.606 (3)C21—C221.512 (5)
Ce2—O8vi2.645 (3)C22—C231.513 (5)
Ce2—C20vi2.989 (4)C22—H22A0.9700
C1—O21.248 (4)C22—H22B0.9700
C1—O11.264 (4)C23—C241.380 (6)
C1—C21.504 (5)C23—C281.398 (5)
C2—C31.514 (5)C24—C251.377 (6)
C2—H2A0.9700C24—H240.9300
C2—H2B0.9700C25—C261.383 (6)
C3—C41.384 (5)C25—H250.9300
C3—C81.388 (5)C26—C271.371 (6)
C4—C51.384 (6)C26—H260.9300
C4—H40.9300C27—C281.389 (5)
C5—C61.374 (6)C27—C291.507 (5)
C5—H50.9300C28—H280.9300
C6—C71.375 (6)C29—C301.507 (5)
C6—H60.9300C29—H29A0.9700
C7—C81.383 (6)C29—H29B0.9700
C7—C91.510 (6)C30—O111.233 (4)
C8—H80.9300C30—O121.266 (4)
C9—C101.505 (6)C30—Ce1iv3.001 (4)
C9—H9A0.9700O1—Ce1ii2.465 (3)
C9—H9B0.9700O2—Ce2iii2.412 (3)
C10—O41.241 (4)O7—Ce2vii2.590 (3)
C10—O31.275 (4)O8—Ce2v2.494 (3)
C11—O51.252 (5)O8—Ce2vii2.645 (3)
C11—O61.269 (5)O11—Ce1iv2.482 (3)
C11—C121.516 (5)O12—Ce1i2.448 (2)
C12—C131.511 (6)O12—Ce1iv2.764 (3)
C12—H12A0.9700O13—H1W0.864 (10)
C12—H12B0.9700O13—H2W0.86 (5)
C13—C141.372 (6)O14—H3W0.86 (4)
C13—C181.403 (6)O14—H4W0.87 (4)
O3—Ce1—O12i144.20 (9)C7—C8—H8119.1
O3—Ce1—O1ii70.91 (9)C3—C8—H8119.1
O12i—Ce1—O1ii141.62 (10)C10—C9—C7117.4 (4)
O3—Ce1—O11iii76.19 (9)C10—C9—H9A107.9
O12i—Ce1—O11iii113.90 (9)C7—C9—H9A107.9
O1ii—Ce1—O11iii84.02 (9)C10—C9—H9B107.9
O3—Ce1—O671.59 (9)C7—C9—H9B107.9
O12i—Ce1—O674.44 (9)H9A—C9—H9B107.2
O1ii—Ce1—O6142.49 (9)O4—C10—O3120.9 (4)
O11iii—Ce1—O688.17 (10)O4—C10—C9122.7 (4)
O3—Ce1—O13138.23 (10)O3—C10—C9116.3 (4)
O12i—Ce1—O1377.54 (11)O5—C11—O6125.7 (4)
O1ii—Ce1—O1370.46 (10)O5—C11—C12114.0 (4)
O11iii—Ce1—O1384.60 (11)O6—C11—C12120.2 (4)
O6—Ce1—O13145.16 (10)C13—C12—C11118.5 (4)
O3—Ce1—O9111.91 (9)C13—C12—H12A107.7
O12i—Ce1—O974.97 (9)C11—C12—H12A107.7
O1ii—Ce1—O975.76 (9)C13—C12—H12B107.7
O11iii—Ce1—O9153.60 (10)C11—C12—H12B107.7
O6—Ce1—O9118.18 (9)H12A—C12—H12B107.1
O13—Ce1—O972.83 (10)C14—C13—C18118.9 (4)
O3—Ce1—O1069.88 (8)C14—C13—C12121.2 (4)
O12i—Ce1—O1093.84 (9)C18—C13—C12119.9 (4)
O1ii—Ce1—O1085.74 (9)C15—C14—C13119.7 (4)
O11iii—Ce1—O10146.06 (9)C15—C14—H14120.2
O6—Ce1—O1080.57 (9)C13—C14—H14120.2
O13—Ce1—O10121.88 (10)C14—C15—C16121.2 (5)
O9—Ce1—O1049.78 (8)C14—C15—H15119.4
O3—Ce1—O12iii118.78 (8)C16—C15—H15119.4
O12i—Ce1—O12iii65.74 (9)C17—C16—C15121.0 (4)
O1ii—Ce1—O12iii118.34 (9)C17—C16—H16119.5
O11iii—Ce1—O12iii48.57 (8)C15—C16—H16119.5
O6—Ce1—O12iii81.25 (9)C16—C17—C18117.7 (4)
O13—Ce1—O12iii68.50 (10)C16—C17—C19119.8 (4)
O9—Ce1—O12iii129.26 (8)C18—C17—C19122.5 (4)
O10—Ce1—O12iii155.72 (8)C17—C18—C13121.5 (4)
O3—Ce1—C30iii97.22 (9)C17—C18—H18119.2
O12i—Ce1—C30iii90.49 (10)C13—C18—H18119.2
O1ii—Ce1—C30iii101.08 (10)C17—C19—C20114.7 (3)
O11iii—Ce1—C30iii23.65 (9)C17—C19—H19A108.6
O6—Ce1—C30iii84.57 (10)C20—C19—H19A108.6
O13—Ce1—C30iii75.33 (11)C17—C19—H19B108.6
O9—Ce1—C30iii147.13 (10)C20—C19—H19B108.6
O10—Ce1—C30iii162.79 (9)H19A—C19—H19B107.6
O12iii—Ce1—C30iii24.93 (8)O7—C20—O8121.0 (4)
O2iv—Ce2—O5140.83 (10)O7—C20—C19121.5 (4)
O2iv—Ce2—O8v81.37 (9)O8—C20—C19117.4 (3)
O5—Ce2—O8v72.26 (9)O7—C20—Ce2vii59.5 (2)
O2iv—Ce2—O1074.63 (10)O8—C20—Ce2vii62.15 (19)
O5—Ce2—O1076.26 (9)C19—C20—Ce2vii170.4 (3)
O8v—Ce2—O1088.60 (9)O9—C21—O10119.7 (3)
O2iv—Ce2—O4140.36 (9)O9—C21—C22122.2 (3)
O5—Ce2—O477.50 (9)O10—C21—C22118.0 (3)
O8v—Ce2—O4132.08 (9)C21—C22—C23115.1 (3)
O10—Ce2—O4119.23 (8)C21—C22—H22A108.5
O2iv—Ce2—O1471.63 (10)C23—C22—H22A108.5
O5—Ce2—O14131.71 (10)C21—C22—H22B108.5
O8v—Ce2—O14152.91 (9)C23—C22—H22B108.5
O10—Ce2—O1486.39 (10)H22A—C22—H22B107.5
O4—Ce2—O1472.51 (9)C24—C23—C28118.4 (4)
O2iv—Ce2—O7vi73.78 (11)C24—C23—C22120.8 (4)
O5—Ce2—O7vi139.87 (10)C28—C23—C22120.8 (4)
O8v—Ce2—O7vi103.64 (9)C25—C24—C23120.4 (4)
O10—Ce2—O7vi143.78 (10)C25—C24—H24119.8
O4—Ce2—O7vi77.21 (11)C23—C24—H24119.8
O14—Ce2—O7vi67.16 (10)C24—C25—C26120.5 (4)
O2iv—Ce2—O3123.59 (10)C24—C25—H25119.7
O5—Ce2—O367.37 (9)C26—C25—H25119.7
O8v—Ce2—O3137.36 (8)C27—C26—C25120.5 (4)
O10—Ce2—O369.30 (8)C27—C26—H26119.7
O4—Ce2—O350.05 (8)C25—C26—H26119.7
O14—Ce2—O364.34 (9)C26—C27—C28118.8 (4)
O7vi—Ce2—O3115.83 (10)C26—C27—C29120.0 (4)
O2iv—Ce2—O8vi98.83 (10)C28—C27—C29121.1 (4)
O5—Ce2—O8vi96.30 (8)C27—C28—C23121.4 (4)
O8v—Ce2—O8vi66.00 (10)C27—C28—H28119.3
O10—Ce2—O8vi154.56 (8)C23—C28—H28119.3
O4—Ce2—O8vi81.72 (8)C27—C29—C30113.7 (3)
O14—Ce2—O8vi115.35 (9)C27—C29—H29A108.8
O7vi—Ce2—O8vi49.47 (8)C30—C29—H29A108.8
O3—Ce2—O8vi130.76 (8)C27—C29—H29B108.8
O2iv—Ce2—C20vi87.36 (11)C30—C29—H29B108.8
O5—Ce2—C20vi118.44 (10)H29A—C29—H29B107.7
O8v—Ce2—C20vi86.33 (10)O11—C30—O12120.8 (4)
O10—Ce2—C20vi161.83 (10)O11—C30—C29120.3 (3)
O4—Ce2—C20vi76.41 (10)O12—C30—C29118.9 (3)
O14—Ce2—C20vi90.21 (11)O11—C30—Ce1iv53.8 (2)
O7vi—Ce2—C20vi24.18 (9)O12—C30—Ce1iv67.0 (2)
O3—Ce2—C20vi124.77 (10)C29—C30—Ce1iv173.9 (3)
O8vi—Ce2—C20vi25.44 (9)C1—O1—Ce1ii148.5 (3)
O2—C1—O1122.5 (4)C1—O2—Ce2iii144.9 (3)
O2—C1—C2118.9 (3)C10—O3—Ce1154.5 (3)
O1—C1—C2118.6 (3)C10—O3—Ce293.0 (2)
C1—C2—C3115.1 (3)Ce1—O3—Ce2111.37 (9)
C1—C2—H2A108.5C10—O4—Ce295.8 (2)
C3—C2—H2A108.5C11—O5—Ce2143.3 (3)
C1—C2—H2B108.5C11—O6—Ce1130.5 (2)
C3—C2—H2B108.5C20—O7—Ce2vii96.4 (2)
H2A—C2—H2B107.5C20—O8—Ce2v133.5 (2)
C4—C3—C8118.4 (4)C20—O8—Ce2vii92.4 (2)
C4—C3—C2122.1 (3)Ce2v—O8—Ce2vii114.00 (10)
C8—C3—C2119.5 (4)C21—O9—Ce197.1 (2)
C5—C4—C3120.4 (4)C21—O10—Ce2149.1 (2)
C5—C4—H4119.8C21—O10—Ce192.4 (2)
C3—C4—H4119.8Ce2—O10—Ce1108.93 (9)
C6—C5—C4119.8 (4)C30—O11—Ce1iv102.5 (2)
C6—C5—H5120.1C30—O12—Ce1i156.6 (3)
C4—C5—H5120.1C30—O12—Ce1iv88.1 (2)
C5—C6—C7121.2 (4)Ce1i—O12—Ce1iv114.26 (9)
C5—C6—H6119.4Ce1—O13—H1W120 (3)
C7—C6—H6119.4Ce1—O13—H2W111 (4)
C6—C7—C8118.4 (4)H1W—O13—H2W114 (3)
C6—C7—C9121.5 (4)Ce2—O14—H3W109 (3)
C8—C7—C9120.1 (4)Ce2—O14—H4W119 (4)
C7—C8—C3121.7 (4)H3W—O14—H4W112 (3)
O2—C1—C2—C323.6 (5)O3—C10—O4—Ce24.4 (4)
O1—C1—C2—C3156.0 (3)C9—C10—O4—Ce2173.2 (4)
C1—C2—C3—C466.9 (5)O2iv—Ce2—O4—C1094.5 (3)
C1—C2—C3—C8112.7 (4)O5—Ce2—O4—C1073.3 (2)
C8—C3—C4—C51.1 (6)O8v—Ce2—O4—C10124.9 (2)
C2—C3—C4—C5178.5 (4)O10—Ce2—O4—C107.0 (3)
C3—C4—C5—C60.8 (7)O14—Ce2—O4—C1068.4 (2)
C4—C5—C6—C70.5 (7)O7vi—Ce2—O4—C10138.2 (2)
C5—C6—C7—C81.5 (7)O3—Ce2—O4—C102.4 (2)
C5—C6—C7—C9179.4 (4)O8vi—Ce2—O4—C10171.6 (2)
C6—C7—C8—C31.2 (6)C20vi—Ce2—O4—C10163.0 (3)
C9—C7—C8—C3179.1 (4)O6—C11—O5—Ce237.2 (7)
C4—C3—C8—C70.1 (6)C12—C11—O5—Ce2143.5 (4)
C2—C3—C8—C7179.5 (4)O2iv—Ce2—O5—C1199.8 (5)
C6—C7—C9—C1062.4 (6)O8v—Ce2—O5—C11149.8 (5)
C8—C7—C9—C10119.7 (5)O10—Ce2—O5—C1156.8 (5)
C7—C9—C10—O420.7 (7)O4—Ce2—O5—C1167.8 (5)
C7—C9—C10—O3161.6 (4)O14—Ce2—O5—C1115.4 (5)
O5—C11—C12—C13170.6 (4)O7vi—Ce2—O5—C11119.9 (4)
O6—C11—C12—C1310.1 (6)O3—Ce2—O5—C1116.2 (4)
C11—C12—C13—C1459.1 (6)O8vi—Ce2—O5—C11147.9 (5)
C11—C12—C13—C18123.2 (4)C20vi—Ce2—O5—C11134.6 (4)
C18—C13—C14—C150.3 (7)O5—C11—O6—Ce128.8 (6)
C12—C13—C14—C15178.1 (5)C12—C11—O6—Ce1152.0 (3)
C13—C14—C15—C161.1 (9)O3—Ce1—O6—C1125.8 (3)
C14—C15—C16—C171.8 (9)O12i—Ce1—O6—C11142.7 (4)
C15—C16—C17—C181.6 (8)O1ii—Ce1—O6—C1124.1 (4)
C15—C16—C17—C19178.8 (5)O11iii—Ce1—O6—C11101.8 (4)
C16—C17—C18—C130.7 (6)O13—Ce1—O6—C11179.6 (3)
C19—C17—C18—C13179.7 (4)O9—Ce1—O6—C1179.8 (4)
C14—C13—C18—C170.1 (6)O10—Ce1—O6—C1146.0 (3)
C12—C13—C18—C17177.9 (4)O12iii—Ce1—O6—C11150.1 (4)
C16—C17—C19—C2070.5 (6)C30iii—Ce1—O6—C11125.2 (4)
C18—C17—C19—C20109.9 (5)O8—C20—O7—Ce2vii8.7 (4)
C17—C19—C20—O78.7 (6)C19—C20—O7—Ce2vii168.8 (3)
C17—C19—C20—O8173.7 (4)O7—C20—O8—Ce2v118.5 (4)
O9—C21—C22—C233.2 (6)C19—C20—O8—Ce2v63.9 (5)
O10—C21—C22—C23178.3 (3)Ce2vii—C20—O8—Ce2v126.9 (3)
C21—C22—C23—C2465.8 (5)O7—C20—O8—Ce2vii8.5 (4)
C21—C22—C23—C28114.4 (4)C19—C20—O8—Ce2vii169.1 (3)
C28—C23—C24—C250.7 (6)O10—C21—O9—Ce110.2 (4)
C22—C23—C24—C25179.5 (4)C22—C21—O9—Ce1168.2 (3)
C23—C24—C25—C260.2 (7)O3—Ce1—O9—C2140.0 (2)
C24—C25—C26—C271.1 (7)O12i—Ce1—O9—C21102.8 (2)
C25—C26—C27—C281.1 (6)O1ii—Ce1—O9—C21102.3 (2)
C25—C26—C27—C29176.6 (4)O11iii—Ce1—O9—C21143.4 (2)
C26—C27—C28—C230.3 (6)O6—Ce1—O9—C2140.1 (2)
C29—C27—C28—C23177.4 (4)O13—Ce1—O9—C21175.9 (2)
C24—C23—C28—C270.6 (6)O10—Ce1—O9—C215.7 (2)
C22—C23—C28—C27179.6 (4)O12iii—Ce1—O9—C21142.6 (2)
C26—C27—C29—C3080.0 (5)C30iii—Ce1—O9—C21169.3 (2)
C28—C27—C29—C3097.7 (5)O9—C21—O10—Ce2124.7 (4)
C27—C29—C30—O116.5 (6)C22—C21—O10—Ce256.8 (6)
C27—C29—C30—O12172.7 (4)O9—C21—O10—Ce19.9 (4)
O2—C1—O1—Ce1ii174.8 (3)C22—C21—O10—Ce1168.6 (3)
C2—C1—O1—Ce1ii5.6 (7)O2iv—Ce2—O10—C219.9 (5)
O1—C1—O2—Ce2iii39.5 (7)O5—Ce2—O10—C21163.4 (5)
C2—C1—O2—Ce2iii141.0 (4)O8v—Ce2—O10—C2191.3 (5)
O4—C10—O3—Ce1158.7 (4)O4—Ce2—O10—C21129.7 (5)
C9—C10—O3—Ce123.6 (8)O14—Ce2—O10—C2162.0 (5)
O4—C10—O3—Ce24.4 (4)O7vi—Ce2—O10—C2120.1 (6)
C9—C10—O3—Ce2173.4 (4)O3—Ce2—O10—C21125.9 (5)
O12i—Ce1—O3—C10100.0 (6)O8vi—Ce2—O10—C2188.0 (5)
O1ii—Ce1—O3—C10100.2 (6)C20vi—Ce2—O10—C2117.6 (7)
O11iii—Ce1—O3—C1011.8 (6)O2iv—Ce2—O10—Ce1141.20 (12)
O6—Ce1—O3—C1080.9 (6)O5—Ce2—O10—Ce165.30 (10)
O13—Ce1—O3—C1077.0 (6)O8v—Ce2—O10—Ce1137.37 (11)
O9—Ce1—O3—C10165.4 (6)O4—Ce2—O10—Ce11.62 (14)
O10—Ce1—O3—C10167.3 (6)O14—Ce2—O10—Ce169.27 (11)
O12iii—Ce1—O3—C1012.3 (6)O7vi—Ce2—O10—Ce1111.17 (16)
C30iii—Ce1—O3—C100.9 (6)O3—Ce2—O10—Ce15.37 (9)
O12i—Ce1—O3—Ce261.73 (18)O8vi—Ce2—O10—Ce1140.76 (15)
O1ii—Ce1—O3—Ce298.04 (11)C20vi—Ce2—O10—Ce1148.9 (3)
O11iii—Ce1—O3—Ce2173.59 (13)O3—Ce1—O10—C21151.6 (2)
O6—Ce1—O3—Ce280.89 (11)O12i—Ce1—O10—C2161.2 (2)
O13—Ce1—O3—Ce2121.29 (15)O1ii—Ce1—O10—C2180.3 (2)
O9—Ce1—O3—Ce232.85 (13)O11iii—Ce1—O10—C21153.0 (2)
O10—Ce1—O3—Ce25.56 (9)O6—Ce1—O10—C21134.7 (2)
O12iii—Ce1—O3—Ce2149.44 (9)O13—Ce1—O10—C2116.5 (2)
C30iii—Ce1—O3—Ce2162.69 (11)O9—Ce1—O10—C215.4 (2)
O2iv—Ce2—O3—C10128.2 (2)O12iii—Ce1—O10—C2192.7 (3)
O5—Ce2—O3—C1094.8 (2)C30iii—Ce1—O10—C21165.4 (3)
O8v—Ce2—O3—C10114.8 (2)O3—Ce1—O10—Ce25.70 (9)
O10—Ce2—O3—C10178.1 (2)O12i—Ce1—O10—Ce2141.55 (11)
O4—Ce2—O3—C102.4 (2)O1ii—Ce1—O10—Ce276.92 (11)
O14—Ce2—O3—C1085.8 (2)O11iii—Ce1—O10—Ce24.2 (2)
O7vi—Ce2—O3—C1041.1 (2)O6—Ce1—O10—Ce268.03 (11)
O8vi—Ce2—O3—C1016.5 (3)O13—Ce1—O10—Ce2140.74 (11)
C20vi—Ce2—O3—C1015.0 (3)O9—Ce1—O10—Ce2151.85 (16)
O2iv—Ce2—O3—Ce159.62 (14)O12iii—Ce1—O10—Ce2110.06 (18)
O5—Ce2—O3—Ce177.39 (11)C30iii—Ce1—O10—Ce237.3 (4)
O8v—Ce2—O3—Ce157.48 (16)O12—C30—O11—Ce1iv1.3 (4)
O10—Ce2—O3—Ce15.85 (9)C29—C30—O11—Ce1iv177.9 (3)
O4—Ce2—O3—Ce1169.87 (16)O11—C30—O12—Ce1i162.1 (5)
O14—Ce2—O3—Ce1101.99 (12)C29—C30—O12—Ce1i18.7 (9)
O7vi—Ce2—O3—Ce1146.68 (10)Ce1iv—C30—O12—Ce1i163.2 (7)
O8vi—Ce2—O3—Ce1155.72 (8)O11—C30—O12—Ce1iv1.1 (4)
C20vi—Ce2—O3—Ce1172.81 (11)C29—C30—O12—Ce1iv178.0 (4)
Symmetry codes: (i) x+2, y+3, z+2; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+2, z+2; (vi) x, y, z1; (vii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H1W···O6viii0.86 (1)2.03 (2)2.860 (4)161 (4)
O14—H4W···O1ii0.87 (4)2.23 (2)3.051 (4)159 (5)
O14—H3W···O9ix0.86 (4)2.62 (4)3.180 (4)123 (4)
O14—H3W···O1iv0.86 (4)2.07 (5)2.873 (4)155 (5)
O13—H2W···O90.86 (5)2.81 (7)3.037 (4)97 (5)
O13—H2W···O1ii0.86 (5)2.75 (5)2.898 (4)91 (3)
Symmetry codes: (ii) x+2, y+1, z+1; (iv) x, y+1, z; (viii) x+2, y+2, z+2; (ix) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ce2(C10H8O4)3(H2O)2]
Mr892.76
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.5552 (2), 12.0275 (2), 12.4612 (2)
α, β, γ (°)105.686 (1), 96.748 (1), 92.949 (1)
V3)1506.77 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.516, 0.580
No. of measured, independent and
observed [I > 2σ(I)] reflections
8224, 5545, 4673
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.01
No. of reflections5545
No. of parameters431
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H1W···O6i0.86 (1)2.03 (2)2.860 (4)161 (4)
O14—H4W···O1ii0.87 (4)2.23 (2)3.051 (4)159 (5)
O14—H3W···O9iii0.86 (4)2.62 (4)3.180 (4)123 (4)
O14—H3W···O1iv0.86 (4)2.07 (5)2.873 (4)155 (5)
O13—H2W···O90.86 (5)2.81 (7)3.037 (4)97 (5)
O13—H2W···O1ii0.86 (5)2.75 (5)2.898 (4)91 (3)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y+1, z.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationLv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamya, A. R., Reddy, M. L. P., Cowley, A. H. & Vasudevant, K. V. (2010). Inorg. Chem. 49, 2407–2415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds