organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o560-o561

9-[(2-Hy­dr­oxy­benzyl­­idene)amino]-11-(2-hy­dr­oxy­phen­yl)-10,13-di­phenyl-8-oxa-12-azoniatri­cyclo­[7.3.1.02,7]trideca-2(7),3,5-triene acetate ethanol disolvate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow 117198, Russian Federation, and cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 27 January 2011; accepted 29 January 2011; online 5 February 2011)

The title compound, C36H31N2O3+,C2H3O2·2C2H5OH, the product of a domino condensation of dibenzyl ketone with salicylic aldehyde and ammonium acetate, crystallized as the ethanol disolvate. The cation of the salt comprises a fused tricyclic system containing three six-membered rings (piperidine, dihydro-2H-pyran and benzene). The piperidine ring has the usual chair conformation, while the dihydro­pyran ring adopts a slightly distorted sofa conformation. In the crystal, there are six (one intra- and five inter­molecular) independent hydrogen-bonding inter­actions: the inter­molecular hydrogen bonds link the cations and anions and ethanol solvent mol­ecules into ribbons along [001]. The ribbons are stacked along the a axis.

Related literature

For general background to the method proposed by our group for obtaining 2-oxa-6-aza­benzobicyclo­nona­nes using commercially available dibenzyl ketone, salicylic aldehyde and ammonium acetate as starting materials, see: Baliah et al. (1983[Baliah, V., Jeyaraman, R. & Chandrasekaran, L. (1983). Chem. Rev. 83, 379-423.]); Soldatenkov et al. (1996[Soldatenkov, A. T., Kuleshova, L. N., Mandal, T. K., Nesterov, V. N., Mamyrbekova, Zh. A. & Struchkov, Yu. T. (1996). Chem. Heterocycl. Compd, 32, 233-237.]); Le Tuan Anh et al. (2008[Le Tuan Anh, Soldatenkov, A. T., Truong Hong Hieu, Soldatova, S. A., Levov, A. N. & Polyanskii, K. B. (2008). Chem. Heterocycl. Compd, 44, 1527-1531.]). For related compounds, see: Soldatenkov et al. (2002[Soldatenkov, A. T., Polyanskii, K. B. & Mamyrbekova, Zh. A. (2002). Russ. J. Org. Chem. 38, 480-481.], 2010[Soldatenkov, A. T., Truong Hong Hieu, Le Tuan Anh, Kolyadina, N. M. & Soldatova, S. A. (2010). Chem. Heterocycl. Compd, 46, 1910-1912.]).

[Scheme 1]

Experimental

Crystal data
  • C36H31N2O3+·C2H3O2·2C2H6O

  • Mr = 690.81

  • Monoclinic, P 21 /c

  • a = 13.5464 (10) Å

  • b = 20.1124 (15) Å

  • c = 14.2535 (11) Å

  • β = 105.118 (2)°

  • V = 3749.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.28 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 35569 measured reflections

  • 7399 independent reflections

  • 4951 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.01

  • 7399 reflections

  • 463 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.94 1.73 2.608 (2) 154
O2—H2O⋯O3i 0.97 1.67 2.637 (2) 177
O5—H5O⋯O6ii 0.97 1.69 2.651 (2) 174
O6—H6O⋯O4 0.98 1.65 2.617 (2) 173
N12—H12A⋯O3 0.93 1.77 2.697 (2) 172
N12—H12B⋯O5 0.94 1.77 2.709 (2) 173
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently our group has found an efficient method of the one-step synthesis of potentially bioactive substances having oxazocine skeletal structure. These molecules are formed by domino condensation from commercially available dibenzyl ketone, salicylic aldehyde and ammonium acetate as starting materials (Soldatenkov et al., 2010). The key step of this condensation is Petrenko–Kritchenko reaction (Baliah et al., 1983) leading to the formation of the substituted γ-piperidone (Le Tuan Anh et al., 2008), which then reacts with the excess of ammonium acetate and aldehyde. This work reports the structural characterization of a product of such reaction - 2-oxa-6-aza-3,4-benzobicyclo[3.3.11,5]nonan-6-ium acetate (I).

Compound I crystallizes as diethanol solvate, i.e., C38H34N2O5.2(C2H6O). The cation of the salt I comprises a fused tricyclic system containing three six-membered rings (piperidine, dihydro-2H-pyran and benzene) (Fig. 1). The piperidine ring has the usual chair conformation, while the dihydropyran ring adopts the slightly distorted sofa conformation (the C13 carbon atom deviates from the plane passed through the other atoms of the ring by 0.691 (2) Å). The phenyl substituents at the C10 and C11 carbon atoms occupy the sterically favorable equatorial positions, whereas the phenyl substituent at the C13 carbon atom is axially disposed.

The cation of I possesses four asymmetric centers at the C1, C10, C11, and C13 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1S*,10R*,11S*, 13S*.

In the crystal, there are six (one intra- and five intermolecular) independent hydrogen bonding interactions (Table 1). The intermolecular hydrogen bonds link the cations and anions of I and ethanol solvate molecules into ribbons along the direction [0 0 1] (Fig. 2). The crystal packing of the ribbons is stacked along the a axis.

Related literature top

For general background to the method proposed by our group for obtaining 2-oxa-6-azabenzobicyclononanes using commercially available dibenzyl ketone, salicylic aldehyde and ammonium acetate as starting materials, see: Baliah et al. (1983); Soldatenkov et al. (1996); Le Tuan Anh et al. (2008). For related compounds, see: Soldatenkov et al. (2002, 2010).

Experimental top

Ammonium acetate (4.0 g, 52 mmol) was added to a solution of dibenzyl ketone (2.1 g, 10 mmol) and salicylic aldehyde (3.66 g, 30 mmol) in ethanol (50 ml) (Fig. 3). The reaction mixture was stirred for 96 h at 293 K (monitoring by TLC until disappearance of the starting ketone spot). At the end of the reaction, the formed precipitate was filtered off, one half of the mother liquid solvent removed under reduced pressure and the residue was cooled to give 1.45 g of light-yellow crystals of I. Yield is 21%. M.p. = 451–453 K. IR (KBr), ν/cm-1: 1623, 1748, 3405, 3460. 1H NMR (DMSO-d6, 400 MHz, 300 K): δ = 1.08 (t, 6H, CH3CH2O, J = 6.8), 3.30 (s, 3H, CH3CO), 3.47 (q, 4H, CH3CH2O, J = 6.8), 3.77 (d, 1H, H8, J7.8 = 9.0), 4.23 (d, 1H, H9, J5,9 = 1.5), 4.32 (d, 1H, H7, J7,8= 9.0), 4.41 (br, 4H, 2(Alk)OH, +NH2), 4.48 (d, 1H, H5, J5,9 = 1.5), 6.41–7.50 (br m, 22H, Harom), 7.94 (s, 1H, N=CH), 10.63 (br, 1H, (Ar)OH), 12.48 (s, 1H, (Ar)OH). Anal. Calcd. for C42H46N2O7: C, 73.04; H, 6.67; N, 4.06. Found: C, 73.13; H, 6.79; N, 4.23.

Refinement top

The hydrogen atoms of the hydroxy and amino groups were localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-groups and Uiso(H) = 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of I. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. Domino condensation of dibenzyl ketone with salicylic aldehyde and ammonium acetate.
9-[(2-Hydroxybenzylidene)amino]-11-(2-hydroxyphenyl)-10,13-diphenyl-8-oxa- 12-azoniatricyclo[7.3.1.02,7]trideca-2(7),3,5-triene acetate ethanol disolvate top
Crystal data top
C36H31N2O3+·C2H3O2·2C2H6OF(000) = 1472
Mr = 690.81Dx = 1.224 Mg m3
Monoclinic, P21/cMelting point = 451–453 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.5464 (10) ÅCell parameters from 4349 reflections
b = 20.1124 (15) Åθ = 2.5–23.7°
c = 14.2535 (11) ŵ = 0.08 mm1
β = 105.118 (2)°T = 100 K
V = 3749.0 (5) Å3Prism, light-yellow
Z = 40.28 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
7399 independent reflections
Radiation source: fine-focus sealed tube4951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.977, Tmax = 0.989k = 2424
35569 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
7399 reflections(Δ/σ)max = 0.001
463 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C36H31N2O3+·C2H3O2·2C2H6OV = 3749.0 (5) Å3
Mr = 690.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5464 (10) ŵ = 0.08 mm1
b = 20.1124 (15) ÅT = 100 K
c = 14.2535 (11) Å0.28 × 0.15 × 0.13 mm
β = 105.118 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4951 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.062
35569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
7399 reflectionsΔρmin = 0.24 e Å3
463 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31447 (13)0.45725 (9)0.26034 (13)0.0241 (4)
H10.35620.43090.31620.029*
C20.27020 (13)0.41161 (8)0.17702 (13)0.0238 (4)
C30.31983 (14)0.35414 (9)0.15984 (14)0.0286 (4)
H30.38350.34230.20310.034*
C40.27796 (14)0.31398 (9)0.08085 (15)0.0332 (5)
H40.31280.27490.06980.040*
C50.18468 (14)0.33100 (9)0.01773 (14)0.0308 (4)
H50.15620.30360.03700.037*
C60.13298 (13)0.38735 (8)0.03375 (13)0.0253 (4)
H60.06870.39850.00890.030*
C70.17631 (13)0.42725 (8)0.11278 (12)0.0224 (4)
O80.11919 (8)0.48161 (5)0.12638 (8)0.0223 (3)
C90.16377 (13)0.52919 (8)0.20072 (12)0.0218 (4)
C100.22947 (12)0.58026 (8)0.16205 (13)0.0229 (4)
H100.25290.61430.21430.027*
C110.32643 (12)0.54871 (8)0.14383 (12)0.0222 (4)
H110.30460.51820.08670.027*
N120.38139 (10)0.50797 (7)0.22941 (10)0.0226 (3)
H12A0.43420.48540.21190.027*
H12B0.40880.53470.28400.027*
C130.23087 (12)0.49527 (8)0.29266 (12)0.0235 (4)
H130.26600.53170.33650.028*
N10.08334 (10)0.56563 (7)0.22658 (10)0.0232 (3)
C140.00930 (13)0.54651 (9)0.20077 (13)0.0256 (4)
H140.02580.50750.16230.031*
C150.09103 (13)0.58249 (9)0.22817 (13)0.0260 (4)
C160.07164 (14)0.64102 (10)0.28307 (14)0.0335 (5)
O10.02500 (10)0.66495 (7)0.31689 (12)0.0508 (4)
H1O0.06480.63430.29310.076*
C170.15130 (15)0.67540 (10)0.30517 (16)0.0420 (5)
H170.13810.71550.34160.050*
C180.24953 (15)0.65141 (11)0.27434 (15)0.0411 (5)
H180.30370.67520.28990.049*
C190.27084 (15)0.59328 (10)0.22123 (15)0.0392 (5)
H190.33880.57680.20120.047*
C200.19200 (14)0.55965 (10)0.19783 (14)0.0333 (5)
H200.20640.52010.16030.040*
C210.16999 (12)0.61709 (8)0.07242 (13)0.0239 (4)
C220.15273 (13)0.58968 (9)0.01999 (13)0.0264 (4)
H220.17620.54600.02730.032*
C230.10186 (13)0.62515 (9)0.10155 (14)0.0301 (4)
H230.09170.60590.16420.036*
C240.06575 (14)0.68840 (10)0.09224 (15)0.0347 (5)
H240.03090.71270.14820.042*
C250.08082 (14)0.71584 (9)0.00093 (16)0.0366 (5)
H250.05540.75910.00600.044*
C260.13278 (13)0.68080 (9)0.08103 (15)0.0298 (4)
H260.14310.70040.14350.036*
C270.39849 (12)0.59989 (9)0.12015 (13)0.0241 (4)
C280.43138 (13)0.59222 (9)0.03550 (13)0.0257 (4)
O20.39434 (9)0.54015 (6)0.02342 (9)0.0311 (3)
H2O0.41830.54160.08160.047*
C290.49980 (14)0.63804 (10)0.01430 (14)0.0340 (5)
H290.52350.63260.04230.041*
C300.53299 (15)0.69114 (10)0.07520 (16)0.0394 (5)
H300.57980.72200.06030.047*
C310.49895 (15)0.70016 (10)0.15790 (15)0.0361 (5)
H310.52060.73760.19880.043*
C320.43302 (13)0.65386 (9)0.18001 (14)0.0293 (4)
H320.41090.65920.23760.035*
C330.17145 (13)0.45525 (9)0.35001 (13)0.0268 (4)
C340.12157 (14)0.39565 (10)0.31830 (14)0.0332 (5)
H340.12560.37690.25820.040*
C350.06608 (16)0.36341 (11)0.37368 (15)0.0427 (5)
H350.03250.32270.35130.051*
C360.05916 (17)0.39003 (12)0.46139 (16)0.0477 (6)
H360.02000.36820.49870.057*
C370.10967 (17)0.44863 (11)0.49416 (16)0.0464 (6)
H370.10660.46670.55490.056*
C380.16484 (15)0.48112 (10)0.43867 (14)0.0357 (5)
H380.19860.52170.46150.043*
O50.46371 (10)0.57558 (7)0.39577 (9)0.0374 (3)
H5O0.42070.59460.43350.056*
C410.56962 (14)0.57329 (10)0.44520 (15)0.0351 (5)
H41A0.60900.55840.39950.042*
H41B0.58040.54050.49870.042*
C420.60860 (16)0.63970 (10)0.48591 (17)0.0454 (6)
H42A0.68260.63710.51460.068*
H42B0.57470.65260.53600.068*
H42C0.59410.67290.43380.068*
O60.66244 (10)0.37980 (6)0.50427 (10)0.0369 (3)
H6O0.62650.39370.43870.055*
C430.70231 (18)0.31419 (11)0.50708 (16)0.0468 (6)
H43A0.77380.31620.50210.056*
H43B0.66170.28860.45080.056*
C440.69941 (17)0.27955 (11)0.59883 (16)0.0474 (6)
H44A0.72920.23510.59970.071*
H44B0.62840.27570.60240.071*
H44C0.73880.30510.65460.071*
C390.59166 (14)0.42003 (10)0.25775 (14)0.0321 (4)
C400.69533 (16)0.39181 (13)0.25958 (17)0.0524 (6)
H40A0.70060.34640.28540.079*
H40B0.74870.41950.30100.079*
H40C0.70400.39110.19340.079*
O30.54470 (9)0.45292 (6)0.18438 (9)0.0316 (3)
O40.55567 (10)0.41052 (8)0.32869 (10)0.0459 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (9)0.0253 (9)0.0253 (10)0.0004 (7)0.0072 (7)0.0040 (8)
C20.0242 (9)0.0216 (9)0.0288 (10)0.0005 (7)0.0125 (8)0.0047 (7)
C30.0266 (10)0.0247 (10)0.0386 (11)0.0017 (7)0.0159 (8)0.0058 (8)
C40.0349 (11)0.0221 (10)0.0505 (13)0.0001 (8)0.0252 (10)0.0016 (9)
C50.0350 (11)0.0241 (10)0.0391 (11)0.0062 (8)0.0200 (9)0.0069 (8)
C60.0261 (10)0.0251 (10)0.0277 (10)0.0021 (7)0.0125 (8)0.0005 (8)
C70.0257 (9)0.0186 (9)0.0282 (10)0.0005 (7)0.0161 (8)0.0007 (7)
O80.0229 (6)0.0206 (6)0.0247 (7)0.0012 (5)0.0084 (5)0.0030 (5)
C90.0227 (9)0.0214 (9)0.0232 (9)0.0003 (7)0.0092 (7)0.0042 (7)
C100.0204 (9)0.0220 (9)0.0281 (10)0.0014 (7)0.0095 (7)0.0032 (7)
C110.0217 (9)0.0233 (9)0.0223 (9)0.0008 (7)0.0070 (7)0.0004 (7)
N120.0196 (7)0.0264 (8)0.0233 (8)0.0020 (6)0.0082 (6)0.0002 (6)
C130.0232 (9)0.0252 (9)0.0231 (9)0.0017 (7)0.0077 (7)0.0021 (7)
N10.0222 (8)0.0225 (8)0.0281 (8)0.0005 (6)0.0122 (6)0.0022 (6)
C140.0298 (10)0.0239 (9)0.0257 (10)0.0014 (8)0.0117 (8)0.0019 (8)
C150.0266 (10)0.0263 (10)0.0271 (10)0.0006 (7)0.0103 (8)0.0003 (8)
C160.0303 (11)0.0330 (11)0.0398 (12)0.0020 (8)0.0138 (9)0.0090 (9)
O10.0290 (8)0.0438 (9)0.0836 (12)0.0086 (6)0.0216 (8)0.0343 (8)
C170.0369 (12)0.0369 (12)0.0552 (14)0.0023 (9)0.0178 (10)0.0153 (10)
C180.0308 (11)0.0492 (13)0.0459 (13)0.0067 (9)0.0145 (10)0.0095 (11)
C190.0261 (11)0.0481 (13)0.0455 (13)0.0007 (9)0.0130 (9)0.0105 (10)
C200.0295 (11)0.0368 (11)0.0352 (11)0.0037 (8)0.0115 (9)0.0082 (9)
C210.0168 (9)0.0237 (9)0.0329 (10)0.0022 (7)0.0095 (7)0.0018 (8)
C220.0222 (9)0.0248 (10)0.0334 (11)0.0013 (7)0.0093 (8)0.0024 (8)
C230.0260 (10)0.0335 (11)0.0321 (11)0.0022 (8)0.0098 (8)0.0061 (9)
C240.0261 (10)0.0317 (11)0.0447 (13)0.0012 (8)0.0066 (9)0.0136 (9)
C250.0313 (11)0.0211 (10)0.0584 (15)0.0014 (8)0.0134 (10)0.0061 (9)
C260.0266 (10)0.0234 (10)0.0414 (12)0.0015 (8)0.0125 (9)0.0015 (8)
C270.0191 (9)0.0246 (9)0.0293 (10)0.0007 (7)0.0073 (7)0.0024 (8)
C280.0211 (9)0.0276 (10)0.0281 (10)0.0017 (7)0.0062 (8)0.0022 (8)
O20.0320 (7)0.0357 (8)0.0297 (7)0.0059 (6)0.0151 (6)0.0045 (6)
C290.0336 (11)0.0381 (12)0.0342 (11)0.0049 (9)0.0156 (9)0.0045 (9)
C300.0366 (12)0.0350 (12)0.0502 (13)0.0092 (9)0.0179 (10)0.0060 (10)
C310.0329 (11)0.0288 (10)0.0461 (13)0.0074 (8)0.0094 (9)0.0046 (9)
C320.0253 (10)0.0318 (11)0.0322 (11)0.0015 (8)0.0099 (8)0.0021 (8)
C330.0237 (9)0.0326 (10)0.0248 (10)0.0006 (8)0.0075 (8)0.0018 (8)
C340.0349 (11)0.0405 (12)0.0261 (10)0.0098 (9)0.0113 (8)0.0003 (9)
C350.0465 (13)0.0471 (13)0.0373 (12)0.0188 (10)0.0163 (10)0.0013 (10)
C360.0536 (14)0.0591 (15)0.0381 (13)0.0189 (11)0.0259 (11)0.0012 (11)
C370.0578 (14)0.0557 (15)0.0352 (12)0.0153 (11)0.0289 (11)0.0087 (11)
C380.0383 (11)0.0382 (12)0.0351 (11)0.0071 (9)0.0178 (9)0.0051 (9)
O50.0285 (7)0.0497 (9)0.0331 (8)0.0006 (6)0.0064 (6)0.0104 (7)
C410.0284 (10)0.0357 (11)0.0389 (12)0.0008 (8)0.0045 (9)0.0025 (9)
C420.0394 (12)0.0343 (12)0.0590 (15)0.0062 (9)0.0067 (11)0.0009 (11)
O60.0375 (8)0.0375 (8)0.0361 (8)0.0077 (6)0.0102 (6)0.0005 (6)
C430.0541 (14)0.0419 (13)0.0465 (14)0.0159 (11)0.0171 (11)0.0013 (11)
C440.0503 (14)0.0439 (13)0.0507 (14)0.0129 (10)0.0177 (11)0.0050 (11)
C390.0282 (10)0.0365 (11)0.0344 (11)0.0031 (8)0.0133 (9)0.0011 (9)
C400.0419 (13)0.0696 (17)0.0522 (15)0.0227 (12)0.0238 (11)0.0142 (12)
O30.0268 (7)0.0401 (8)0.0302 (7)0.0057 (6)0.0117 (6)0.0035 (6)
O40.0382 (8)0.0664 (11)0.0376 (9)0.0189 (7)0.0181 (7)0.0160 (7)
Geometric parameters (Å, º) top
C1—C21.497 (2)C24—C251.379 (3)
C1—N121.505 (2)C24—H240.9500
C1—C131.533 (2)C25—C261.388 (3)
C1—H11.0000C25—H250.9500
C2—C31.391 (2)C26—H260.9500
C2—C71.396 (2)C27—C321.384 (2)
C3—C41.382 (3)C27—C281.400 (2)
C3—H30.9500C28—O21.354 (2)
C4—C51.389 (3)C28—C291.395 (2)
C4—H40.9500O2—H2O0.9659
C5—C61.382 (2)C29—C301.376 (3)
C5—H50.9500C29—H290.9500
C6—C71.383 (2)C30—C311.385 (3)
C6—H60.9500C30—H300.9500
C7—O81.3820 (19)C31—C321.382 (3)
O8—C91.438 (2)C31—H310.9500
C9—N11.439 (2)C32—H320.9500
C9—C131.545 (2)C33—C381.391 (3)
C9—C101.551 (2)C33—C341.392 (3)
C10—C211.514 (2)C34—C351.385 (3)
C10—C111.541 (2)C34—H340.9500
C10—H101.0000C35—C361.385 (3)
C11—N121.497 (2)C35—H350.9500
C11—C271.516 (2)C36—C371.382 (3)
C11—H111.0000C36—H360.9500
N12—H12A0.9347C37—C381.386 (3)
N12—H12B0.9381C37—H370.9500
C13—C331.519 (2)C38—H380.9500
C13—H131.0000O5—C411.425 (2)
N1—C141.272 (2)O5—H5O0.9692
C14—C151.459 (2)C41—C421.497 (3)
C14—H140.9500C41—H41A0.9900
C15—C161.400 (3)C41—H41B0.9900
C15—C201.400 (3)C42—H42A0.9800
C16—O11.360 (2)C42—H42B0.9800
C16—C171.385 (3)C42—H42C0.9800
O1—H1O0.9389O6—C431.422 (2)
C17—C181.375 (3)O6—H6O0.9752
C17—H170.9500C43—C441.491 (3)
C18—C191.382 (3)C43—H43A0.9900
C18—H180.9500C43—H43B0.9900
C19—C201.377 (3)C44—H44A0.9800
C19—H190.9500C44—H44B0.9800
C20—H200.9500C44—H44C0.9800
C21—C221.390 (3)C39—O41.246 (2)
C21—C261.394 (2)C39—O31.261 (2)
C22—C231.385 (2)C39—C401.509 (3)
C22—H220.9500C40—H40A0.9800
C23—C241.382 (3)C40—H40B0.9800
C23—H230.9500C40—H40C0.9800
C2—C1—N12109.30 (14)C24—C23—C22120.32 (19)
C2—C1—C13111.69 (14)C24—C23—H23119.8
N12—C1—C13107.37 (13)C22—C23—H23119.8
C2—C1—H1109.5C25—C24—C23119.36 (18)
N12—C1—H1109.5C25—C24—H24120.3
C13—C1—H1109.5C23—C24—H24120.3
C3—C2—C7118.13 (16)C24—C25—C26120.58 (18)
C3—C2—C1122.50 (16)C24—C25—H25119.7
C7—C2—C1119.36 (15)C26—C25—H25119.7
C4—C3—C2120.99 (18)C25—C26—C21120.53 (18)
C4—C3—H3119.5C25—C26—H26119.7
C2—C3—H3119.5C21—C26—H26119.7
C3—C4—C5119.63 (17)C32—C27—C28119.04 (16)
C3—C4—H4120.2C32—C27—C11121.92 (16)
C5—C4—H4120.2C28—C27—C11119.03 (15)
C6—C5—C4120.63 (18)O2—C28—C29122.43 (16)
C6—C5—H5119.7O2—C28—C27118.04 (15)
C4—C5—H5119.7C29—C28—C27119.53 (17)
C5—C6—C7118.99 (17)C28—O2—H2O110.8
C5—C6—H6120.5C30—C29—C28120.17 (18)
C7—C6—H6120.5C30—C29—H29119.9
O8—C7—C6116.05 (15)C28—C29—H29119.9
O8—C7—C2122.28 (15)C29—C30—C31120.79 (18)
C6—C7—C2121.61 (16)C29—C30—H30119.6
C7—O8—C9119.13 (13)C31—C30—H30119.6
O8—C9—N1109.09 (13)C32—C31—C30118.95 (18)
O8—C9—C13111.85 (13)C32—C31—H31120.5
N1—C9—C13108.96 (13)C30—C31—H31120.5
O8—C9—C10110.38 (13)C31—C32—C27121.48 (18)
N1—C9—C10107.26 (13)C31—C32—H32119.3
C13—C9—C10109.18 (13)C27—C32—H32119.3
C21—C10—C11110.40 (14)C38—C33—C34118.44 (17)
C21—C10—C9113.29 (14)C38—C33—C13117.35 (16)
C11—C10—C9112.37 (14)C34—C33—C13124.20 (16)
C21—C10—H10106.8C35—C34—C33120.51 (18)
C11—C10—H10106.8C35—C34—H34119.7
C9—C10—H10106.8C33—C34—H34119.7
N12—C11—C27109.93 (13)C34—C35—C36120.53 (19)
N12—C11—C10110.66 (13)C34—C35—H35119.7
C27—C11—C10112.63 (14)C36—C35—H35119.7
N12—C11—H11107.8C37—C36—C35119.38 (19)
C27—C11—H11107.8C37—C36—H36120.3
C10—C11—H11107.8C35—C36—H36120.3
C11—N12—C1113.59 (13)C36—C37—C38120.18 (19)
C11—N12—H12A107.5C36—C37—H37119.9
C1—N12—H12A108.1C38—C37—H37119.9
C11—N12—H12B111.5C37—C38—C33120.95 (19)
C1—N12—H12B106.5C37—C38—H38119.5
H12A—N12—H12B109.5C33—C38—H38119.5
C33—C13—C1115.72 (14)C41—O5—H5O114.3
C33—C13—C9114.42 (14)O5—C41—C42111.77 (16)
C1—C13—C9106.41 (13)O5—C41—H41A109.3
C33—C13—H13106.6C42—C41—H41A109.3
C1—C13—H13106.6O5—C41—H41B109.3
C9—C13—H13106.6C42—C41—H41B109.3
C14—N1—C9121.86 (15)H41A—C41—H41B107.9
N1—C14—C15122.22 (16)C41—C42—H42A109.5
N1—C14—H14118.9C41—C42—H42B109.5
C15—C14—H14118.9H42A—C42—H42B109.5
C16—C15—C20118.30 (17)C41—C42—H42C109.5
C16—C15—C14121.47 (16)H42A—C42—H42C109.5
C20—C15—C14120.21 (16)H42B—C42—H42C109.5
O1—C16—C17118.54 (17)C43—O6—H6O112.5
O1—C16—C15121.25 (16)O6—C43—C44111.19 (17)
C17—C16—C15120.21 (18)O6—C43—H43A109.4
C16—O1—H1O103.3C44—C43—H43A109.4
C18—C17—C16119.89 (19)O6—C43—H43B109.4
C18—C17—H17120.1C44—C43—H43B109.4
C16—C17—H17120.1H43A—C43—H43B108.0
C17—C18—C19121.22 (18)C43—C44—H44A109.5
C17—C18—H18119.4C43—C44—H44B109.5
C19—C18—H18119.4H44A—C44—H44B109.5
C20—C19—C18118.95 (18)C43—C44—H44C109.5
C20—C19—H19120.5H44A—C44—H44C109.5
C18—C19—H19120.5H44B—C44—H44C109.5
C19—C20—C15121.41 (18)O4—C39—O3122.28 (17)
C19—C20—H20119.3O4—C39—C40119.18 (18)
C15—C20—H20119.3O3—C39—C40118.54 (17)
C22—C21—C26118.20 (17)C39—C40—H40A109.5
C22—C21—C10121.76 (15)C39—C40—H40B109.5
C26—C21—C10120.03 (16)H40A—C40—H40B109.5
C23—C22—C21121.00 (17)C39—C40—H40C109.5
C23—C22—H22119.5H40A—C40—H40C109.5
C21—C22—H22119.5H40B—C40—H40C109.5
N12—C1—C2—C388.45 (19)C20—C15—C16—O1178.30 (18)
C13—C1—C2—C3152.89 (16)C14—C15—C16—O13.1 (3)
N12—C1—C2—C790.60 (18)C20—C15—C16—C170.8 (3)
C13—C1—C2—C728.1 (2)C14—C15—C16—C17177.75 (18)
C7—C2—C3—C40.7 (3)O1—C16—C17—C18178.2 (2)
C1—C2—C3—C4178.39 (16)C15—C16—C17—C181.0 (3)
C2—C3—C4—C50.3 (3)C16—C17—C18—C190.1 (3)
C3—C4—C5—C60.6 (3)C17—C18—C19—C201.0 (3)
C4—C5—C6—C71.1 (3)C18—C19—C20—C151.2 (3)
C5—C6—C7—O8178.01 (15)C16—C15—C20—C190.3 (3)
C5—C6—C7—C20.6 (3)C14—C15—C20—C19178.86 (18)
C3—C2—C7—O8176.98 (15)C11—C10—C21—C2244.7 (2)
C1—C2—C7—O83.9 (2)C9—C10—C21—C2282.32 (19)
C3—C2—C7—C60.2 (2)C11—C10—C21—C26133.91 (16)
C1—C2—C7—C6178.88 (15)C9—C10—C21—C2699.07 (18)
C6—C7—O8—C9173.46 (14)C26—C21—C22—C231.3 (2)
C2—C7—O8—C99.2 (2)C10—C21—C22—C23177.29 (16)
C7—O8—C9—N1158.67 (13)C21—C22—C23—C241.0 (3)
C7—O8—C9—C1338.05 (18)C22—C23—C24—C250.0 (3)
C7—O8—C9—C1083.72 (17)C23—C24—C25—C260.8 (3)
O8—C9—C10—C2157.51 (18)C24—C25—C26—C210.4 (3)
N1—C9—C10—C2161.23 (18)C22—C21—C26—C250.6 (3)
C13—C9—C10—C21179.16 (14)C10—C21—C26—C25178.05 (16)
O8—C9—C10—C1168.47 (17)N12—C11—C27—C3270.3 (2)
N1—C9—C10—C11172.79 (13)C10—C11—C27—C3253.6 (2)
C13—C9—C10—C1154.86 (18)N12—C11—C27—C28109.50 (17)
C21—C10—C11—N12175.72 (13)C10—C11—C27—C28126.60 (17)
C9—C10—C11—N1248.19 (18)C32—C27—C28—O2178.12 (15)
C21—C10—C11—C2760.78 (18)C11—C27—C28—O22.1 (2)
C9—C10—C11—C27171.69 (14)C32—C27—C28—C291.5 (3)
C27—C11—N12—C1177.98 (13)C11—C27—C28—C29178.31 (16)
C10—C11—N12—C152.95 (18)O2—C28—C29—C30178.19 (17)
C2—C1—N12—C1158.31 (18)C27—C28—C29—C301.4 (3)
C13—C1—N12—C1163.00 (17)C28—C29—C30—C310.3 (3)
C2—C1—C13—C3374.96 (19)C29—C30—C31—C321.8 (3)
N12—C1—C13—C33165.24 (14)C30—C31—C32—C271.7 (3)
C2—C1—C13—C953.37 (18)C28—C27—C32—C310.1 (3)
N12—C1—C13—C966.44 (16)C11—C27—C32—C31179.82 (17)
O8—C9—C13—C3369.97 (18)C1—C13—C33—C38127.54 (18)
N1—C9—C13—C3350.72 (19)C9—C13—C33—C38108.19 (18)
C10—C9—C13—C33167.57 (14)C1—C13—C33—C3454.1 (2)
O8—C9—C13—C159.12 (16)C9—C13—C33—C3470.1 (2)
N1—C9—C13—C1179.81 (13)C38—C33—C34—C350.5 (3)
C10—C9—C13—C163.34 (16)C13—C33—C34—C35177.78 (18)
O8—C9—N1—C1413.6 (2)C33—C34—C35—C360.1 (3)
C13—C9—N1—C14108.74 (18)C34—C35—C36—C371.1 (4)
C10—C9—N1—C14133.19 (16)C35—C36—C37—C381.4 (4)
C9—N1—C14—C15178.85 (16)C36—C37—C38—C330.7 (3)
N1—C14—C15—C161.3 (3)C34—C33—C38—C370.2 (3)
N1—C14—C15—C20179.83 (17)C13—C33—C38—C37178.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.941.732.608 (2)154
O2—H2O···O3i0.971.672.637 (2)177
O5—H5O···O6ii0.971.692.651 (2)174
O6—H6O···O40.981.652.617 (2)173
N12—H12A···O30.931.772.697 (2)172
N12—H12B···O50.941.772.709 (2)173
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC36H31N2O3+·C2H3O2·2C2H6O
Mr690.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5464 (10), 20.1124 (15), 14.2535 (11)
β (°) 105.118 (2)
V3)3749.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
35569, 7399, 4951
Rint0.062
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.01
No. of reflections7399
No. of parameters463
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SAINT-Plus (Bruker, 2001, SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.941.732.608 (2)154
O2—H2O···O3i0.971.672.637 (2)177
O5—H5O···O6ii0.971.692.651 (2)174
O6—H6O···O40.981.652.617 (2)173
N12—H12A···O30.931.772.697 (2)172
N12—H12B···O50.941.772.709 (2)173
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

References

First citationBaliah, V., Jeyaraman, R. & Chandrasekaran, L. (1983). Chem. Rev. 83, 379–423.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLe Tuan Anh, Soldatenkov, A. T., Truong Hong Hieu, Soldatova, S. A., Levov, A. N. & Polyanskii, K. B. (2008). Chem. Heterocycl. Compd, 44, 1527–1531.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatenkov, A. T., Kuleshova, L. N., Mandal, T. K., Nesterov, V. N., Mamyrbekova, Zh. A. & Struchkov, Yu. T. (1996). Chem. Heterocycl. Compd, 32, 233–237.  CrossRef Google Scholar
First citationSoldatenkov, A. T., Polyanskii, K. B. & Mamyrbekova, Zh. A. (2002). Russ. J. Org. Chem. 38, 480–481.  Web of Science CrossRef Google Scholar
First citationSoldatenkov, A. T., Truong Hong Hieu, Le Tuan Anh, Kolyadina, N. M. & Soldatova, S. A. (2010). Chem. Heterocycl. Compd, 46, 1910–1912.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o560-o561
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds