organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o682-o683

5,7,7,12,14,14-Hexa­methyl-4,8-di­aza-1,11-diazo­nio­cyclo­tetra­deca-4,11-diene diiodide dihydrate

aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Chemistry and Biochemistry, Moi University, PO Box 1125-30100, Eldoret, Kenya
*Correspondence e-mail: okothmdo@mu.ac.ke

(Received 26 January 2011; accepted 16 February 2011; online 23 February 2011)

The asymmetric unit of the title compound, C16H34N42+·2I·2H2O, contains one half-cation, one iodide anion and one water mol­ecule. The cation has crystallographically imposed centrosymmetric symmetry. Despite some differences in the unit-cell dimensions, packing analysis on a cluster of 15 cations and a comparison of the hydrogen bonding suggests that this compound is isostructural with its bromide analogue. Inter­molecular hydrogen bonding forms eight-membered [H—O—H⋯I]2 and [H—N—H⋯I]2 rings and creates a sheet structure.

Related literature

For the preparation and structure of the equivalent bromide salt, see: Rohovec et al. (1999[Rohovec, J., Vojtisek, P. & Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73-88.]). For the structure of the perchlorate salt, see: Bi et al. (2008[Bi, J.-H., Chen, Y., Huang, Z.-X., Cui, M. & Hu, N.-L. (2008). Asian J. Chem. 20, 4887-4890.]). For structures of representative transition metal complexes, see: Bieńko et al. (2007[Bieńko, A., Klak, J., Mroziński, J., Boča, R., Brüdgam, I. & Hartl, H. (2007). Dalton Trans. pp. 2681-2688.]); Yang (2005[Yang, Y.-M. (2005). Acta Cryst. E61, m1618-m1619.]); Ballester et al. (2000[Ballester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sanchez, A. E., Coronado, E. & Gómez-García, C. J. (2000). Inorg. Chem. 39, 2837-2842.]); Endicott et al. (1981[Endicott, J. F., Durham, B., Glick, M. D., Anderson, T. J., Kuszaj, J. M., Schmonsees, W. G. & Balakrishnan, K. P. (1981). J. Am. Chem. Soc. 103, 1431-1440.]); Wester et al. (1977[Wester, D., Edwards, R. C. & Busch, D. H. (1977). Inorg. Chem. 16, 1055-1060.]); Goedken et al. (1973[Goedken, V. L., Molin-Case, J. & Christoph, G. G. (1973). Inorg. Chem. 12, 2894-2897.]). Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms, see: Merrell et al. (1977[Merrell, P. H., Urbach, F. L. & Arnold, M. (1977). J. Chem. Educ. 54, 580-581.]). The packing analysis was performed with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Scheme 1]

Experimental

Crystal data
  • C16H34N42+·2I·2H2O

  • Mr = 572.30

  • Triclinic, [P \overline 1]

  • a = 8.4098 (3) Å

  • b = 8.7252 (2) Å

  • c = 8.7724 (3) Å

  • α = 74.673 (2)°

  • β = 66.267 (1)°

  • γ = 75.809 (2)°

  • V = 561.24 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 120 K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Bruker–Nonius Roper CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.673, Tmax = 0.746

  • 12010 measured reflections

  • 2563 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.046

  • S = 1.18

  • 2563 reflections

  • 127 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.89 (3) 2.04 (3) 2.744 (2) 136 (2)
O1W—H1W⋯I1 0.88 (2) 2.71 (2) 3.5753 (18) 171 (3)
O1W—H2W⋯I1ii 0.87 (2) 2.68 (2) 3.5494 (17) 176 (3)
N1—H2N⋯I1ii 0.81 (3) 3.23 (3) 3.6895 (17) 119 (2)
N1—H2N⋯I1iii 0.81 (3) 2.99 (3) 3.7110 (18) 149 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z-1.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and COLLECT ; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005)[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms (Merril et al., 1977). The title molecule, 5,7,7,12,14, 14–hexamethyl–4,8–diaza–1,11–diazoniocyclo–4,11–tetradecadiene diiodide dihydrate, I, is the hydroiodide salt of an imine based ligand that has been used extensively to form complexes with the later first row transition metals. These are typically cobalt, nickel and copper complexes (see, for example, Endicott et al., 1981; Ballester et al., 2000; Bieńko et al., 2007) but structural examples with iron, zinc and even chromium are also known (Goedken et al., 1973; Yang, 2005; Wester et al., 1977). The structures of the free base and of the bromide and perchlorate salts have also been reported (Rohovec et al., 1999; Bi et al., 2008).

The macrocyclic dication has crystallographically imposed centrosymetric symmetry, Z' = 1/2, with protonation at the amine N–atoms rather than at the imine groups (Fig. 1). The unit–cell parameters are somewhat similar to those of the bromide analogue (Rohovec et al., 1999) measured at room temperature. However, there is a difference in that the most acute angle subtends the longest and shortest cell axes in I, but subtends the shortest and middle length cell axes in the iodide salt. To check if this was a structurally significant variation the "crystal packing similarity" module of Mercury CSD 2.3 was used (Macrae et al., 2008). This analysis of the largest molecular component in the array (here the macrocyclic cation) showed that a molecular cluster of fifteen cations from each salt matched to within distance and torsion angle variations of 20%. Thus the two structures are isostructural, see overlay in Fig. 2.

Classical intramolecular N—H···N hydrogen–bonding joins the amine and imine N–atoms across the macrocycle. There are also four independent intermolecular hydrogen–bonds. All involve iodide as the acceptor with both water H–atoms acting as donors and atom H2N acting as a donor in two seperate interactions, see Table 1. Eight membered [H—O—H···I]2 and [H—N—H···I]2 rings support a two dimensional sheet structure propagated largely through N—H···I interactions. This is again similar to the bromide structure and so their isostructural nature is confirmed.

Related literature top

For the preparation and structure of the equivalent bromide salt, see: Rohovec et al. (1999). For the structure of the perchlorate salt, see: Bi et al. (2008). For structures of representative transition metal complexes, see: Bieńko et al. (2007); Yang (2005); Ballester et al. (2000); Endicott et al. (1981); Wester et al. (1977); Goedken et al. (1973). Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms, see: Merrell et al. (1977). The packing analysis was performed with Mercury (Macrae et al., 2008).

Experimental top

A 0.2 mol (13.2 mL) sample of ethylenediamine (ED) was put into 10 ml absolute ethanol and cooled in an ice bath for about 10 minutes. A 0.2 mol (36.2 ml of 55%) sample of hydroiodic acid was slowly added to the cool ED solution. Care was taken not to let the solution to boil over. After the addition of HI, 30 mL of acetone was added (an excess of 0.4 mL was required) and the solution allowed to cool in an ice bath overnight. The colourless crystalline material was filtered from solution. It was washed in absolute EtOH and dried in air for 30 minutes (yield 6.221 g).

Refinement top

The position of the nitrogen–bound H atoms were refined freely, but the positions of the water H atoms were restrained such that O—H and H···H distances approximated 0.88Å and 1.33Å respectively with Uiso(H) set to 1.5 Ueq(O). All other H atoms were placed in calculated positions and refined in riding modes with C—H = 0.98Å or 0.99Å for the CH3 and CH2 groups respectively. The Uiso(H) values were set to 1.5 or 1.2 times Ueq of their parent C atoms for the CH3 and CH2 groups respectively.

Computing details top

Data collection: COLLECT (Hooft, 1988); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the macrocyclic dication with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level H atoms are presented as a small sphertes of arbitrary radius. Symmetry code: (i) 1-x, 1-y, -z.
[Figure 2] Fig. 2. Overlaid packing diagram, showing cations from the iodide structure in green and those from the bromide structure in blue.
5,7,7,12,14,14-Hexamethyl-4,8-diaza-1,11-diazoniocyclotetradeca-4,11-diene diiodide dihydrate top
Crystal data top
C16H34N42+·2I·2H2OZ = 1
Mr = 572.30F(000) = 284
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4098 (3) ÅCell parameters from 10421 reflections
b = 8.7252 (2) Åθ = 2.9–27.5°
c = 8.7724 (3) ŵ = 2.82 mm1
α = 74.673 (2)°T = 120 K
β = 66.267 (1)°Block, colourless
γ = 75.809 (2)°0.20 × 0.14 × 0.10 mm
V = 561.24 (3) Å3
Data collection top
Bruker–Nonius Roper CCD
diffractometer
2563 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.673, Tmax = 0.746l = 1111
12010 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0124P)2 + 0.33P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2563 reflectionsΔρmax = 0.99 e Å3
127 parametersΔρmin = 0.75 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0243 (13)
Crystal data top
C16H34N42+·2I·2H2Oγ = 75.809 (2)°
Mr = 572.30V = 561.24 (3) Å3
Triclinic, P1Z = 1
a = 8.4098 (3) ÅMo Kα radiation
b = 8.7252 (2) ŵ = 2.82 mm1
c = 8.7724 (3) ÅT = 120 K
α = 74.673 (2)°0.20 × 0.14 × 0.10 mm
β = 66.267 (1)°
Data collection top
Bruker–Nonius Roper CCD
diffractometer
2563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2478 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.030
12010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0193 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.99 e Å3
2563 reflectionsΔρmin = 0.75 e Å3
127 parameters
Special details top

Experimental. Southampton NCS collection 2010src0073

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.214555 (16)0.460869 (15)0.757490 (15)0.02330 (8)
O1W0.6274 (2)0.21795 (19)0.5780 (2)0.0336 (4)
H1W0.525 (3)0.270 (3)0.633 (3)0.050*
H2W0.671 (3)0.295 (3)0.496 (3)0.050*
N10.7414 (2)0.60362 (18)0.1726 (2)0.0139 (3)
N20.6077 (2)0.29338 (18)0.0038 (2)0.0165 (3)
C10.7419 (3)0.4771 (2)0.2576 (2)0.0185 (4)
H1A0.83890.48220.36940.022*
H1B0.62960.49540.27620.022*
C20.7653 (3)0.3134 (2)0.1486 (3)0.0209 (4)
H2A0.78800.22860.21400.025*
H2B0.86800.30190.11590.025*
C30.6167 (3)0.1933 (2)0.1357 (3)0.0174 (4)
C40.4514 (3)0.1743 (2)0.2906 (2)0.0182 (4)
H4A0.44940.23810.36960.022*
H4B0.46040.05990.34740.022*
C50.2753 (3)0.2226 (2)0.2659 (2)0.0158 (4)
C60.7788 (3)0.0876 (3)0.1592 (3)0.0275 (5)
H6A0.78040.02260.15070.041*
H6B0.77800.08810.27110.041*
H6C0.88360.12830.07120.041*
C70.2617 (3)0.1223 (2)0.1546 (3)0.0214 (4)
H7A0.14520.15270.14560.032*
H7B0.27880.00790.20520.032*
H7C0.35230.14170.04140.032*
C80.1260 (3)0.2045 (2)0.4379 (3)0.0235 (4)
H8A0.14210.26160.51180.035*
H8B0.12660.09020.48950.035*
H8C0.01340.25020.42300.035*
H1N0.649 (3)0.599 (3)0.076 (3)0.020 (6)*
H2N0.829 (4)0.584 (3)0.149 (3)0.029 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01952 (10)0.03155 (11)0.01896 (10)0.00480 (6)0.00879 (7)0.00124 (6)
O1W0.0384 (10)0.0238 (8)0.0371 (10)0.0029 (7)0.0157 (8)0.0017 (7)
N10.0139 (8)0.0133 (7)0.0155 (8)0.0038 (6)0.0075 (7)0.0007 (6)
N20.0160 (8)0.0143 (7)0.0190 (8)0.0048 (6)0.0052 (7)0.0025 (6)
C10.0213 (10)0.0168 (9)0.0173 (10)0.0052 (7)0.0053 (8)0.0036 (7)
C20.0180 (10)0.0141 (9)0.0256 (11)0.0041 (7)0.0017 (8)0.0040 (8)
C30.0173 (9)0.0153 (9)0.0240 (10)0.0027 (7)0.0105 (8)0.0055 (7)
C40.0197 (10)0.0172 (9)0.0185 (9)0.0036 (7)0.0101 (8)0.0011 (7)
C50.0190 (10)0.0118 (8)0.0171 (9)0.0053 (7)0.0092 (8)0.0031 (7)
C60.0221 (11)0.0293 (11)0.0303 (12)0.0028 (8)0.0137 (9)0.0038 (9)
C70.0261 (11)0.0155 (9)0.0284 (11)0.0071 (8)0.0154 (9)0.0012 (8)
C80.0212 (11)0.0219 (10)0.0218 (11)0.0070 (8)0.0055 (8)0.0044 (8)
Geometric parameters (Å, º) top
O1W—H1W0.877 (17)C4—C51.524 (3)
O1W—H2W0.873 (17)C4—H4A0.9900
N1—C11.485 (2)C4—H4B0.9900
N1—C5i1.524 (2)C5—N1i1.524 (2)
N1—H1N0.89 (3)C5—C81.524 (3)
N1—H2N0.81 (3)C5—C71.524 (3)
N2—C31.269 (3)C6—H6A0.9800
N2—C21.462 (2)C6—H6B0.9800
C1—C21.512 (3)C6—H6C0.9800
C1—H1A0.9900C7—H7A0.9800
C1—H1B0.9900C7—H7B0.9800
C2—H2A0.9900C7—H7C0.9800
C2—H2B0.9900C8—H8A0.9800
C3—C61.504 (3)C8—H8B0.9800
C3—C41.510 (3)C8—H8C0.9800
H1W—O1W—H2W101 (2)C5—C4—H4B107.8
C1—N1—C5i117.45 (15)H4A—C4—H4B107.1
C1—N1—H1N107.0 (15)N1i—C5—C4109.64 (15)
C5i—N1—H1N105.9 (15)N1i—C5—C8109.95 (16)
C1—N1—H2N109.8 (18)C4—C5—C8109.65 (16)
C5i—N1—H2N108.5 (18)N1i—C5—C7105.81 (15)
H1N—N1—H2N108 (2)C4—C5—C7111.51 (16)
C3—N2—C2120.48 (17)C8—C5—C7110.21 (16)
N1—C1—C2109.64 (16)C3—C6—H6A109.5
N1—C1—H1A109.7C3—C6—H6B109.5
C2—C1—H1A109.7H6A—C6—H6B109.5
N1—C1—H1B109.7C3—C6—H6C109.5
C2—C1—H1B109.7H6A—C6—H6C109.5
H1A—C1—H1B108.2H6B—C6—H6C109.5
N2—C2—C1110.39 (16)C5—C7—H7A109.5
N2—C2—H2A109.6C5—C7—H7B109.5
C1—C2—H2A109.6H7A—C7—H7B109.5
N2—C2—H2B109.6C5—C7—H7C109.5
C1—C2—H2B109.6H7A—C7—H7C109.5
H2A—C2—H2B108.1H7B—C7—H7C109.5
N2—C3—C6127.05 (19)C5—C8—H8A109.5
N2—C3—C4119.23 (17)C5—C8—H8B109.5
C6—C3—C4113.71 (17)H8A—C8—H8B109.5
C3—C4—C5118.10 (16)C5—C8—H8C109.5
C3—C4—H4A107.8H8A—C8—H8C109.5
C5—C4—H4A107.8H8B—C8—H8C109.5
C3—C4—H4B107.8
C5i—N1—C1—C2178.16 (16)N2—C3—C4—C523.3 (3)
C3—N2—C2—C1156.80 (17)C6—C3—C4—C5157.41 (17)
N1—C1—C2—N269.8 (2)C3—C4—C5—N1i55.5 (2)
C2—N2—C3—C61.3 (3)C3—C4—C5—C8176.29 (16)
C2—N2—C3—C4179.47 (16)C3—C4—C5—C761.4 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.89 (3)2.04 (3)2.744 (2)136 (2)
O1W—H1W···I10.88 (2)2.71 (2)3.5753 (18)171 (3)
O1W—H2W···I1ii0.87 (2)2.68 (2)3.5494 (17)176 (3)
N1—H2N···I1ii0.81 (3)3.23 (3)3.6895 (17)119 (2)
N1—H2N···I1iii0.81 (3)2.99 (3)3.7110 (18)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H34N42+·2I·2H2O
Mr572.30
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.4098 (3), 8.7252 (2), 8.7724 (3)
α, β, γ (°)74.673 (2), 66.267 (1), 75.809 (2)
V3)561.24 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerBruker–Nonius Roper CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.673, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12010, 2563, 2478
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.18
No. of reflections2563
No. of parameters127
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.75

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.89 (3)2.04 (3)2.744 (2)136 (2)
O1W—H1W···I10.877 (17)2.706 (18)3.5753 (18)171 (3)
O1W—H2W···I1ii0.873 (17)2.678 (17)3.5494 (17)176 (3)
N1—H2N···I1ii0.81 (3)3.23 (3)3.6895 (17)119 (2)
N1—H2N···I1iii0.81 (3)2.99 (3)3.7110 (18)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z1.
 

Acknowledgements

We are grateful to the National Crystallography Service, University of Southampton, for the data collection. MOO thanks the Commonwealth Scholarship Commission and the British Council for funding and Moi University for sabbatical leave.

References

First citationBallester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sanchez, A. E., Coronado, E. & Gómez–García, C. J. (2000). Inorg. Chem. 39, 2837–2842.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBi, J.-H., Chen, Y., Huang, Z.-X., Cui, M. & Hu, N.-L. (2008). Asian J. Chem. 20, 4887–4890.  CAS Google Scholar
First citationBieńko, A., Klak, J., Mroziński, J., Boča, R., Brüdgam, I. & Hartl, H. (2007). Dalton Trans. pp. 2681–2688.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEndicott, J. F., Durham, B., Glick, M. D., Anderson, T. J., Kuszaj, J. M., Schmonsees, W. G. & Balakrishnan, K. P. (1981). J. Am. Chem. Soc. 103, 1431–1440.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoedken, V. L., Molin-Case, J. & Christoph, G. G. (1973). Inorg. Chem. 12, 2894–2897.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerrell, P. H., Urbach, F. L. & Arnold, M. (1977). J. Chem. Educ. 54, 580–581.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationRohovec, J., Vojtisek, P. & Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWester, D., Edwards, R. C. & Busch, D. H. (1977). Inorg. Chem. 16, 1055–1060.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, Y.-M. (2005). Acta Cryst. E61, m1618–m1619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o682-o683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds