metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)­pyridinium] tetra­chloridozincate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bLaboratoire C2P2 (Equipe COMS), Ecole Superieure de Chimie Physique, Electronique, Villeurbanne, France, and cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 23 January 2011; accepted 9 February 2011; online 16 February 2011)

In the title compound, (C7H11N2)2[ZnCl4], [ZnCl4]2− anions and 4-(dimethyl­amino)­pyridinium cations are held together by various inter­molecular inter­actions including Coulombic attraction, hydrogen bonding and ππ stacking inter­actions. Three Cl atoms of the [ZnCl4]2− tetra­hedron act as acceptors in N—H⋯Cl hydrogen bonds. The hydrogen bonds, both of which are bifurcated, lead to the formation of a three-dimensional network. Within the network, inter­molecular ππ stacking inter­actions with a centroid–centroid distance of 3.5911 (7) Å arrange the 4-(dimethyl­amino)­pyridinium cations into anti­parallel dimers.

Related literature

For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986[Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103-107.]); Pierpont & Jung (1994[Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229-2230.]); Huskins & Robson (1990[Huskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554.]). For related structures and discussion of geometrical features, see: Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]); El Glaoui et al. (2008[El Glaoui, M., Smirani, W., Lefebvre, F., Rzaigui, M. & Ben Nasr, C. (2008). Can. J. Anal. Sci. Spectrosc. 25, 103-107.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[ZnCl4]

  • Mr = 453.55

  • Triclinic, [P \overline 1]

  • a = 7.7056 (8) Å

  • b = 8.2159 (8) Å

  • c = 16.0972 (16) Å

  • α = 77.422 (1)°

  • β = 79.804 (1)°

  • γ = 75.983 (1)°

  • V = 956.67 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.45 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.602, Tmax = 0.746

  • 21487 measured reflections

  • 5803 independent reflections

  • 5638 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.07

  • 5803 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl1i 0.88 2.88 3.5090 (11) 130
N3—H3⋯Cl3i 0.88 2.46 3.2224 (10) 146
N1—H1A⋯Cl2 0.88 2.81 3.4043 (10) 126
N1—H1A⋯Cl1 0.88 2.53 3.2066 (10) 134
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic–inorganic compounds constitute a vast family of hybrid materials of considerable technological importance (Kobel & Hanack, 1986; Pierpont & Jung, 1994; Huskins & Robson, 1990). In this work, we report the molecular and crystal structures of one such compound, (C7H11N2)2ZnCl4. As shown in Fig. 1, only the nitrogen atom of the aromatic ring of the title compound is protonated, but not the dimethylamine group. Thus, to ensure charge equilibrium, the structure associates each tetrachlorizincate anion with two 4-(dimethylamino)pyridinium cations. Fig.2 shows that the atomic arrangement of the title hybrid material which can be described as inorganic [ZnCl4]2- units isolated from each other by the organic cations. The different entities are held together by columbic attraction and multiple hydrogen bonds to form a three dimensional network. Previous studies have shown that the presence of hydrogen bonds influences appreciably the geometrical parameters of the tetrachlorozincate anions (Albrecht et al., 2003). Indeed, the fact that the Zn—Cl4 bond lengh is the shortest meets the expectation derived from hydrogen bonding effects, as the atom Cl4 is not involved in a hydrogen bond, while the remaining Cl1, Cl2 and Cl3 are acting as acceptors of hydrogen bonds with concurrently weakened Zn—Cl bonds. Both of the hydrogen bonds are bifurcated, N1—H1···(Cl1, Cl2) and N3—H3···(Cl1i, Cl3i) (Table 1). Symmetry code: (i) -x, -y+1, -z. The Cl—Zn—Cl bond angles range from 102.25 (1)° to 117.03 (1)°. These values indicate that the coordination geometry of the zinc atom can be regarded as a slightly distorted tetrahedron, similar as in other related compounds such as 4-(2–ammonioethyl)morpholin–4–ium tetrachlorozincate where the corresponding limit angles are 98.90 (4)° to 114.74 (4)° (El Glaoui et al., 2008). Intermolecular ππ stacking is present between adjacent 4-(dimethylamino)pyridinium cations with a centroid–centroid distance of 3.5911 (7)Å (symmetry code for the second pyridine ring: (i) -x, -y+1, -z).

Related literature top

For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986); Pierpont & Jung (1994); Huskins & Robson (1990). For related structures and discussion of geometrical features, see: Albrecht et al. (2003); El Glaoui et al. (2008).

Experimental top

A mixture of an aqueous solution of 4-(dimethylamino)pyridine (4 mmol, 0.488 g), zinc chloride (2 mmol, 0.396 g) and HCl (10 ml, 0.4 M) in a Petri dish was slowly evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X–ray diffraction analysis (yield 57%).

Refinement top

Reflection (0 0 1) was obscured by the beamstop and was omitted from the refinement. C—H hydrogen atoms were placed in calculated positions with C—H distances in the range 0.93Å–0.97Å. N—H hydrogen atoms were placed in calculated positions with N—H distances of 0.88Å. The Uiso(H) values of all H atoms were constrained to 1.2(1.5) times Ueq of the respective parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of (C7H11N2)2ZnCl4, viewed down the a axis. Hydrogen bonds are denoted by dotted lines.
Bis[4-(dimethylamino)pyridinium] tetrachloridozincatee top
Crystal data top
(C7H11N2)2[ZnCl4]Z = 2
Mr = 453.55F(000) = 464
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7056 (8) ÅCell parameters from 8289 reflections
b = 8.2159 (8) Åθ = 2.6–31.0°
c = 16.0972 (16) ŵ = 1.85 mm1
α = 77.422 (1)°T = 100 K
β = 79.804 (1)°Block, colourless
γ = 75.983 (1)°0.55 × 0.50 × 0.45 mm
V = 956.67 (17) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5803 independent reflections
Radiation source: fine–focus sealed tube5638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 31.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.602, Tmax = 0.746k = 1111
21487 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.3664P]
where P = (Fo2 + 2Fc2)/3
5803 reflections(Δ/σ)max = 0.004
212 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C7H11N2)2[ZnCl4]γ = 75.983 (1)°
Mr = 453.55V = 956.67 (17) Å3
Triclinic, P1Z = 2
a = 7.7056 (8) ÅMo Kα radiation
b = 8.2159 (8) ŵ = 1.85 mm1
c = 16.0972 (16) ÅT = 100 K
α = 77.422 (1)°0.55 × 0.50 × 0.45 mm
β = 79.804 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5638 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.746Rint = 0.019
21487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.07Δρmax = 0.48 e Å3
5803 reflectionsΔρmin = 0.44 e Å3
212 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14583 (16)0.32828 (15)0.43051 (7)0.0193 (2)
H10.07070.43580.43780.023*
C20.13978 (15)0.19127 (14)0.49549 (7)0.01699 (19)
H20.06160.20370.54750.020*
C30.25157 (14)0.02905 (13)0.48499 (6)0.01385 (18)
C40.36177 (14)0.01982 (14)0.40430 (7)0.01539 (18)
H40.43530.08630.39350.018*
C50.36190 (15)0.16277 (14)0.34264 (7)0.01706 (19)
H50.43730.15550.28950.020*
C60.15682 (17)0.09487 (17)0.63337 (7)0.0221 (2)
H6A0.18320.00060.65280.033*
H6B0.19520.20110.67330.033*
H6C0.02690.07530.63150.033*
C70.36088 (17)0.27506 (15)0.53236 (8)0.0217 (2)
H7A0.32550.30300.48250.033*
H7B0.33910.36210.58300.033*
H7C0.48940.27190.52150.033*
C80.02081 (15)0.25984 (14)0.12815 (7)0.01678 (19)
H80.01330.28520.18840.020*
C90.07683 (14)0.29557 (13)0.07416 (7)0.01428 (18)
H90.17830.34550.09710.017*
C100.02760 (14)0.25842 (13)0.01653 (6)0.01374 (18)
C110.12782 (14)0.18589 (14)0.04599 (7)0.01695 (19)
H110.16840.16120.10570.020*
C120.21802 (14)0.15207 (14)0.01175 (8)0.0186 (2)
H120.31990.10160.00850.022*
C130.29355 (16)0.34659 (15)0.03844 (8)0.0207 (2)
H13A0.36930.27230.00000.031*
H13B0.35700.34130.08690.031*
H13C0.26790.46430.00700.031*
C140.06780 (18)0.26180 (17)0.16320 (7)0.0250 (2)
H14A0.06250.30530.17480.038*
H14B0.13160.32190.19020.038*
H14C0.09670.13940.18680.038*
Cl10.21516 (3)0.72097 (3)0.315840 (16)0.01547 (5)
Cl20.55357 (4)0.45957 (3)0.189582 (16)0.01755 (5)
Cl30.49003 (3)0.93916 (3)0.147680 (17)0.01690 (5)
Cl40.72105 (3)0.67369 (3)0.331637 (17)0.01814 (5)
N10.25646 (14)0.31464 (12)0.35590 (6)0.01823 (18)
H1A0.25980.40570.31550.022*
N20.25439 (13)0.10807 (12)0.54743 (6)0.01678 (17)
N30.16574 (13)0.18872 (12)0.09693 (6)0.01829 (18)
H30.22680.16610.13280.022*
N40.12405 (13)0.28980 (13)0.07042 (6)0.01765 (17)
Zn10.507513 (15)0.695820 (15)0.249259 (7)0.01220 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0226 (5)0.0160 (5)0.0197 (5)0.0029 (4)0.0029 (4)0.0049 (4)
C20.0179 (5)0.0175 (5)0.0155 (5)0.0035 (4)0.0002 (4)0.0049 (4)
C30.0142 (4)0.0154 (5)0.0132 (4)0.0055 (3)0.0019 (3)0.0026 (3)
C40.0167 (4)0.0160 (5)0.0142 (4)0.0053 (4)0.0002 (4)0.0042 (4)
C50.0197 (5)0.0193 (5)0.0135 (4)0.0077 (4)0.0001 (4)0.0037 (4)
C60.0240 (5)0.0281 (6)0.0127 (5)0.0088 (4)0.0012 (4)0.0001 (4)
C70.0281 (6)0.0148 (5)0.0211 (5)0.0040 (4)0.0051 (4)0.0001 (4)
C80.0165 (5)0.0172 (5)0.0147 (4)0.0016 (4)0.0020 (4)0.0012 (4)
C90.0128 (4)0.0148 (4)0.0130 (4)0.0019 (3)0.0005 (3)0.0010 (3)
C100.0134 (4)0.0119 (4)0.0130 (4)0.0012 (3)0.0006 (3)0.0013 (3)
C110.0155 (4)0.0145 (5)0.0163 (5)0.0004 (4)0.0023 (4)0.0000 (4)
C120.0121 (4)0.0147 (5)0.0255 (5)0.0011 (3)0.0002 (4)0.0005 (4)
C130.0186 (5)0.0194 (5)0.0249 (5)0.0028 (4)0.0066 (4)0.0041 (4)
C140.0288 (6)0.0295 (6)0.0129 (5)0.0024 (5)0.0037 (4)0.0043 (4)
Cl10.01256 (10)0.01683 (11)0.01659 (11)0.00351 (8)0.00141 (8)0.00440 (8)
Cl20.02090 (12)0.01512 (11)0.01719 (11)0.00582 (9)0.00273 (9)0.00613 (9)
Cl30.01644 (11)0.01347 (11)0.01837 (11)0.00359 (8)0.00078 (9)0.00147 (8)
Cl40.01623 (11)0.02174 (12)0.01760 (11)0.00576 (9)0.00483 (9)0.00201 (9)
N10.0245 (5)0.0151 (4)0.0156 (4)0.0066 (3)0.0036 (4)0.0004 (3)
N20.0188 (4)0.0170 (4)0.0137 (4)0.0056 (3)0.0005 (3)0.0004 (3)
N30.0154 (4)0.0178 (4)0.0218 (5)0.0020 (3)0.0059 (3)0.0027 (3)
N40.0183 (4)0.0202 (4)0.0134 (4)0.0017 (3)0.0024 (3)0.0032 (3)
Zn10.01192 (6)0.01210 (6)0.01234 (6)0.00284 (4)0.00084 (4)0.00200 (4)
Geometric parameters (Å, º) top
C1—N11.3533 (15)C9—C101.4263 (14)
C1—C21.3634 (16)C9—H90.9500
C1—H10.9500C10—N41.3378 (14)
C2—C31.4274 (15)C10—C111.4268 (15)
C2—H20.9500C11—C121.3635 (17)
C3—N21.3352 (13)C11—H110.9500
C3—C41.4266 (14)C12—N31.3476 (15)
C4—C51.3627 (15)C12—H120.9500
C4—H40.9500C13—N41.4633 (15)
C5—N11.3513 (15)C13—H13A0.9800
C5—H50.9500C13—H13B0.9800
C6—N21.4658 (14)C13—H13C0.9800
C6—H6A0.9800C14—N41.4631 (15)
C6—H6B0.9800C14—H14A0.9800
C6—H6C0.9800C14—H14B0.9800
C7—N21.4641 (15)C14—H14C0.9800
C7—H7A0.9800Cl1—Zn12.2983 (3)
C7—H7B0.9800Cl2—Zn12.2747 (3)
C7—H7C0.9800Cl3—Zn12.2831 (3)
C8—N31.3530 (14)Cl4—Zn12.2409 (3)
C8—C91.3628 (15)N1—H1A0.8800
C8—H80.9500N3—H30.8800
N1—C1—C2121.51 (10)C12—C11—C10119.87 (10)
N1—C1—H1119.2C12—C11—H11120.1
C2—C1—H1119.2C10—C11—H11120.1
C1—C2—C3119.63 (10)N3—C12—C11121.40 (10)
C1—C2—H2120.2N3—C12—H12119.3
C3—C2—H2120.2C11—C12—H12119.3
N2—C3—C4121.16 (10)N4—C13—H13A109.5
N2—C3—C2122.02 (10)N4—C13—H13B109.5
C4—C3—C2116.81 (9)H13A—C13—H13B109.5
C5—C4—C3120.18 (10)N4—C13—H13C109.5
C5—C4—H4119.9H13A—C13—H13C109.5
C3—C4—H4119.9H13B—C13—H13C109.5
N1—C5—C4121.05 (10)N4—C14—H14A109.5
N1—C5—H5119.5N4—C14—H14B109.5
C4—C5—H5119.5H14A—C14—H14B109.5
N2—C6—H6A109.5N4—C14—H14C109.5
N2—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
N2—C6—H6C109.5C5—N1—C1120.78 (10)
H6A—C6—H6C109.5C5—N1—H1A119.6
H6B—C6—H6C109.5C1—N1—H1A119.6
N2—C7—H7A109.5C3—N2—C7120.52 (9)
N2—C7—H7B109.5C3—N2—C6121.19 (10)
H7A—C7—H7B109.5C7—N2—C6118.25 (9)
N2—C7—H7C109.5C12—N3—C8121.00 (10)
H7A—C7—H7C109.5C12—N3—H3119.5
H7B—C7—H7C109.5C8—N3—H3119.5
N3—C8—C9120.80 (10)C10—N4—C14121.26 (10)
N3—C8—H8119.6C10—N4—C13120.79 (9)
C9—C8—H8119.6C14—N4—C13117.89 (10)
C8—C9—C10120.37 (10)Cl4—Zn1—Cl2111.223 (12)
C8—C9—H9119.8Cl4—Zn1—Cl3110.797 (11)
C10—C9—H9119.8Cl2—Zn1—Cl3111.809 (13)
N4—C10—C9121.08 (10)Cl4—Zn1—Cl1117.034 (13)
N4—C10—C11122.37 (10)Cl2—Zn1—Cl1103.260 (10)
C9—C10—C11116.54 (10)Cl3—Zn1—Cl1102.256 (10)
N1—C1—C2—C30.32 (17)C4—C5—N1—C10.92 (17)
C1—C2—C3—N2178.17 (10)C2—C1—N1—C51.62 (17)
C1—C2—C3—C41.56 (15)C4—C3—N2—C74.66 (16)
N2—C3—C4—C5177.50 (10)C2—C3—N2—C7175.62 (10)
C2—C3—C4—C52.24 (15)C4—C3—N2—C6173.16 (10)
C3—C4—C5—N11.05 (16)C2—C3—N2—C66.56 (16)
N3—C8—C9—C100.00 (16)C11—C12—N3—C80.33 (16)
C8—C9—C10—N4178.74 (10)C9—C8—N3—C120.33 (16)
C8—C9—C10—C110.90 (15)C9—C10—N4—C14176.17 (10)
N4—C10—C11—C12178.11 (10)C11—C10—N4—C144.20 (16)
C9—C10—C11—C121.53 (15)C9—C10—N4—C136.40 (16)
C10—C11—C12—N31.29 (16)C11—C10—N4—C13173.22 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl1i0.882.883.5090 (11)130
N3—H3···Cl3i0.882.463.2224 (10)146
N1—H1A···Cl20.882.813.4043 (10)126
N1—H1A···Cl10.882.533.2066 (10)134
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[ZnCl4]
Mr453.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7056 (8), 8.2159 (8), 16.0972 (16)
α, β, γ (°)77.422 (1), 79.804 (1), 75.983 (1)
V3)956.67 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.55 × 0.50 × 0.45
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.602, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21487, 5803, 5638
Rint0.019
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.07
No. of reflections5803
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl1i0.882.883.5090 (11)129.5
N3—H3···Cl3i0.882.463.2224 (10)145.9
N1—H1A···Cl20.882.813.4043 (10)126.1
N1—H1A···Cl10.882.533.2066 (10)134.3
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP–491 and by YSU.

References

First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationEl Glaoui, M., Smirani, W., Lefebvre, F., Rzaigui, M. & Ben Nasr, C. (2008). Can. J. Anal. Sci. Spectrosc. 25, 103–107.  Google Scholar
First citationHuskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554.  Google Scholar
First citationKobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107.  CrossRef CAS Web of Science Google Scholar
First citationPierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds