organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o728-o729

5,11,17,23-Tetra­kis(chloro­meth­yl)-25,26,27,28-tetra­propoxycalix[4]arene

aUniversity of Bremen, Department of Chemistry, Leobener Strasse, NW 2C, D-28359 Bremen, Germany, and bYoungstown State University, One University Plaza, Youngstown, OH 44555-3663, USA
*Correspondence e-mail: vazov@uni-bremen.de

(Received 7 February 2011; accepted 21 February 2011; online 26 February 2011)

The title calix[4]arene, C44H52Cl4O4, displays the 1,3-alternate conformation with crystallographically imposed twofold symmetry. Four phenolic rings of the calixarene backbone are tilted into the calix cavity, making dihedral angles of 77.42 (2) and 77.71 (2)° with the plane of the four bridging methyl­ene C atoms. Pairs of opposite aromatic rings make dihedral angles of 25.16 (3) and 24.58 (4)° with each other. In the crystal, the calixarene mol­ecules pack with the formation of infinite columns along the b axis. The crystal packing shows a network of C—H⋯Cl contacts, which can be considered as non-classical hydrogen bonds.

Related literature

For calixarene derivatives and their applications, see: Gutsche (2008[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, Cambridge: The Royal Society of Chemistry.]); Ikeda & Shinkai (1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007[Dalgrano, S. J., Thallapally, P. K., Barbour L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236-245.]). For the previous synthesis of the title compound, see: Ikeda & Shinkai (1994a[Ikeda, A. & Shinkai, S. (1994a). J. Am. Chem. Soc. 116, 3102-3110.]). For its application in the formation of nanotubes, see: Ikeda & Shinkai (1994b[Ikeda, A. & Shinkai, S. (1994b). Chem. Commun. pp. 2375-2376.]). For reviews on weak non-classical hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Desiraju (2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]).

[Scheme 1]

Experimental

Crystal data
  • C44H52Cl4O4

  • Mr = 786.66

  • Monoclinic, C 2/c

  • a = 23.104 (3) Å

  • b = 11.5871 (15) Å

  • c = 17.618 (2) Å

  • β = 117.655 (2)°

  • V = 4177.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.49 × 0.31 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.658, Tmax = 0.746

  • 15796 measured reflections

  • 6176 independent reflections

  • 5280 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 0.97

  • 6176 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H222⋯Cl25i 0.97 2.90 3.786 (1) 153
C23—H231⋯Cl26ii 0.97 2.90 3.557 (2) 127
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Calixarenes, a family of macrocyclic compounds, have shown to be superb molecular scaffolds for the construction of macromolecular and supramolecular architectures (Gutsche, 2008; Ikeda & Shinkai, 1997). Calix[4]arenes can adopt several conformations, of which the cone conformation is the most commonly employed one. Due to their bowl shape and ease of preparation, they are employed widely in supramolecular chemistry and crystal engineering (Dalgrano et al., 2007) for preparation of species and materials suitable for molecular encapsulation. The 1,3–alternate conformation of calix[4]arenes is much less commonly used. The title compound and its derivatives were previously synthesized (Ikeda & Shinkai, 1994a) to study binding of metal cations in solution, as well as for preparation of calixarene–based nanotubes (Ikeda & Shinkai, 1994b).

The molecule of the title compound is shown in Fig. 1. The calix[4]arene bowl adopts the 1,3–alternate conformation around a twofold symmetry axis; for that reason, the IUPAC numbering scheme for calix[4]arenes could not be applied. All bond lengths and angles may be considered normal. Four phenolic rings are pitched into the calix cavity, as defined by the angles, which the aromatic rings make with the plane of the four bridging methylenes (C1–C7–C1i–C7i): 77.42 (2)° (ring C2–6, C14) and 77.71 (2)° (ring C8–13), respectively (symmetry code: (i) -x+1, y, -z+3/2). Two pairs of opposite aromatic rings show interplanar angles of 25.16 (3)° (ring C2–6, C14) and 24.58 (4)° (ring C8–13), respectively. Four propyl chains point outside the cavity and adopt an anti conformation for all their bonds. Four chlorine atoms are also pointing outside from the calix cavity.

Several non–classical intermolecular weak hydrogen bonds are present in the structure (Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005). Details of the packing interactions are given in Table 1. Molecules pack into infinite columns along the b axis. Two short C23–H231···Cl26iii (symmetry code: (iii) x, y-1, z) contacts (2.90Å), parallel to the b axis, link molecules with each other (Fig. 2). Along the c axis, the molecules are interconnected side–to–side through pairs of C22–H222···Cl25ii (symmetry code: (ii) x, -y, z - 1/2) interactions (2.90Å, Fig. 3). In both cases, hydrogen atoms of the C22–24 propyl chains serve as H–bond donors. When viewed along the b axis, calixarene backbones form infinite channels with a shortest distance of 8.8090 (13)Å between the two neighboring channel centers (Fig. 2).

Related literature top

For calixarene derivatives and their applications, see: Gutsche (2008); Ikeda & Shinkai (1997). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007). For the previous synthesis of the title compound, see: Ikeda & Shinkai (1994a). For its application in the formation of nanotubes, see: Ikeda & Shinkai (1994b). For reviews on weak non-classical hydrogen bonding, see: Desiraju & Steiner (1999); Steiner (2002); Desiraju (2005).

Experimental top

A solution of 25,26,27,28–tetrapropoxycalix[4]arene (0.108 g, 0.169 mmol), paraformaldehyde (0.115 g, 3.83 mmol), glacial acetic acid (1.3 ml), and conc. H3PO4 (1.3 ml) in dioxane (5 ml) was stirred for 2 h at 353 K. After addition of conc. HCl (1.3 ml, 16.1 mmol) the solution was stirred for additional 16 h at 353 K. The mixture was concentrated under vacuum up to ca 3 ml, poured into ice/water (100 ml) and extracted with CH2Cl2 (3×20 ml). The combined organic phases were washed with water and brine, dried (Na2SO4), and evaporated to dryness. The resulting oil was dissolved in a small amount of CH2Cl2 and MeOH was slowly added. The precipitate was filtered off, washed with cold MeOH, dried under vacuum, and purified by column chromatography to yield 80 mg (0.102 mmol, 60%) of product as a white crystalline powder.

Rf = 0.41 (CH2Cl2/PE, 1:1). Mp: 562–565 K (CHCl3/heptane, decomp.); Lit: 556–558 K (Ikeda & Shinkai, 1994a). 1H NMR (200 MHz, CDCl3): δ 1.02 (t, J = 7.5 Hz, 12 H), 1.78 (tq, J = 7.2, 7.5 Hz, 8 H), 3.55 (s, 8 H), 3.63 (t, J = 7.2 Hz, 8 H), 4.43 (s, 8 H), 7.01 (s, 8 H). 13C NMR (50 MHz, CDCl3): δ 10.6, 23.8, 36.0, 46.7, 73.8, 129.8, 130.5, 133.3, 156.7. HR–MS (EI, 70 eV): m/z 784.25829 (M+, C44H52Cl4O4+, calcd. 784.26197).

X–ray quality crystals were grown by slow evaporation of a chloroform/heptane solution and appeared as large (up to 1–2 mm) transparent blocks.

Refinement top

All non–hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were located in electron difference density maps and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93Å–0.98Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP–3 plot of the title molecule with the atom numbering scheme. Displacement ellipsoids are represented at 50% probability levels. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, y, -z+3/2.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis into the infinite channels formed by the calixarene backbones. Short C—H···Cl contacts, interconnecting pairs of molecules along the c axis, are shown as dotted lines.
[Figure 3] Fig. 3. Packing of the title compound viewed along the a axis. Short C—H···Cl contacts, interconnecting pairs of molecules along the b axis (vertical) and c axis (horizontal), are shown as dotted lines.
5,11,17,23-Tetrakis(chloromethyl)-25,26,27,28-tetrapropoxycalix[4]arene top
Crystal data top
C44H52Cl4O4F(000) = 1664
Mr = 786.66Dx = 1.251 Mg m3
Monoclinic, C2/cMelting point = 562–565 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.104 (3) ÅCell parameters from 6719 reflections
b = 11.5871 (15) Åθ = 2.6–31.2°
c = 17.618 (2) ŵ = 0.32 mm1
β = 117.655 (2)°T = 100 K
V = 4177.7 (9) Å3Plate, colourless
Z = 40.49 × 0.31 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6176 independent reflections
Radiation source: fine–focus sealed tube5280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3221
Tmin = 0.658, Tmax = 0.746k = 1616
15796 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.119 Method: Modified Sheldrick w = 1/[σ2(F2) + (0.06P)2 + 6.5P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
6176 reflectionsΔρmax = 0.84 e Å3
235 parametersΔρmin = 1.05 e Å3
0 restraints
Crystal data top
C44H52Cl4O4V = 4177.7 (9) Å3
Mr = 786.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.104 (3) ŵ = 0.32 mm1
b = 11.5871 (15) ÅT = 100 K
c = 17.618 (2) Å0.49 × 0.31 × 0.15 mm
β = 117.655 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6176 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5280 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.746Rint = 0.019
15796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.97Δρmax = 0.84 e Å3
6176 reflectionsΔρmin = 1.05 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50019 (6)0.26912 (11)0.95475 (8)0.0164
C20.54654 (6)0.20061 (11)0.93269 (8)0.0149
C30.53732 (6)0.08279 (11)0.91462 (8)0.0167
C40.57355 (6)0.02376 (11)0.88215 (8)0.0170
C50.61874 (6)0.08366 (11)0.86547 (8)0.0168
C60.62966 (6)0.20102 (11)0.88333 (8)0.0148
C70.67218 (6)0.27004 (11)0.85493 (8)0.0163
C80.62887 (6)0.33794 (11)0.77464 (8)0.0143
C90.61781 (6)0.45548 (11)0.77855 (8)0.0160
C100.57288 (6)0.51528 (11)0.70662 (8)0.0164
C110.53667 (6)0.45584 (11)0.63009 (8)0.0159
C120.54589 (6)0.33795 (11)0.62379 (8)0.0144
C130.59403 (6)0.28149 (10)0.69587 (8)0.0137
C140.59478 (6)0.25714 (10)0.91977 (8)0.0145
C150.55982 (8)0.10064 (12)0.85763 (10)0.0239
C160.56055 (8)0.64034 (12)0.71362 (10)0.0231
O170.60538 (4)0.37378 (8)0.93772 (6)0.0152
C180.65446 (7)0.39656 (12)1.02414 (8)0.0203
C190.66500 (8)0.52464 (13)1.03584 (10)0.0267
C200.71259 (8)0.55535 (15)1.12794 (11)0.0327
O210.60378 (5)0.16480 (8)0.69063 (6)0.0160
C220.65246 (7)0.13892 (11)0.66358 (9)0.0186
C230.64766 (7)0.01154 (13)0.64361 (10)0.0246
C240.69974 (8)0.02954 (15)0.61997 (11)0.0314
Cl250.61811 (3)0.19788 (3)0.93509 (3)0.0381
Cl260.62004 (3)0.73262 (3)0.70485 (3)0.0407
H110.52430.32121.00250.0157*
H120.47470.21620.97280.0143*
H310.50420.04380.92350.0150*
H510.64140.04270.83930.0158*
H720.70200.32100.90140.0138*
H710.69880.21630.84110.0144*
H910.64060.49330.83050.0136*
H1110.50480.49660.58300.0128*
H1510.51830.12180.85220.0232*
H1520.55960.11370.80380.0233*
H1620.56420.65360.76930.0219*
H1610.51930.66460.66850.0223*
H1810.69470.35561.03350.0207*
H1820.64130.36801.06560.0205*
H1920.68300.55310.99850.0289*
H1910.62220.56281.02060.0279*
H2010.72300.63661.13180.0433*
H2030.75320.51231.14730.0441*
H2020.69350.53701.16520.0450*
H2210.69560.15950.70820.0178*
H2220.64200.18150.61150.0173*
H2310.65300.02870.69450.0258*
H2320.60510.00450.59710.0253*
H2420.69530.11090.60680.0429*
H2410.74210.01160.66480.0429*
H2430.69570.01250.57020.0441*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (6)0.0177 (5)0.0144 (5)0.0010 (4)0.0086 (5)0.0009 (4)
C20.0162 (6)0.0154 (5)0.0129 (5)0.0013 (4)0.0066 (5)0.0018 (4)
C30.0173 (6)0.0153 (5)0.0169 (6)0.0003 (4)0.0076 (5)0.0026 (4)
C40.0192 (6)0.0138 (5)0.0165 (5)0.0009 (4)0.0070 (5)0.0011 (4)
C50.0185 (6)0.0150 (5)0.0169 (6)0.0029 (4)0.0084 (5)0.0017 (4)
C60.0135 (5)0.0160 (5)0.0134 (5)0.0012 (4)0.0051 (4)0.0027 (4)
C70.0144 (5)0.0181 (5)0.0160 (5)0.0007 (4)0.0066 (5)0.0021 (4)
C80.0133 (5)0.0147 (5)0.0167 (5)0.0002 (4)0.0085 (5)0.0012 (4)
C90.0172 (6)0.0152 (5)0.0170 (6)0.0020 (4)0.0092 (5)0.0009 (4)
C100.0194 (6)0.0130 (5)0.0200 (6)0.0006 (4)0.0119 (5)0.0006 (4)
C110.0166 (6)0.0147 (5)0.0172 (6)0.0008 (4)0.0086 (5)0.0026 (4)
C120.0160 (6)0.0151 (5)0.0147 (5)0.0010 (4)0.0092 (5)0.0003 (4)
C130.0148 (5)0.0125 (5)0.0167 (5)0.0002 (4)0.0098 (5)0.0008 (4)
C140.0155 (6)0.0131 (5)0.0128 (5)0.0004 (4)0.0047 (4)0.0012 (4)
C150.0292 (7)0.0166 (6)0.0248 (7)0.0011 (5)0.0117 (6)0.0009 (5)
C160.0308 (7)0.0146 (6)0.0267 (7)0.0017 (5)0.0156 (6)0.0007 (5)
O170.0169 (4)0.0129 (4)0.0131 (4)0.0005 (3)0.0046 (3)0.0000 (3)
C180.0218 (6)0.0190 (6)0.0142 (6)0.0007 (5)0.0035 (5)0.0003 (4)
C190.0296 (8)0.0202 (6)0.0237 (7)0.0023 (5)0.0068 (6)0.0047 (5)
C200.0261 (8)0.0328 (8)0.0306 (8)0.0005 (6)0.0059 (6)0.0149 (6)
O210.0188 (4)0.0126 (4)0.0208 (4)0.0013 (3)0.0127 (4)0.0002 (3)
C220.0197 (6)0.0185 (6)0.0220 (6)0.0025 (5)0.0134 (5)0.0003 (5)
C230.0223 (7)0.0215 (6)0.0300 (7)0.0024 (5)0.0122 (6)0.0073 (5)
C240.0253 (7)0.0352 (8)0.0327 (8)0.0104 (6)0.0126 (6)0.0073 (6)
Cl250.0615 (3)0.01859 (16)0.02742 (19)0.01114 (16)0.01501 (19)0.00475 (13)
Cl260.0690 (3)0.02000 (17)0.0518 (3)0.01600 (18)0.0438 (3)0.00762 (16)
Geometric parameters (Å, º) top
C1—C12i1.5220 (17)C14—O171.3837 (15)
C1—C21.5214 (18)C15—Cl251.7998 (15)
C1—H110.973C15—H1510.950
C1—H120.998C15—H1520.958
C2—C31.3956 (17)C16—Cl261.8037 (15)
C2—C141.3994 (17)C16—H1620.958
C3—C41.3927 (18)C16—H1610.957
C3—H310.962O17—C181.4392 (15)
C4—C51.3940 (18)C18—C191.503 (2)
C4—C151.4959 (19)C18—H1810.988
C5—C61.3922 (17)C18—H1820.970
C5—H510.967C19—C201.521 (2)
C6—C71.5203 (18)C19—H1920.984
C6—C141.4018 (18)C19—H1911.000
C7—C81.5190 (17)C20—H2010.967
C7—H720.985C20—H2030.974
C7—H710.982C20—H2020.969
C8—C91.3933 (17)O21—C221.4420 (16)
C8—C131.4016 (17)C22—C231.5094 (19)
C9—C101.3938 (18)C22—H2210.971
C9—H910.927C22—H2220.969
C10—C111.3946 (18)C23—C241.521 (2)
C10—C161.4929 (18)C23—H2310.966
C11—C121.3950 (17)C23—H2320.961
C11—H1110.941C24—H2420.965
C12—C131.4024 (17)C24—H2410.952
C13—O211.3810 (14)C24—H2430.968
C12i—C1—C2108.63 (10)C4—C15—H151110.3
C12i—C1—H11109.8Cl25—C15—H151106.3
C2—C1—H11110.8C4—C15—H152109.9
C12i—C1—H12110.2Cl25—C15—H152108.1
C2—C1—H12110.4H151—C15—H152108.5
H11—C1—H12107.0C10—C16—Cl26112.72 (10)
C1—C2—C3121.19 (11)C10—C16—H162108.1
C1—C2—C14120.36 (11)Cl26—C16—H162106.6
C3—C2—C14118.00 (12)C10—C16—H161111.8
C2—C3—C4121.13 (12)Cl26—C16—H161105.1
C2—C3—H31118.1H162—C16—H161112.5
C4—C3—H31120.7C14—O17—C18112.95 (9)
C3—C4—C5119.59 (12)O17—C18—C19108.92 (11)
C3—C4—C15120.30 (12)O17—C18—H181107.9
C5—C4—C15119.87 (12)C19—C18—H181111.8
C4—C5—C6120.90 (12)O17—C18—H182111.4
C4—C5—H51118.7C19—C18—H182108.7
C6—C5—H51120.3H181—C18—H182108.1
C5—C6—C7121.09 (12)C18—C19—C20111.62 (13)
C5—C6—C14118.31 (12)C18—C19—H192109.3
C7—C6—C14120.23 (11)C20—C19—H192108.3
C6—C7—C8109.38 (10)C18—C19—H191108.8
C6—C7—H72110.6C20—C19—H191108.6
C8—C7—H72111.6H192—C19—H191110.1
C6—C7—H71108.8C19—C20—H201109.7
C8—C7—H71108.4C19—C20—H203110.9
H72—C7—H71108.0H201—C20—H203107.8
C7—C8—C9121.12 (11)C19—C20—H202109.9
C7—C8—C13120.51 (11)H201—C20—H202110.0
C9—C8—C13118.09 (11)H203—C20—H202108.5
C8—C9—C10121.15 (12)C13—O21—C22113.71 (10)
C8—C9—H91118.5O21—C22—C23107.23 (11)
C10—C9—H91120.3O21—C22—H221110.3
C9—C10—C11119.54 (11)C23—C22—H221111.5
C9—C10—C16119.84 (12)O21—C22—H222108.5
C11—C10—C16120.49 (12)C23—C22—H222108.5
C10—C11—C12121.02 (12)H221—C22—H222110.7
C10—C11—H111118.6C22—C23—C24112.83 (13)
C12—C11—H111120.4C22—C23—H231106.9
C1i—C12—C11121.15 (11)C24—C23—H231109.0
C1i—C12—C13120.33 (11)C22—C23—H232108.9
C11—C12—C13118.09 (11)C24—C23—H232109.3
C12—C13—C8121.91 (11)H231—C23—H232109.8
C12—C13—O21118.79 (11)C23—C24—H242111.2
C8—C13—O21119.11 (11)C23—C24—H241110.1
C6—C14—C2121.86 (11)H242—C24—H241111.5
C6—C14—O17118.64 (11)C23—C24—H243109.5
C2—C14—O17119.34 (11)H242—C24—H243108.6
C4—C15—Cl25113.61 (10)H241—C24—H243105.7
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H222···Cl25ii0.972.903.786 (1)153
C23—H231···Cl26iii0.972.903.557 (2)127
Symmetry codes: (ii) x, y, z1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC44H52Cl4O4
Mr786.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.104 (3), 11.5871 (15), 17.618 (2)
β (°) 117.655 (2)
V3)4177.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.49 × 0.31 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.658, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15796, 6176, 5280
Rint0.019
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 0.97
No. of reflections6176
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 1.05

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), CRYSTALS (Betteridge et al., 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H222···Cl25i0.972.903.786 (1)153
C23—H231···Cl26ii0.972.903.557 (2)127
Symmetry codes: (i) x, y, z1/2; (ii) x, y1, z.
 

Acknowledgements

We are grateful to Dr C. M. L. Vande Velde (Karel de Grote University College, Antwerp, Belgium) and Dr D. Watkin (University of Oxford) for helpful discussions. MHD is grateful to BFK NaWi, University of Bremen, for financial support. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalgrano, S. J., Thallapally, P. K., Barbour L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236–245.  Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationIkeda, A. & Shinkai, S. (1994a). J. Am. Chem. Soc. 116, 3102–3110.  CSD CrossRef CAS Web of Science Google Scholar
First citationIkeda, A. & Shinkai, S. (1994b). Chem. Commun. pp. 2375–2376.  CrossRef Google Scholar
First citationIkeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o728-o729
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds