metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N,N-di­methyl-N′-[1-(pyridin-2-yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}cadmium

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 9 February 2011; accepted 15 February 2011; online 19 February 2011)

In the title compound, [CdCl2(C11H17N3)], the Schiff base acts as an N,N′,N′′-tridentate ligand towards the CdII ion. Two Cl atoms complete a distorted square-pyramidal geometry around the metal atom. In the crystal, a C—H⋯Cl inter­action connects pairs of mol­ecules into centrosymetric dimers.

Related literature

For the structure of a CuCl2 complex of the same Schiff base, see: Saleh Salga et al. (2010[Saleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m508.]). For the structure of a similar CdII complex, see: Bian et al. (2003[Bian, H.-D., Xu, J.-Y., Gu, W., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2003). Chin. J. Struct. Chem. 22, 710-712.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C11H17N3)]

  • Mr = 374.58

  • Triclinic, [P \overline 1]

  • a = 8.0276 (2) Å

  • b = 9.6048 (2) Å

  • c = 10.0851 (2) Å

  • α = 102.534 (1)°

  • β = 103.365 (1)°

  • γ = 97.850 (1)°

  • V = 724.09 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 100 K

  • 0.23 × 0.11 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.674, Tmax = 0.929

  • 5023 measured reflections

  • 2652 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.038

  • S = 1.08

  • 2652 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯Cl2i 0.98 2.77 3.679 (2) 155
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained via the complexation of CdCl2 by N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine. Similar to the structure of the analogous copper(II) complex (Saleh Salga et al., 2010), the cadmium(II) ion is penta-coordinated by the N,N',N"-tridentate Schiff base ligand and two Cl atoms in a distorted square-pyramidal geometry, the τ value (Addison et al., 1984) being 0.17. This arrangement is similar to what was observed in the structure of [CdCl2(C10H15N3)], the closest analogous cadmium complex (Bian et al., 2003). In the crystal, pairs of the molecules, related by symmetry -x, -y, -z + 1, are bonded into centrosymmetric dimers via C7—H7B···Cl2 interaction.

Related literature top

For the structure of a CuCl2 complex of the same Schiff base, see: Saleh Salga et al. (2010). For the structure of a similar CdII complex, see: Bian et al. (2003). For a description of the geometry of five-coordinate metal complexes, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.61 g, 5 mmol) and N,N-dimethylethyldiamine (0.44 g, 5 mmol) in ethanol (50 ml) was refluxed for 2 hr followed by addition of a solution of cadmium(II) chloride (0.92 g, 5 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. The colorless crystals of the title compound were obtained after a few days.

Refinement top

Hydrogen atoms were placed at calculated positions at distances C—H = 0.95, 0.98 and 0.99 ° for aryl, methyl and methylene type H-atoms, respectively, and were treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichlorido{N,N-dimethyl-N'- [1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}cadmium top
Crystal data top
[CdCl2(C11H17N3)]Z = 2
Mr = 374.58F(000) = 372
Triclinic, P1Dx = 1.718 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0276 (2) ÅCell parameters from 5105 reflections
b = 9.6048 (2) Åθ = 2.2–29.7°
c = 10.0851 (2) ŵ = 1.86 mm1
α = 102.534 (1)°T = 100 K
β = 103.365 (1)°Plate, colorless
γ = 97.850 (1)°0.23 × 0.11 × 0.04 mm
V = 724.09 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2652 independent reflections
Radiation source: fine-focus sealed tube2547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.674, Tmax = 0.929k = 1111
5023 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.4207P]
where P = (Fo2 + 2Fc2)/3
2652 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[CdCl2(C11H17N3)]γ = 97.850 (1)°
Mr = 374.58V = 724.09 (3) Å3
Triclinic, P1Z = 2
a = 8.0276 (2) ÅMo Kα radiation
b = 9.6048 (2) ŵ = 1.86 mm1
c = 10.0851 (2) ÅT = 100 K
α = 102.534 (1)°0.23 × 0.11 × 0.04 mm
β = 103.365 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2547 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.929Rint = 0.014
5023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2652 reflectionsΔρmin = 0.39 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.076971 (16)0.190459 (13)0.205336 (13)0.01438 (5)
Cl10.19397 (6)0.14396 (5)0.04976 (5)0.02368 (11)
Cl20.21885 (7)0.34705 (5)0.35214 (5)0.02337 (11)
N10.1880 (2)0.04027 (16)0.23109 (16)0.0155 (3)
N20.1417 (2)0.10346 (17)0.33828 (16)0.0171 (3)
N30.1925 (2)0.34724 (17)0.22918 (16)0.0187 (3)
C10.3543 (3)0.1088 (2)0.1769 (2)0.0193 (4)
H10.43510.06110.12830.023*
C20.4143 (3)0.2472 (2)0.1886 (2)0.0214 (4)
H20.53300.29410.14710.026*
C30.2973 (3)0.3147 (2)0.2619 (2)0.0233 (4)
H30.33460.40910.27190.028*
C40.1247 (3)0.2432 (2)0.3208 (2)0.0202 (4)
H40.04290.28740.37320.024*
C50.0729 (2)0.1063 (2)0.30211 (19)0.0166 (4)
C60.1124 (2)0.0244 (2)0.35613 (19)0.0173 (4)
C70.2517 (3)0.0968 (2)0.4217 (2)0.0244 (4)
H7A0.29680.15100.34820.037*
H7B0.20250.16390.46970.037*
H7C0.34700.02290.49020.037*
C80.3182 (2)0.1896 (2)0.3762 (2)0.0212 (4)
H8A0.38400.14580.31170.025*
H8B0.38030.19100.47370.025*
C90.3074 (3)0.3439 (2)0.3656 (2)0.0211 (4)
H9A0.26260.39320.44310.025*
H9B0.42600.39850.37730.025*
C100.2668 (3)0.2957 (2)0.1115 (2)0.0246 (4)
H10A0.38220.35590.12820.037*
H10B0.18980.30270.02330.037*
H10C0.27790.19420.10450.037*
C110.1656 (3)0.4971 (2)0.2359 (2)0.0286 (5)
H11A0.27790.56130.25110.043*
H11B0.11500.53010.31400.043*
H11C0.08600.49950.14700.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01536 (8)0.01317 (8)0.01511 (8)0.00330 (5)0.00430 (5)0.00417 (5)
Cl10.0233 (2)0.0301 (3)0.0159 (2)0.0048 (2)0.00258 (18)0.00570 (19)
Cl20.0298 (3)0.0205 (2)0.0265 (2)0.0112 (2)0.0154 (2)0.00792 (19)
N10.0182 (8)0.0151 (7)0.0148 (7)0.0045 (6)0.0055 (6)0.0048 (6)
N20.0165 (8)0.0180 (8)0.0158 (8)0.0040 (6)0.0032 (6)0.0031 (6)
N30.0202 (8)0.0168 (8)0.0194 (8)0.0030 (6)0.0076 (7)0.0029 (6)
C10.0193 (10)0.0203 (10)0.0203 (9)0.0059 (8)0.0072 (8)0.0063 (8)
C20.0200 (10)0.0221 (10)0.0230 (10)0.0011 (8)0.0091 (8)0.0063 (8)
C30.0294 (11)0.0165 (9)0.0289 (11)0.0041 (8)0.0149 (9)0.0084 (8)
C40.0264 (10)0.0196 (10)0.0211 (10)0.0107 (8)0.0114 (8)0.0095 (8)
C50.0220 (10)0.0162 (9)0.0141 (9)0.0075 (8)0.0081 (7)0.0033 (7)
C60.0205 (10)0.0200 (9)0.0129 (9)0.0080 (8)0.0056 (7)0.0036 (7)
C70.0222 (10)0.0253 (10)0.0275 (11)0.0083 (8)0.0044 (9)0.0107 (9)
C80.0169 (10)0.0226 (10)0.0218 (10)0.0035 (8)0.0028 (8)0.0038 (8)
C90.0206 (10)0.0194 (10)0.0198 (10)0.0004 (8)0.0057 (8)0.0001 (8)
C100.0239 (11)0.0297 (11)0.0202 (10)0.0027 (9)0.0100 (8)0.0032 (8)
C110.0326 (12)0.0171 (10)0.0388 (12)0.0030 (9)0.0150 (10)0.0083 (9)
Geometric parameters (Å, º) top
Cd1—N22.3188 (15)C4—C51.390 (3)
Cd1—N12.3644 (15)C4—H40.9500
Cd1—N32.3909 (16)C5—C61.499 (3)
Cd1—Cl12.4434 (5)C6—C71.497 (3)
Cd1—Cl22.4561 (5)C7—H7A0.9800
N1—C11.335 (2)C7—H7B0.9800
N1—C51.350 (2)C7—H7C0.9800
N2—C61.277 (2)C8—C91.522 (3)
N2—C81.459 (2)C8—H8A0.9900
N3—C101.471 (2)C8—H8B0.9900
N3—C111.474 (2)C9—H9A0.9900
N3—C91.478 (2)C9—H9B0.9900
C1—C21.389 (3)C10—H10A0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.379 (3)C10—H10C0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.388 (3)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
N2—Cd1—N169.42 (5)N1—C5—C6115.96 (16)
N2—Cd1—N373.39 (5)C4—C5—C6122.77 (17)
N1—Cd1—N3141.34 (5)N2—C6—C7123.96 (18)
N2—Cd1—Cl1131.13 (4)N2—C6—C5116.71 (16)
N1—Cd1—Cl198.62 (4)C7—C6—C5119.29 (16)
N3—Cd1—Cl197.82 (4)C6—C7—H7A109.5
N2—Cd1—Cl2112.49 (4)C6—C7—H7B109.5
N1—Cd1—Cl2100.86 (4)H7A—C7—H7B109.5
N3—Cd1—Cl2102.71 (4)C6—C7—H7C109.5
Cl1—Cd1—Cl2116.315 (17)H7A—C7—H7C109.5
C1—N1—C5119.09 (16)H7B—C7—H7C109.5
C1—N1—Cd1124.01 (12)N2—C8—C9109.01 (16)
C5—N1—Cd1116.87 (12)N2—C8—H8A109.9
C6—N2—C8121.86 (16)C9—C8—H8A109.9
C6—N2—Cd1120.70 (13)N2—C8—H8B109.9
C8—N2—Cd1116.44 (11)C9—C8—H8B109.9
C10—N3—C11110.06 (16)H8A—C8—H8B108.3
C10—N3—C9111.56 (15)N3—C9—C8112.34 (15)
C11—N3—C9108.99 (15)N3—C9—H9A109.1
C10—N3—Cd1110.95 (11)C8—C9—H9A109.1
C11—N3—Cd1110.21 (12)N3—C9—H9B109.1
C9—N3—Cd1104.94 (11)C8—C9—H9B109.1
N1—C1—C2122.72 (18)H9A—C9—H9B107.9
N1—C1—H1118.6N3—C10—H10A109.5
C2—C1—H1118.6N3—C10—H10B109.5
C3—C2—C1118.40 (18)H10A—C10—H10B109.5
C3—C2—H2120.8N3—C10—H10C109.5
C1—C2—H2120.8H10A—C10—H10C109.5
C2—C3—C4119.34 (18)H10B—C10—H10C109.5
C2—C3—H3120.3N3—C11—H11A109.5
C4—C3—H3120.3N3—C11—H11B109.5
C3—C4—C5119.17 (18)H11A—C11—H11B109.5
C3—C4—H4120.4N3—C11—H11C109.5
C5—C4—H4120.4H11A—C11—H11C109.5
N1—C5—C4121.26 (17)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl2i0.982.773.679 (2)155
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CdCl2(C11H17N3)]
Mr374.58
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0276 (2), 9.6048 (2), 10.0851 (2)
α, β, γ (°)102.534 (1), 103.365 (1), 97.850 (1)
V3)724.09 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.23 × 0.11 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.674, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
5023, 2652, 2547
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.08
No. of reflections2652
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl2i0.982.773.679 (2)155
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBian, H.-D., Xu, J.-Y., Gu, W., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2003). Chin. J. Struct. Chem. 22, 710–712.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSaleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds