organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Meth­­oxy­phen­yl)methanaminium chloride

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 21 January 2011; accepted 5 February 2011; online 16 February 2011)

In the crystal structure of the title salt, C8H12NO+·Cl, the methoxy group of the cation is co-planar with the phenylene moiety with an r.m.s. deviation from the mean plane of only 0.005 Å. The ammonium N atom deviates from this plane by 1.403 (1) Å. In the crystal, the (4-meth­oxy­phen­yl)methan­aminium cations and chloride anions are linked by N—H⋯Cl and C—H⋯O hydrogen bonds, resulting in an open framework architecture with hydrogen-bonded ammonium groups and chloride anions located in layers parallel to (011), separated by more hydrophobic layers with interdigitating anisole groups.

Related literature

For related compounds, see: Oueslati et al. (2005a[Oueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005a). Z. Kristallogr. New Cryst. Struct. 220, 105-106.]); Ben Gharbia et al. (2008[Ben Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, m880.]). For hydrogen-bond networks, see: Oueslati et al. (2005b[Oueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 365-366.]); Zaouali et al. (2009[Zaouali, D. Z., Ben Amor, F. & Boughzala, H. (2009). X-ray Struct. Anal. Online, 25, 121-122.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davids, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For mesomeric effects in related structures, see: Kefi et al. (2006[Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404-409.]); El Glaoui et al. (2009[El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Open Crystallogr. J. 2, 1-5.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO+·Cl

  • Mr = 173.64

  • Monoclinic, P 21 /c

  • a = 11.4234 (11) Å

  • b = 8.9384 (9) Å

  • c = 8.9490 (9) Å

  • β = 105.904 (1)°

  • V = 878.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.55 × 0.42 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison (WI), USA.]) Tmin = 0.675, Tmax = 0.746

  • 7028 measured reflections

  • 2593 independent reflections

  • 2411 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.07

  • 2593 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.91 2.24 3.1475 (9) 176
N1—H1B⋯Cl1ii 0.91 2.25 3.1502 (8) 170
N1—H1C⋯Cl1 0.91 2.27 3.1680 (8) 170
C6—H6⋯O1iii 0.95 2.58 3.4090 (11) 147
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison (WI), USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison (WI), USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our ongoing investigations in molecular salts of amine hydrochloride compounds (Oueslati et al., 2005a; Ben Gharbia et al., 2008), we report here the crystal structure of one such compound, (4-methoxyphenyl)methanaminium chloride, C8H12ClNO (Fig. 1).

The crystal structure consists of a network of the constituent ammonium and chloride ions connected by N—H···Cl hydrogen bonds (Fig. 2), with a chloride anion acting as a threefold acceptor as similarly observed in related compounds (Oueslati et al., 2005b). The N···Cl distances vary between 3.1475 (9) and 3.1680 (8) Å, indicating strong interactions between the ammonium and halogenide ions (Zaouali et al., 2009). Multiple hydrogen bonds connect the different entities of the compound to form inorganic layers, built from the chloride anions and the ammonium groups, parallel to the bc plane (Fig. 2). Within the layers, various graph-set motifs (Bernstein et al., 1995) are apparent, including R24(8) and R28(16) motifs. The organic fragments are located between successive inorganic layers (Fig. 3). No π-π stacking interactions between the phenylene rings or C—H···π interactions towards them are observed. A weak intermolecular C—H···O hydrogen interaction involving an aromatic hydrogen atom is present (Table 1). The organic molecule exhibits a regular spatial configuration with usual distances and angles. The distance C1—O1 [1.3637 (11) Å] is slightly shorter than that of C8—O1 [1.4362 (12) Å], which can be attributed to the donor mesomeric effect of the methoxy group. All the geometrical features of the title compound agree with those found in related compounds (e.g. Kefi et al., 2006; El Glaoui et al., 2009).

Related literature top

For related compounds, see: Oueslati et al. (2005a); Ben Gharbia et al. (2008). For hydrogen-bond networks, see: Oueslati et al. (2005b); Zaouali et al. (2009). For graph-set theory, see: Bernstein et al. (1995). For mesomeric effects in related structures, see: Kefi et al. (2006); El Glaoui et al. (2009).

Experimental top

4-Methoxybenzylamine (2 mmol, 0.274 g) was dissolved in aqueous HCl (10 ml, 1M). Colourless crystals suitable for single-crystal X-ray analysis were grown by slow evaporation at room temperature over a period of three weeks (yield 63%).

Refinement top

All H atoms were located in a difference Fourier map, but were repositioned geometrically and refined as riding, with C—H distances of 0.95 (aromatic), 0.99 (methylene) or 0.98 Å (methyl), and N—H distances of 0.91 Å. The torsion angles of the methyl and ammonium H atoms were allowed to refine to best fit the experimental electron density map, and the Uiso(H) values of the these groups were constrained to 1.5 times that of their carrier atom. For the other hydrogen atoms Uiso was set to 1.2 times Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 60% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. Projection along the a axis of the inorganic layer in the structure of the title compound, showing the N—H···Cl hydrogen bonding interactions (dashed lines). Only the ammonium and chloride sections are shown for clarity.
[Figure 3] Fig. 3. Projection of the structure of the title compound along the b axis. Hydrogen bonds are shown as thin black lines.
(4-Methoxyphenyl)methanaminium chloride top
Crystal data top
C8H12NO+·ClF(000) = 368
Mr = 173.64Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4317 reflections
a = 11.4234 (11) Åθ = 2.3–30.9°
b = 8.9384 (9) ŵ = 0.38 mm1
c = 8.9490 (9) ÅT = 100 K
β = 105.904 (1)°Block, colourless
V = 878.78 (15) Å30.55 × 0.42 × 0.38 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2593 independent reflections
Radiation source: fine-focus sealed tube2411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 31.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.675, Tmax = 0.746k = 1212
7028 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.3154P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H12NO+·ClV = 878.78 (15) Å3
Mr = 173.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4234 (11) ŵ = 0.38 mm1
b = 8.9384 (9) ÅT = 100 K
c = 8.9490 (9) Å0.55 × 0.42 × 0.38 mm
β = 105.904 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2411 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.746Rint = 0.015
7028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2593 reflectionsΔρmin = 0.23 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.874270 (19)0.40670 (2)0.15865 (3)0.01574 (7)
O10.54020 (6)1.00932 (8)0.27742 (9)0.01962 (15)
N10.97373 (7)0.71225 (9)0.06200 (9)0.01532 (15)
H1A1.01440.77000.14350.023*
H1B1.02610.68110.00800.023*
H1C0.94170.63120.09820.023*
C20.71566 (8)1.04328 (10)0.19393 (11)0.01744 (18)
H20.72701.13730.24540.021*
C50.68479 (8)0.76756 (10)0.04614 (11)0.01565 (17)
H50.67430.67280.00390.019*
C10.61611 (8)0.95355 (10)0.19710 (11)0.01482 (17)
C60.60029 (8)0.81501 (10)0.12293 (11)0.01576 (17)
H60.53280.75360.12460.019*
C30.79770 (8)0.99464 (10)0.11556 (11)0.01656 (18)
H30.86441.05680.11240.020*
C70.87306 (9)0.80189 (11)0.04294 (11)0.01650 (17)
H7A0.90820.88910.08350.020*
H7B0.83000.73940.13250.020*
C40.78390 (8)0.85561 (10)0.04109 (10)0.01412 (16)
C80.43276 (9)0.92405 (12)0.27309 (13)0.0218 (2)
H8A0.38350.91350.16520.033*
H8B0.38520.97570.33340.033*
H8C0.45620.82470.31770.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01692 (12)0.01417 (11)0.01804 (12)0.00094 (7)0.00799 (8)0.00074 (7)
O10.0163 (3)0.0169 (3)0.0289 (4)0.0001 (2)0.0116 (3)0.0034 (3)
N10.0178 (4)0.0137 (3)0.0164 (3)0.0002 (3)0.0080 (3)0.0007 (3)
C20.0162 (4)0.0132 (4)0.0233 (5)0.0005 (3)0.0062 (3)0.0019 (3)
C50.0175 (4)0.0148 (4)0.0148 (4)0.0011 (3)0.0048 (3)0.0012 (3)
C10.0138 (4)0.0143 (4)0.0169 (4)0.0020 (3)0.0051 (3)0.0008 (3)
C60.0149 (4)0.0151 (4)0.0177 (4)0.0019 (3)0.0051 (3)0.0003 (3)
C30.0144 (4)0.0149 (4)0.0208 (4)0.0013 (3)0.0055 (3)0.0010 (3)
C70.0182 (4)0.0191 (4)0.0135 (4)0.0010 (3)0.0065 (3)0.0014 (3)
C40.0144 (4)0.0155 (4)0.0127 (4)0.0010 (3)0.0042 (3)0.0017 (3)
C80.0145 (4)0.0227 (4)0.0304 (5)0.0001 (3)0.0096 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1—C11.3634 (11)C5—H50.9500
O1—C81.4362 (12)C1—C61.3932 (13)
N1—C71.5015 (12)C6—H60.9500
N1—H1A0.9100C3—C41.3984 (13)
N1—H1B0.9100C3—H30.9500
N1—H1C0.9100C7—C41.5011 (13)
C2—C31.3854 (13)C7—H7A0.9900
C2—C11.3982 (13)C7—H7B0.9900
C2—H20.9500C8—H8A0.9800
C5—C41.3897 (13)C8—H8B0.9800
C5—C61.3954 (13)C8—H8C0.9800
C1—O1—C8117.00 (8)C2—C3—C4121.10 (8)
C7—N1—H1A109.5C2—C3—H3119.4
C7—N1—H1B109.5C4—C3—H3119.4
H1A—N1—H1B109.5C4—C7—N1111.46 (7)
C7—N1—H1C109.5C4—C7—H7A109.3
H1A—N1—H1C109.5N1—C7—H7A109.3
H1B—N1—H1C109.5C4—C7—H7B109.3
C3—C2—C1119.80 (8)N1—C7—H7B109.3
C3—C2—H2120.1H7A—C7—H7B108.0
C1—C2—H2120.1C5—C4—C3118.31 (8)
C4—C5—C6121.57 (8)C5—C4—C7120.38 (8)
C4—C5—H5119.2C3—C4—C7121.31 (8)
C6—C5—H5119.2O1—C8—H8A109.5
O1—C1—C6123.91 (8)O1—C8—H8B109.5
O1—C1—C2116.06 (8)H8A—C8—H8B109.5
C6—C1—C2120.02 (8)O1—C8—H8C109.5
C1—C6—C5119.20 (8)H8A—C8—H8C109.5
C1—C6—H6120.4H8B—C8—H8C109.5
C5—C6—H6120.4
C8—O1—C1—C65.30 (13)C1—C2—C3—C41.01 (14)
C8—O1—C1—C2175.73 (8)C6—C5—C4—C30.05 (14)
C3—C2—C1—O1179.65 (8)C6—C5—C4—C7179.76 (8)
C3—C2—C1—C60.64 (14)C2—C3—C4—C50.66 (14)
O1—C1—C6—C5178.88 (9)C2—C3—C4—C7179.53 (9)
C2—C1—C6—C50.05 (14)N1—C7—C4—C588.82 (10)
C4—C5—C6—C10.40 (14)N1—C7—C4—C391.37 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.912.243.1475 (9)176
N1—H1B···Cl1ii0.912.253.1502 (8)170
N1—H1C···Cl10.912.273.1680 (8)170
C6—H6···O1iii0.952.583.4090 (11)147
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12NO+·Cl
Mr173.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4234 (11), 8.9384 (9), 8.9490 (9)
β (°) 105.904 (1)
V3)878.78 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.55 × 0.42 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.675, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7028, 2593, 2411
Rint0.015
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.07
No. of reflections2593
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.912.243.1475 (9)176
N1—H1B···Cl1ii0.912.253.1502 (8)170
N1—H1C···Cl10.912.273.1680 (8)170
C6—H6···O1iii0.952.583.4090 (11)147
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

We would like to acknowledge support by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by the NSF (grant 0087210), the Ohio Board of Regents (grant CAP-491) and YSU.

References

First citationBen Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davids, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison (WI), USA.  Google Scholar
First citationEl Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Open Crystallogr. J. 2, 1–5.  CSD CrossRef CAS Google Scholar
First citationKefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404–409.  CrossRef Google Scholar
First citationOueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005a). Z. Kristallogr. New Cryst. Struct. 220, 105–106.  CAS Google Scholar
First citationOueslati, A., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 365–366.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaouali, D. Z., Ben Amor, F. & Boughzala, H. (2009). X-ray Struct. Anal. Online, 25, 121–122.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds