metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-di­hydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ato]copper(II) bis­[4-(4-carboxyphen­oxy)benzoate]

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: sdz@swu.edu.cn

(Received 18 January 2011; accepted 22 February 2011; online 26 February 2011)

In the title compound, [Cu(C14H17N5O3)2(H2O)2](C14H9O5)2, the Cu2+ atom, located on an inversion centre, exhibits a distorted octa­hedral geometry, coordinated by four O atoms from two pipemidic acid ligands in equatorial positions and two water mol­ecules in axial positions. The pipemidic acid ligand acts a bidentate ligand and the single deprotonated 4,4′-oxydibenzoic acid acts as an anion. Classical N—H⋯O and O—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For general background to the use of quinolones in the treatment of infections, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H17N5O3)2(H2O)2](C14H9O5)2

  • Mr = 1220.66

  • Triclinic, [P \overline 1]

  • a = 8.611 (8) Å

  • b = 12.555 (12) Å

  • c = 13.436 (12) Å

  • α = 76.222 (10)°

  • β = 73.299 (10)°

  • γ = 81.015 (10)°

  • V = 1345 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 295 K

  • 0.47 × 0.41 × 0.33 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.854

  • 11977 measured reflections

  • 5790 independent reflections

  • 4801 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.04

  • 5790 reflections

  • 397 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯O4i 0.85 (1) 2.08 (1) 2.921 (3) 169 (2)
OW1—HW1B⋯O7ii 0.85 (1) 2.08 (3) 2.892 (3) 161 (2)
O6—H6A⋯O5iii 0.81 (3) 1.81 (3) 2.582 (3) 160 (3)
N1—H1A⋯O1ii 0.90 1.91 2.783 (3) 162
N1—H1B⋯O4iv 0.90 1.73 2.604 (3) 164
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) x-1, y+1, z; (iv) -x, -y-1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pipemidic acid (Hppa, C14H17N5O3, 8-ethyl-5,8-dihydro-5- oxo-2-(1-piperazinyl)-pyrido(2,3-d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). H2oba (4,4'-oxybisbenzoic acid) acts a anion in this complex. The metal complexes of the Hppa and H2oba have not been reported till; the title copper(II) complex, I, is presented here (Fig. 1).

The Cu atom exhibits an approximate square environment with atoms O2, O3, O2i, O3i (see Fig. 1 for symmetry code) of two Hppa ligands (two O, O-bidentate). The Cu—O bond distances arising from the two carbonyl oxygen atoms O3 are longer (1.9605 (19)Å) than those arising from the carboxylate oxygen atoms O2 (1.932 (2)Å). The bond angles O2—Cu1—O3i and O2—Cu1—O3 open up slightly from 88.51 (9)° to 91.49 (9)°. The CuII atom at each short edge of the rectangle are bridged by an water molecule, which also interacts weakly (Cu1···OW1 = 2.642 (10)Å) with the central metal, resulting in a distortion octahedral geometry. Classical N—H···O and O—H···O hydrogen bonds are present in the crystal structure (Table 1).

Related literature top

For general back ground to the use of quinolones in the treatment of infections, see: Mizuki et al. (1996).

Experimental top

A mixture of CuI (0.095 g, 0.5 mmol), Hppa (0.089 g, 0.25 mmol), H2oba (0.0645 g, 0.25 mmol) and water (8 ml) was stirred for 30 min in air. The mixture was then transferred to a 18 ml teflon-lined hydrothermal bomb. The bomb was kept at 393 K for 120 h under autogenous pressure. Upon cooling, blue block of I were obtained from the reaction mixture.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation [aromatic C—H = 0.93Å, aliphatic C—H = 0.96Å–0.97Å], with Uiso(H) = 1.2–1.5Ueq(C). The H atoms based on N atoms were located in a difference Fourier map and were refined with a distance restraint of N—H = 0.90Å and with Uiso(H) = 1.2Ueq(N). The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.81 (3)Å and with Uiso(H) = 1.3Ueq(O). The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H = 0.845Å–0.855Å and Uiso(H) = 1–1.2Ueq(OW).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y, -z.
Diaquabis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido[2,3- d]pyrimidine-6-carboxylato]copper(II) bis[4-(4-carboxyphenoxy)benzoate] top
Crystal data top
[Cu(C14H17N5O3)2(H2O)2](C14H9O5)2Z = 1
Mr = 1220.66F(000) = 635
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.611 (8) ÅCell parameters from 11977 reflections
b = 12.555 (12) Åθ = 2.5–27.0°
c = 13.436 (12) ŵ = 0.49 mm1
α = 76.222 (10)°T = 295 K
β = 73.299 (10)°Block, blue
γ = 81.015 (10)°0.47 × 0.41 × 0.33 mm
V = 1345 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
5790 independent reflections
Radiation source: fine-focus sealed tube4801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.801, Tmax = 0.854k = 1516
11977 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
5790 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.56 e Å3
3 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Cu(C14H17N5O3)2(H2O)2](C14H9O5)2γ = 81.015 (10)°
Mr = 1220.66V = 1345 (2) Å3
Triclinic, P1Z = 1
a = 8.611 (8) ÅMo Kα radiation
b = 12.555 (12) ŵ = 0.49 mm1
c = 13.436 (12) ÅT = 295 K
α = 76.222 (10)°0.47 × 0.41 × 0.33 mm
β = 73.299 (10)°
Data collection top
Bruker SMART CCD
diffractometer
5790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4801 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.854Rint = 0.086
11977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
5790 reflectionsΔρmin = 1.01 e Å3
397 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.03389 (14)
O10.47101 (18)0.10445 (10)0.11352 (13)0.0351 (3)
OW10.0750 (3)0.05617 (16)0.20934 (15)0.0526 (5)
HW1A0.118 (3)0.0156 (16)0.2544 (16)0.049 (8)*
HW1B0.129 (3)0.1115 (15)0.229 (2)0.064 (10)*
O20.21239 (17)0.08163 (10)0.02336 (13)0.0348 (3)
O30.09237 (18)0.13240 (11)0.00203 (13)0.0379 (4)
O40.2629 (2)0.06638 (13)0.62834 (14)0.0541 (5)
O50.3377 (2)0.15031 (13)0.49121 (16)0.0545 (5)
O60.4437 (2)0.68639 (12)0.46026 (13)0.0425 (4)
H6A0.494 (4)0.745 (2)0.470 (2)0.056 (8)*
O70.3132 (2)0.78539 (12)0.30621 (13)0.0491 (4)
O80.05881 (19)0.31270 (11)0.26786 (11)0.0360 (4)
N10.3807 (2)0.77991 (12)0.23764 (13)0.0296 (4)
H1A0.42930.81920.20910.036*
H1B0.34990.82540.29280.036*
N20.4064 (2)0.57091 (12)0.10300 (14)0.0302 (4)
N30.2207 (2)0.44274 (12)0.01642 (13)0.0286 (4)
N40.48747 (19)0.39169 (12)0.12450 (13)0.0245 (3)
N50.56161 (19)0.21098 (12)0.14742 (13)0.0244 (3)
C10.3500 (2)0.04524 (15)0.07391 (16)0.0277 (4)
C20.3694 (2)0.07372 (14)0.08278 (15)0.0248 (4)
C30.2405 (2)0.15063 (14)0.04021 (15)0.0252 (4)
C40.2879 (2)0.25929 (14)0.05000 (14)0.0236 (4)
C50.1829 (2)0.34213 (15)0.00345 (16)0.0284 (4)
H5A0.08050.32450.03910.034*
C60.3712 (2)0.46483 (14)0.08216 (15)0.0240 (4)
C70.4444 (2)0.28933 (14)0.10703 (14)0.0224 (4)
C80.5211 (2)0.10795 (14)0.13354 (15)0.0255 (4)
H8A0.60220.05620.16040.031*
C90.7306 (2)0.23875 (16)0.20318 (16)0.0302 (4)
H9A0.76220.28650.16680.036*
H9B0.80380.17170.19980.036*
C100.7491 (3)0.2952 (2)0.31814 (18)0.0485 (6)
H10A0.86010.31120.35040.073*
H10B0.72020.24770.35500.073*
H10C0.67890.36260.32200.073*
C110.2860 (3)0.65883 (14)0.06486 (16)0.0295 (4)
H11A0.19190.62670.01380.035*
H11B0.33320.69950.02960.035*
C120.2338 (2)0.73607 (15)0.15641 (16)0.0301 (4)
H12A0.15980.79640.13140.036*
H12B0.17730.69720.18770.036*
C130.4992 (3)0.68931 (16)0.27633 (16)0.0324 (4)
H13A0.44960.64940.31090.039*
H13B0.59410.71990.32780.039*
C140.5504 (2)0.61120 (15)0.18377 (18)0.0332 (5)
H14A0.60980.64920.15360.040*
H14B0.62180.54960.20830.040*
C150.1449 (3)0.12351 (18)0.30272 (19)0.0443 (6)
H15A0.13620.12100.23590.053*
C160.2015 (3)0.03110 (18)0.36527 (19)0.0476 (6)
H16A0.23190.03400.34000.057*
C170.2144 (3)0.03297 (15)0.46562 (16)0.0312 (4)
C180.1694 (3)0.13108 (16)0.50118 (17)0.0350 (5)
H18A0.17720.13360.56820.042*
C190.1130 (3)0.22545 (16)0.43918 (16)0.0328 (5)
H19A0.08380.29090.46380.039*
C200.1008 (2)0.22064 (15)0.34007 (16)0.0283 (4)
C210.0382 (2)0.40359 (15)0.30085 (16)0.0284 (4)
C220.0043 (3)0.50373 (17)0.23318 (17)0.0351 (5)
H22A0.08230.50740.17260.042*
C230.1005 (3)0.59877 (16)0.25639 (17)0.0333 (5)
H23A0.07850.66620.21070.040*
C240.2295 (2)0.59424 (15)0.34728 (16)0.0288 (4)
C250.2633 (3)0.49235 (17)0.41362 (17)0.0365 (5)
H25A0.35010.48830.47410.044*
C260.1687 (3)0.39667 (16)0.39035 (18)0.0354 (5)
H26A0.19280.32870.43440.043*
C270.2781 (3)0.06920 (16)0.53302 (19)0.0375 (5)
C280.3324 (3)0.69794 (16)0.36871 (17)0.0318 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0228 (2)0.02319 (19)0.0572 (3)0.00498 (13)0.00532 (17)0.01570 (16)
O10.0281 (8)0.0259 (7)0.0542 (10)0.0003 (5)0.0070 (7)0.0204 (6)
OW10.0558 (12)0.0515 (11)0.0439 (10)0.0037 (9)0.0031 (9)0.0101 (8)
O20.0277 (8)0.0232 (7)0.0524 (9)0.0036 (5)0.0055 (7)0.0109 (6)
O30.0254 (8)0.0276 (7)0.0602 (10)0.0082 (6)0.0024 (7)0.0212 (6)
O40.0749 (14)0.0403 (9)0.0428 (10)0.0150 (8)0.0237 (9)0.0033 (7)
O50.0603 (12)0.0321 (8)0.0657 (12)0.0172 (8)0.0160 (9)0.0140 (8)
O60.0433 (10)0.0307 (8)0.0410 (9)0.0085 (7)0.0017 (7)0.0068 (6)
O70.0612 (12)0.0294 (8)0.0451 (10)0.0032 (7)0.0046 (8)0.0017 (7)
O80.0431 (9)0.0331 (7)0.0270 (7)0.0107 (6)0.0080 (6)0.0073 (6)
N10.0354 (10)0.0264 (8)0.0285 (9)0.0012 (7)0.0120 (7)0.0049 (6)
N20.0260 (9)0.0195 (7)0.0405 (10)0.0045 (6)0.0013 (7)0.0052 (7)
N30.0262 (9)0.0249 (8)0.0325 (9)0.0048 (6)0.0014 (7)0.0111 (6)
N40.0223 (8)0.0214 (7)0.0305 (8)0.0047 (6)0.0057 (7)0.0064 (6)
N50.0206 (8)0.0229 (7)0.0284 (8)0.0028 (6)0.0022 (6)0.0075 (6)
C10.0299 (11)0.0244 (9)0.0333 (10)0.0025 (7)0.0125 (8)0.0094 (7)
C20.0261 (10)0.0206 (8)0.0286 (10)0.0028 (7)0.0065 (8)0.0073 (7)
C30.0222 (10)0.0242 (9)0.0305 (10)0.0056 (7)0.0038 (8)0.0095 (7)
C40.0217 (9)0.0233 (8)0.0268 (10)0.0038 (7)0.0046 (7)0.0081 (7)
C50.0231 (10)0.0275 (9)0.0336 (10)0.0059 (7)0.0013 (8)0.0099 (8)
C60.0258 (10)0.0223 (8)0.0254 (9)0.0024 (7)0.0084 (8)0.0054 (7)
C70.0226 (10)0.0224 (8)0.0236 (9)0.0028 (7)0.0071 (7)0.0057 (7)
C80.0246 (10)0.0232 (8)0.0288 (10)0.0004 (7)0.0043 (8)0.0103 (7)
C90.0194 (10)0.0322 (10)0.0376 (11)0.0053 (7)0.0010 (8)0.0128 (8)
C100.0492 (15)0.0577 (14)0.0351 (13)0.0167 (11)0.0006 (11)0.0099 (11)
C110.0342 (11)0.0226 (9)0.0317 (10)0.0034 (8)0.0045 (8)0.0100 (7)
C120.0269 (11)0.0298 (9)0.0366 (11)0.0013 (7)0.0079 (9)0.0156 (8)
C130.0292 (11)0.0329 (10)0.0332 (11)0.0052 (8)0.0018 (9)0.0099 (8)
C140.0221 (10)0.0242 (9)0.0490 (13)0.0046 (7)0.0026 (9)0.0060 (8)
C150.0632 (17)0.0390 (12)0.0325 (12)0.0083 (11)0.0155 (11)0.0156 (9)
C160.0695 (18)0.0336 (11)0.0399 (13)0.0162 (11)0.0149 (12)0.0205 (10)
C170.0306 (11)0.0259 (9)0.0324 (11)0.0042 (8)0.0044 (8)0.0062 (8)
C180.0450 (13)0.0317 (10)0.0303 (11)0.0020 (9)0.0133 (9)0.0093 (8)
C190.0404 (12)0.0262 (9)0.0315 (11)0.0047 (8)0.0084 (9)0.0116 (8)
C200.0242 (10)0.0294 (9)0.0289 (10)0.0016 (7)0.0052 (8)0.0061 (7)
C210.0275 (11)0.0298 (9)0.0292 (10)0.0026 (8)0.0108 (8)0.0077 (8)
C220.0331 (12)0.0378 (11)0.0262 (10)0.0014 (9)0.0009 (9)0.0023 (8)
C230.0351 (12)0.0288 (10)0.0304 (11)0.0028 (8)0.0052 (9)0.0004 (8)
C240.0291 (11)0.0296 (9)0.0286 (10)0.0003 (8)0.0092 (8)0.0072 (8)
C250.0306 (12)0.0339 (10)0.0348 (12)0.0008 (8)0.0018 (9)0.0027 (9)
C260.0335 (12)0.0270 (10)0.0370 (12)0.0007 (8)0.0024 (9)0.0004 (8)
C270.0362 (12)0.0276 (10)0.0445 (13)0.0034 (8)0.0104 (10)0.0036 (9)
C280.0333 (12)0.0303 (10)0.0327 (11)0.0004 (8)0.0106 (9)0.0081 (8)
Geometric parameters (Å, º) top
Cu1—O21.932 (2)C9—C101.512 (3)
Cu1—O2i1.932 (2)C9—H9A0.9700
Cu1—O3i1.9605 (19)C9—H9B0.9700
Cu1—O31.9605 (19)C10—H10A0.9600
O1—C11.245 (3)C10—H10B0.9600
OW1—HW1A0.850 (10)C10—H10C0.9600
OW1—HW1B0.845 (10)C11—C121.506 (3)
O2—C11.278 (3)C11—H11A0.9700
O3—C31.271 (2)C11—H11B0.9700
O4—C271.258 (3)C12—H12A0.9700
O5—C271.249 (3)C12—H12B0.9700
O6—C281.317 (3)C13—C141.517 (3)
O6—H6A0.81 (3)C13—H13A0.9700
O7—C281.215 (3)C13—H13B0.9700
O8—C211.388 (2)C14—H14A0.9700
O8—C201.395 (2)C14—H14B0.9700
N1—C131.490 (3)C15—C161.373 (3)
N1—C121.494 (3)C15—C201.386 (3)
N1—H1A0.9000C15—H15A0.9300
N1—H1B0.9000C16—C171.390 (3)
N2—C61.358 (3)C16—H16A0.9300
N2—C141.461 (3)C17—C181.386 (3)
N2—C111.470 (3)C17—C271.510 (3)
N3—C51.312 (3)C18—C191.384 (3)
N3—C61.370 (3)C18—H18A0.9300
N4—C71.341 (3)C19—C201.381 (3)
N4—C61.343 (2)C19—H19A0.9300
N5—C81.348 (3)C21—C221.382 (3)
N5—C71.382 (2)C21—C261.386 (3)
N5—C91.486 (3)C22—C231.388 (3)
C1—C21.501 (3)C22—H22A0.9300
C2—C81.371 (3)C23—C241.391 (3)
C2—C31.434 (3)C23—H23A0.9300
C3—C41.450 (3)C24—C251.393 (3)
C4—C71.405 (3)C24—C281.495 (3)
C4—C51.408 (3)C25—C261.390 (3)
C5—H5A0.9300C25—H25A0.9300
C8—H8A0.9300C26—H26A0.9300
O2—Cu1—O2i180.00 (9)N2—C11—H11B109.6
O2—Cu1—O3i88.51 (9)C12—C11—H11B109.6
O2i—Cu1—O3i91.49 (9)H11A—C11—H11B108.1
O2—Cu1—O391.49 (9)N1—C12—C11109.21 (17)
O2i—Cu1—O388.51 (9)N1—C12—H12A109.8
O3i—Cu1—O3180.00 (9)C11—C12—H12A109.8
HW1A—OW1—HW1B106.0 (15)N1—C12—H12B109.8
C1—O2—Cu1128.03 (13)C11—C12—H12B109.8
C3—O3—Cu1124.09 (12)H12A—C12—H12B108.3
C28—O6—H6A111 (2)N1—C13—C14109.85 (18)
C21—O8—C20121.82 (16)N1—C13—H13A109.7
C13—N1—C12111.43 (15)C14—C13—H13A109.7
C13—N1—H1A109.3N1—C13—H13B109.7
C12—N1—H1A109.3C14—C13—H13B109.7
C13—N1—H1B109.3H13A—C13—H13B108.2
C12—N1—H1B109.3N2—C14—C13109.62 (17)
H1A—N1—H1B108.0N2—C14—H14A109.7
C6—N2—C14122.40 (16)C13—C14—H14A109.7
C6—N2—C11122.31 (17)N2—C14—H14B109.7
C14—N2—C11113.87 (15)C13—C14—H14B109.7
C5—N3—C6115.40 (16)H14A—C14—H14B108.2
C7—N4—C6115.62 (17)C16—C15—C20119.3 (2)
C8—N5—C7118.91 (17)C16—C15—H15A120.3
C8—N5—C9120.33 (15)C20—C15—H15A120.3
C7—N5—C9120.74 (15)C15—C16—C17121.2 (2)
O1—C1—O2123.21 (17)C15—C16—H16A119.4
O1—C1—C2118.03 (19)C17—C16—H16A119.4
O2—C1—C2118.72 (17)C18—C17—C16118.30 (18)
C8—C2—C3119.53 (17)C18—C17—C27121.2 (2)
C8—C2—C1116.70 (16)C16—C17—C27120.53 (19)
C3—C2—C1123.76 (18)C19—C18—C17121.5 (2)
O3—C3—C2126.19 (17)C19—C18—H18A119.3
O3—C3—C4118.81 (16)C17—C18—H18A119.3
C2—C3—C4114.99 (17)C20—C19—C18118.79 (18)
C7—C4—C5114.89 (17)C20—C19—H19A120.6
C7—C4—C3121.86 (16)C18—C19—H19A120.6
C5—C4—C3123.25 (18)C19—C20—C15120.88 (18)
N3—C5—C4124.03 (19)C19—C20—O8123.37 (18)
N3—C5—H5A118.0C15—C20—O8115.51 (19)
C4—C5—H5A118.0C22—C21—C26120.83 (18)
N4—C6—N2117.63 (18)C22—C21—O8115.21 (19)
N4—C6—N3126.45 (16)C26—C21—O8123.78 (18)
N2—C6—N3115.89 (16)C21—C22—C23119.5 (2)
N4—C7—N5117.44 (18)C21—C22—H22A120.3
N4—C7—C4123.08 (16)C23—C22—H22A120.3
N5—C7—C4119.48 (16)C22—C23—C24120.70 (19)
N5—C8—C2124.93 (16)C22—C23—H23A119.6
N5—C8—H8A117.5C24—C23—H23A119.6
C2—C8—H8A117.5C25—C24—C23118.96 (18)
N5—C9—C10112.82 (17)C25—C24—C28121.8 (2)
N5—C9—H9A109.0C23—C24—C28119.23 (18)
C10—C9—H9A109.0C26—C25—C24120.7 (2)
N5—C9—H9B109.0C26—C25—H25A119.7
C10—C9—H9B109.0C24—C25—H25A119.7
H9A—C9—H9B107.8C21—C26—C25119.30 (19)
C9—C10—H10A109.5C21—C26—H26A120.4
C9—C10—H10B109.5C25—C26—H26A120.4
H10A—C10—H10B109.5O5—C27—O4125.2 (2)
C9—C10—H10C109.5O5—C27—C17118.0 (2)
H10A—C10—H10C109.5O4—C27—C17116.79 (19)
H10B—C10—H10C109.5O7—C28—O6123.32 (19)
N2—C11—C12110.25 (17)O7—C28—C24122.1 (2)
N2—C11—H11A109.6O6—C28—C24114.58 (17)
C12—C11—H11A109.6
O3i—Cu1—O2—C1148.18 (18)C1—C2—C8—N5178.93 (17)
O3—Cu1—O2—C131.82 (18)C8—N5—C9—C1099.3 (2)
O2—Cu1—O3—C322.22 (17)C7—N5—C9—C1082.1 (2)
O2i—Cu1—O3—C3157.78 (17)C6—N2—C11—C12109.8 (2)
Cu1—O2—C1—O1156.75 (15)C14—N2—C11—C1256.9 (2)
Cu1—O2—C1—C225.6 (3)C13—N1—C12—C1158.2 (2)
O1—C1—C2—C80.6 (3)N2—C11—C12—N155.9 (2)
O2—C1—C2—C8177.16 (17)C12—N1—C13—C1458.3 (2)
O1—C1—C2—C3179.61 (18)C6—N2—C14—C13110.5 (2)
O2—C1—C2—C31.9 (3)C11—N2—C14—C1356.2 (2)
Cu1—O3—C3—C29.3 (3)N1—C13—C14—N255.5 (2)
Cu1—O3—C3—C4169.20 (13)C20—C15—C16—C170.5 (4)
C8—C2—C3—O3174.87 (19)C15—C16—C17—C180.4 (4)
C1—C2—C3—O36.1 (3)C15—C16—C17—C27179.5 (2)
C8—C2—C3—C43.7 (3)C16—C17—C18—C190.0 (4)
C1—C2—C3—C4175.33 (17)C27—C17—C18—C19179.1 (2)
O3—C3—C4—C7172.18 (17)C17—C18—C19—C200.4 (3)
C2—C3—C4—C76.5 (3)C18—C19—C20—C150.3 (3)
O3—C3—C4—C58.1 (3)C18—C19—C20—O8174.38 (19)
C2—C3—C4—C5173.23 (18)C16—C15—C20—C190.1 (4)
C6—N3—C5—C41.7 (3)C16—C15—C20—O8174.4 (2)
C7—C4—C5—N34.3 (3)C21—O8—C20—C1928.0 (3)
C3—C4—C5—N3176.01 (19)C21—O8—C20—C15157.6 (2)
C7—N4—C6—N2176.26 (17)C20—O8—C21—C22147.58 (19)
C7—N4—C6—N36.0 (3)C20—O8—C21—C2637.3 (3)
C14—N2—C6—N411.6 (3)C26—C21—C22—C231.3 (3)
C11—N2—C6—N4177.18 (17)O8—C21—C22—C23176.50 (19)
C14—N2—C6—N3170.41 (17)C21—C22—C23—C240.5 (3)
C11—N2—C6—N34.9 (3)C22—C23—C24—C251.5 (3)
C5—N3—C6—N47.4 (3)C22—C23—C24—C28178.9 (2)
C5—N3—C6—N2174.85 (18)C23—C24—C25—C260.7 (3)
C6—N4—C7—N5178.69 (15)C28—C24—C25—C26178.1 (2)
C6—N4—C7—C41.1 (3)C22—C21—C26—C252.0 (3)
C8—N5—C7—N4178.36 (17)O8—C21—C26—C25176.78 (19)
C9—N5—C7—N43.0 (2)C24—C25—C26—C210.9 (3)
C8—N5—C7—C41.9 (3)C18—C17—C27—O5170.2 (2)
C9—N5—C7—C4176.77 (16)C16—C17—C27—O58.9 (3)
C5—C4—C7—N45.8 (3)C18—C17—C27—O411.6 (3)
C3—C4—C7—N4174.52 (17)C16—C17—C27—O4169.3 (2)
C5—C4—C7—N5173.98 (16)C25—C24—C28—O7173.0 (2)
C3—C4—C7—N55.7 (3)C23—C24—C28—O74.4 (3)
C7—N5—C8—C20.9 (3)C25—C24—C28—O67.3 (3)
C9—N5—C8—C2179.57 (18)C23—C24—C28—O6175.3 (2)
C3—C2—C8—N50.1 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O4ii0.85 (1)2.08 (1)2.921 (3)169 (2)
OW1—HW1B···O7iii0.85 (1)2.08 (3)2.892 (3)161 (2)
O6—H6A···O5iv0.81 (3)1.81 (3)2.582 (3)160 (3)
N1—H1A···O1iii0.901.912.783 (3)162
N1—H1B···O4v0.901.732.604 (3)164
Symmetry codes: (ii) x, y, z+1; (iii) x, y1, z; (iv) x1, y+1, z; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C14H17N5O3)2(H2O)2](C14H9O5)2
Mr1220.66
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.611 (8), 12.555 (12), 13.436 (12)
α, β, γ (°)76.222 (10), 73.299 (10), 81.015 (10)
V3)1345 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.47 × 0.41 × 0.33
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
11977, 5790, 4801
Rint0.086
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.04
No. of reflections5790
No. of parameters397
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 1.01

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O4i0.850 (10)2.082 (12)2.921 (3)169 (2)
OW1—HW1B···O7ii0.845 (10)2.08 (3)2.892 (3)161 (2)
O6—H6A···O5iii0.81 (3)1.81 (3)2.582 (3)160 (3)
N1—H1A···O1ii0.901.912.783 (3)162
N1—H1B···O4iv0.901.732.604 (3)164
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x1, y+1, z; (iv) x, y1, z+1.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.  Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41–45.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds