organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Hy­dr­oxy­eth­yl)tri­phenyl­phospho­nium chloride

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, bDepartment of Physics, Faculty of Arts & Science, Amasya University, TR-05100 Amasya, Turkey, and cDepartment of Physics, A. K. Education Faculty, Selcuk University, TR-42090 Meram–Konya, Turkey
*Correspondence e-mail: uceylan@omu.edu.tr

(Received 23 January 2011; accepted 8 February 2011; online 16 February 2011)

In the crystal structure of the title compound, C20H20OP+·Cl, the cations and anions are linked by inter­molecular C—H⋯Cl and O—H⋯Cl hydrogen bonds into chains running parallel to the b axis. In the cation, the hy­droxy­ethyl group is disordered over two orientations with site-occupancy factors of 0.554 (4) and 0.446 (4).

Related literature

For general background to the Wittig reaction, see: Wittig & Schöllkopf (1954[Wittig, G. & Schöllkopf, U. (1954). Chem. Ber. 87, 1318-1330.]); Wittig & Haag (1955[Wittig, G. & Haag, W. (1955). Chem. Ber. 88, 1654-1666.]). For the synthesis, applications and biological activity of triphenyl­phospho­nium compounds, see: Rideout et al. (1989[Rideout, D., Calogeropoulou, T., Jaworski, J. S., Dagnino, R. & McCarthy, M. R. (1989). Anti-Cancer Drug Des. 4, 265-280.]); Cooper et al. (2001[Cooper, W. A., Bartier, W. A., Rideout, D. C. & Delikatny, E. J. (2001). Magn. Reson. Med. 45, 1001-1010.]); Dubios & Lin (1978[Dubios, R. J. & Lin, C. C. L. (1978). J. Med. Chem. 21, 303-306.]); Lou & Shang (2000[Lou, Z. W. & Shang, X. M. (2000). Chin. J. Med. Chem. 10, 168-171.]); Calderon et al. (2008[Calderon, J. U., Lennox, B. & Kamal, M. R. (2008). Appl. Clay. Sci. 40, 90-98.]). For related structures, see: Shafiq et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Zaib-un-Nisa (2008). Acta Cryst. E64, o2213.]); Wu et al. (2007[Wu, D.-Y., Li, F.-S., Xia, J.-Y., Mao, N.-W. & Yao, H.-L. (2007). Acta Cryst. E63, o4532.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20OP+·Cl

  • Mr = 342.78

  • Monoclinic, C 2/c

  • a = 14.1988 (4) Å

  • b = 12.5743 (3) Å

  • c = 19.7098 (6) Å

  • β = 92.510 (2)°

  • V = 3515.61 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.76 × 0.71 × 0.60 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.599, Tmax = 0.905

  • 26668 measured reflections

  • 3725 independent reflections

  • 3317 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.07

  • 3725 reflections

  • 230 parameters

  • 35 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.93 2.78 3.7009 (19) 171
C19—H19C⋯Cl1 0.97 2.73 3.6325 (18) 154
O1B—H1B⋯Cl1i 0.82 2.32 3.115 (4) 162
O1A—H1A⋯Cl1i 0.82 2.55 3.314 (4) 155
C19—H19B⋯Cl1i 0.97 2.78 3.5935 (19) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Triphenylphosphonium compounds and their various derivatives are key reagents in the Wittig reactions and are used to convert aldehydes and ketones into alkenes (Wittig & Schöllkopf, 1954; Wittig & Haag, 1955), specifically in applications ranging from the synthesis of simple alkenes to the construction of complex biologically active molecules in the pharmaceutical research (Rideout et al., 1989; Cooper et al., 2001). They are also an important class of isoaromatic compounds and have widespread applications for their antimicrobial and anticancer activities (Dubios & Lin, 1978; Lou & Shang, 2000). In addition, phosphonium compounds enhance flame retardancy mainly in textile industry (Calderon et al., 2008).

The title compound crystallizes with one cation and anion in the asymmetric unit (Fig. 1). In the molecule, the hydroxyethyl group (C19—C20—O1) is disordered over two orientations with site occupancy factors of 0.554 (4) and 0.446 (4), respectively. The dihedral angles between rings A (C1—C6), B (C7—C12) and C (C13—C18) are A/B = 73.79 (1)°, A/C = 67.88 (1)° and B/C = 70.96 (1)°. All the geometric parameters are in agreement with those observed in related compounds (Shafiq et al., 2008; Wu et al., 2007). The minimum separation between the P+ and Cl- centres is 4.211 (1)Å. In the crystal structure, intermolecular C—H···Cl and C—H···O hydrogen bonds (Table 1) link the ions to form chains parallel to the b axis (Fig. 2).

Related literature top

For general background to the Wittig reaction, see: Wittig & Schöllkopf (1954); Wittig & Haag (1955). For the synthesis, applications and biological activity of triphenylphosphonium compounds, see: Rideout et al. (1989); Cooper et al. (2001); Dubios & Lin (1978); Lou & Shang (2000); Calderon et al. (2008). For related structures, see: Shafiq et al. (2008); Wu et al. (2007).

Experimental top

(2-Hydroxyethyl)triphenylphosphonium chloride powder was purchased from Merck. Single crystals suitable for X-ray ananlysis were grown by slow evaporation of a concentrated acetonitrile solution.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93, 0.97 and 0.82 Å for aromatic CH, CH2, and OH groups, respectively. The displacement parameters of the H atoms were constrained as Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). In the molecule, the hydroxyethyl group, (C19—C20—O1) is disordered over two orientations with site occupancy factors of 0.554 (4) and 0.446 (4). The disordered atoms were refined using the following restraints: SIMU, DELU and SADI (SHELXL; Sheldrick, 2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are drawn as dashed lines.
(2-Hydroxyethyl)triphenylphosphonium chloride top
Crystal data top
C20H20OP+·ClF(000) = 1440
Mr = 342.78Dx = 1.295 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 36925 reflections
a = 14.1988 (4) Åθ = 2.1–27.3°
b = 12.5743 (3) ŵ = 0.31 mm1
c = 19.7098 (6) ÅT = 296 K
β = 92.510 (2)°Prism, colorless
V = 3515.61 (17) Å30.76 × 0.71 × 0.60 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
3725 independent reflections
Radiation source: fine-focus sealed tube3317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.1°
rotation method scansh = 1717
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.599, Tmax = 0.905l = 2424
26668 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.6584P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3725 reflectionsΔρmax = 0.42 e Å3
230 parametersΔρmin = 0.24 e Å3
35 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (6)
Crystal data top
C20H20OP+·ClV = 3515.61 (17) Å3
Mr = 342.78Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.1988 (4) ŵ = 0.31 mm1
b = 12.5743 (3) ÅT = 296 K
c = 19.7098 (6) Å0.76 × 0.71 × 0.60 mm
β = 92.510 (2)°
Data collection top
Stoe IPDS 2
diffractometer
3725 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3317 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.905Rint = 0.046
26668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03635 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
3725 reflectionsΔρmin = 0.24 e Å3
230 parameters
Special details top

Experimental. 360 frames, detector distance = 120 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.25807 (3)0.74387 (4)0.18184 (2)0.06015 (16)
P10.22348 (3)0.60936 (3)0.37482 (2)0.04301 (14)
C10.34518 (11)0.64165 (12)0.39231 (8)0.0449 (3)
C20.39771 (12)0.68183 (14)0.33985 (9)0.0545 (4)
H20.36900.69490.29730.065*
C30.49228 (13)0.70205 (16)0.35142 (11)0.0633 (5)
H30.52730.72920.31660.076*
C40.53530 (13)0.68242 (17)0.41386 (11)0.0655 (5)
H40.59940.69580.42100.079*
C50.48442 (14)0.64332 (17)0.46574 (10)0.0652 (5)
H50.51400.63050.50800.078*
C60.38882 (12)0.62269 (15)0.45550 (9)0.0543 (4)
H60.35420.59630.49080.065*
C70.18175 (11)0.54012 (13)0.44737 (8)0.0457 (3)
C80.21070 (14)0.43627 (15)0.46028 (9)0.0606 (5)
H80.24490.39940.42870.073*
C90.18823 (16)0.38821 (15)0.52053 (10)0.0665 (5)
H90.20870.31930.52980.080*
C100.13605 (13)0.44101 (16)0.56677 (9)0.0608 (5)
H100.12210.40820.60740.073*
C110.10449 (13)0.54206 (17)0.55326 (9)0.0617 (5)
H110.06750.57690.58410.074*
C120.12762 (12)0.59252 (14)0.49368 (9)0.0527 (4)
H120.10680.66150.48480.063*
C130.15396 (11)0.72717 (13)0.36117 (8)0.0450 (3)
C140.05633 (12)0.71654 (16)0.34952 (10)0.0581 (4)
H140.02880.64940.34900.070*
C150.00133 (13)0.80521 (18)0.33882 (10)0.0667 (5)
H150.06340.79800.33080.080*
C160.04150 (15)0.90428 (17)0.33992 (10)0.0677 (5)
H160.00370.96400.33290.081*
C170.13779 (15)0.91629 (15)0.35143 (10)0.0629 (5)
H170.16460.98380.35220.076*
C180.19394 (12)0.82728 (13)0.36184 (9)0.0510 (4)
H180.25870.83490.36930.061*
C190.22152 (13)0.52738 (14)0.29984 (8)0.0548 (4)
H19A0.25540.56560.26580.066*0.554 (4)
H19B0.25800.46410.31110.066*0.554 (4)
H19C0.24530.56790.26240.066*0.446 (4)
H19D0.26280.46680.30780.066*0.446 (4)
O1A0.0805 (2)0.4345 (3)0.31380 (16)0.0879 (10)0.554 (4)
H1A0.11170.38270.32650.132*0.554 (4)
C20A0.1293 (4)0.4906 (5)0.2660 (4)0.0667 (14)0.554 (4)
H20A0.09260.55140.25000.080*0.554 (4)
H20B0.14140.44540.22750.080*0.554 (4)
O1B0.1262 (3)0.4096 (3)0.23172 (16)0.0766 (11)0.446 (4)
H1B0.15130.35640.24830.115*0.446 (4)
C20B0.1230 (4)0.4883 (6)0.2807 (6)0.0672 (17)0.446 (4)
H20C0.09400.46030.32060.081*0.446 (4)
H20D0.08480.54710.26340.081*0.446 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0621 (3)0.0621 (3)0.0561 (3)0.0009 (2)0.0013 (2)0.00363 (19)
P10.0439 (2)0.0434 (2)0.0418 (2)0.00118 (16)0.00250 (15)0.00225 (15)
C10.0427 (8)0.0448 (8)0.0472 (8)0.0022 (6)0.0027 (6)0.0008 (6)
C20.0510 (9)0.0598 (10)0.0529 (9)0.0018 (8)0.0037 (7)0.0069 (7)
C30.0509 (10)0.0718 (12)0.0680 (11)0.0066 (9)0.0106 (8)0.0017 (9)
C40.0458 (9)0.0720 (12)0.0784 (13)0.0019 (8)0.0006 (9)0.0108 (10)
C50.0562 (10)0.0778 (13)0.0604 (11)0.0042 (9)0.0114 (8)0.0055 (9)
C60.0543 (9)0.0613 (10)0.0471 (8)0.0014 (8)0.0019 (7)0.0021 (7)
C70.0487 (8)0.0458 (8)0.0426 (7)0.0049 (6)0.0026 (6)0.0010 (6)
C80.0772 (12)0.0519 (10)0.0536 (9)0.0067 (9)0.0128 (9)0.0036 (8)
C90.0862 (14)0.0535 (10)0.0602 (11)0.0025 (9)0.0076 (10)0.0128 (8)
C100.0636 (11)0.0698 (12)0.0495 (9)0.0113 (9)0.0074 (8)0.0110 (8)
C110.0621 (10)0.0727 (12)0.0513 (9)0.0048 (9)0.0144 (8)0.0046 (8)
C120.0568 (9)0.0496 (9)0.0522 (9)0.0016 (7)0.0067 (7)0.0014 (7)
C130.0438 (8)0.0482 (8)0.0432 (7)0.0017 (6)0.0033 (6)0.0035 (6)
C140.0468 (9)0.0621 (10)0.0654 (11)0.0026 (8)0.0017 (8)0.0010 (8)
C150.0475 (10)0.0838 (14)0.0683 (12)0.0128 (9)0.0026 (8)0.0017 (10)
C160.0713 (12)0.0689 (12)0.0626 (11)0.0249 (10)0.0007 (9)0.0045 (9)
C170.0767 (13)0.0480 (9)0.0644 (11)0.0044 (9)0.0073 (9)0.0040 (8)
C180.0495 (9)0.0510 (9)0.0528 (9)0.0004 (7)0.0043 (7)0.0021 (7)
C190.0666 (10)0.0499 (9)0.0476 (8)0.0022 (8)0.0013 (7)0.0016 (7)
O1A0.0844 (19)0.087 (2)0.091 (2)0.0292 (16)0.0075 (15)0.0052 (17)
C20A0.080 (2)0.0603 (19)0.058 (3)0.0002 (17)0.0162 (18)0.0101 (17)
O1B0.086 (2)0.075 (2)0.067 (2)0.0013 (17)0.0132 (16)0.0231 (16)
C20B0.073 (2)0.064 (2)0.063 (4)0.003 (2)0.018 (2)0.014 (2)
Geometric parameters (Å, º) top
P1—C11.7938 (16)C13—C181.381 (2)
P1—C131.7939 (16)C13—C141.401 (2)
P1—C71.7968 (15)C14—C151.372 (3)
P1—C191.8009 (17)C14—H140.9300
C1—C61.387 (2)C15—C161.370 (3)
C1—C21.396 (2)C15—H150.9300
C2—C31.376 (2)C16—C171.384 (3)
C2—H20.9300C16—H160.9300
C3—C41.372 (3)C17—C181.384 (2)
C3—H30.9300C17—H170.9300
C4—C51.369 (3)C18—H180.9300
C4—H40.9300C19—C20A1.515 (4)
C5—C61.388 (3)C19—C20B1.516 (4)
C5—H50.9300C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—C121.385 (2)C19—H19C0.9700
C7—C81.389 (2)C19—H19D0.9700
C8—C91.382 (2)O1A—C20A1.386 (8)
C8—H80.9300O1A—H1A0.8200
C9—C101.371 (3)C20A—H20A0.9700
C9—H90.9300C20A—H20B0.9700
C10—C111.370 (3)O1B—C20B1.383 (8)
C10—H100.9300O1B—H1B0.8200
C11—C121.387 (2)C20B—H20C0.9700
C11—H110.9300C20B—H20D0.9700
C12—H120.9300
C1—P1—C13111.16 (7)C15—C14—H14120.0
C1—P1—C7107.77 (7)C13—C14—H14120.0
C13—P1—C7108.73 (7)C16—C15—C14120.17 (18)
C1—P1—C19105.51 (8)C16—C15—H15119.9
C13—P1—C19111.16 (8)C14—C15—H15119.9
C7—P1—C19112.45 (8)C15—C16—C17120.62 (18)
C6—C1—C2119.68 (15)C15—C16—H16119.7
C6—C1—P1121.49 (12)C17—C16—H16119.7
C2—C1—P1118.76 (12)C18—C17—C16119.63 (18)
C3—C2—C1119.56 (17)C18—C17—H17120.2
C3—C2—H2120.2C16—C17—H17120.2
C1—C2—H2120.2C13—C18—C17120.12 (16)
C4—C3—C2120.56 (18)C13—C18—H18119.9
C4—C3—H3119.7C17—C18—H18119.9
C2—C3—H3119.7C20A—C19—P1121.2 (4)
C5—C4—C3120.38 (18)C20B—C19—P1111.8 (4)
C5—C4—H4119.8C20A—C19—H19A107.0
C3—C4—H4119.8C20B—C19—H19A118.0
C4—C5—C6120.22 (18)P1—C19—H19A107.0
C4—C5—H5119.9C20A—C19—H19B107.0
C6—C5—H5119.9C20B—C19—H19B105.6
C1—C6—C5119.60 (17)P1—C19—H19B107.0
C1—C6—H6120.2H19A—C19—H19B106.8
C5—C6—H6120.2C20A—C19—H19C98.6
C12—C7—C8119.65 (15)C20B—C19—H19C109.3
C12—C7—P1120.38 (13)P1—C19—H19C109.3
C8—C7—P1119.74 (12)H19B—C19—H19C113.9
C9—C8—C7119.39 (17)C20A—C19—H19D109.6
C9—C8—H8120.3C20B—C19—H19D109.3
C7—C8—H8120.3P1—C19—H19D109.3
C10—C9—C8120.75 (18)H19A—C19—H19D100.8
C10—C9—H9119.6H19C—C19—H19D107.9
C8—C9—H9119.6O1A—C20A—C19107.7 (5)
C11—C10—C9120.12 (16)O1A—C20A—H20A110.2
C11—C10—H10119.9C19—C20A—H20A110.2
C9—C10—H10119.9O1A—C20A—H20B110.2
C10—C11—C12120.10 (17)C19—C20A—H20B110.2
C10—C11—H11120.0H20A—C20A—H20B108.5
C12—C11—H11120.0C20B—O1B—H1B109.5
C7—C12—C11119.94 (17)O1B—C20B—C19110.3 (6)
C7—C12—H12120.0O1B—C20B—H20C109.6
C11—C12—H12120.0C19—C20B—H20C109.6
C18—C13—C14119.46 (16)O1B—C20B—H20D109.6
C18—C13—P1121.88 (12)C19—C20B—H20D109.6
C14—C13—P1118.66 (13)H20C—C20B—H20D108.1
C15—C14—C13120.00 (18)
C13—P1—C1—C6112.88 (14)P1—C7—C12—C11172.90 (14)
C7—P1—C1—C66.17 (16)C10—C11—C12—C70.8 (3)
C19—P1—C1—C6126.51 (14)C1—P1—C13—C182.53 (16)
C13—P1—C1—C270.32 (15)C7—P1—C13—C18121.01 (14)
C7—P1—C1—C2170.63 (13)C19—P1—C13—C18114.68 (15)
C19—P1—C1—C250.29 (15)C1—P1—C13—C14177.47 (13)
C6—C1—C2—C30.1 (3)C7—P1—C13—C1458.99 (15)
P1—C1—C2—C3176.77 (14)C19—P1—C13—C1465.32 (15)
C1—C2—C3—C40.4 (3)C18—C13—C14—C150.1 (3)
C2—C3—C4—C50.6 (3)P1—C13—C14—C15179.91 (15)
C3—C4—C5—C60.3 (3)C13—C14—C15—C160.4 (3)
C2—C1—C6—C50.4 (3)C14—C15—C16—C170.3 (3)
P1—C1—C6—C5176.39 (14)C15—C16—C17—C180.1 (3)
C4—C5—C6—C10.2 (3)C14—C13—C18—C170.3 (2)
C1—P1—C7—C12101.87 (14)P1—C13—C18—C17179.67 (13)
C13—P1—C7—C1218.72 (16)C16—C17—C18—C130.4 (3)
C19—P1—C7—C12142.27 (14)C1—P1—C19—C20A175.4 (3)
C1—P1—C7—C872.50 (16)C13—P1—C19—C20A54.8 (3)
C13—P1—C7—C8166.91 (14)C7—P1—C19—C20A67.4 (3)
C19—P1—C7—C843.36 (17)C1—P1—C19—C20B176.9 (4)
C12—C7—C8—C92.6 (3)C13—P1—C19—C20B62.5 (4)
P1—C7—C8—C9171.81 (16)C7—P1—C19—C20B59.6 (4)
C7—C8—C9—C101.5 (3)C20B—C19—C20A—O1A20 (2)
C8—C9—C10—C110.8 (3)P1—C19—C20A—O1A57.9 (5)
C9—C10—C11—C122.0 (3)C20A—C19—C20B—O1B47 (2)
C8—C7—C12—C111.5 (3)P1—C19—C20B—O1B168.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.932.783.7009 (19)171
C19—H19C···Cl10.972.733.6325 (18)154
O1B—H1B···Cl1i0.822.323.115 (4)162
O1A—H1A···Cl1i0.822.553.314 (4)155
C19—H19B···Cl1i0.972.783.5935 (19)142
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20OP+·Cl
Mr342.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.1988 (4), 12.5743 (3), 19.7098 (6)
β (°) 92.510 (2)
V3)3515.61 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.76 × 0.71 × 0.60
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.599, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
26668, 3725, 3317
Rint0.046
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.07
No. of reflections3725
No. of parameters230
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.932.783.7009 (19)171
C19—H19C···Cl10.972.733.6325 (18)154
O1B—H1B···Cl1i0.822.323.115 (4)162
O1A—H1A···Cl1i0.822.553.314 (4)155
C19—H19B···Cl1i0.972.783.5935 (19)142
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was financially supported by the BAP Selcuk University in Turkey. The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationCalderon, J. U., Lennox, B. & Kamal, M. R. (2008). Appl. Clay. Sci. 40, 90–98.  Web of Science CrossRef CAS Google Scholar
First citationCooper, W. A., Bartier, W. A., Rideout, D. C. & Delikatny, E. J. (2001). Magn. Reson. Med. 45, 1001–1010.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDubios, R. J. & Lin, C. C. L. (1978). J. Med. Chem. 21, 303–306.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLou, Z. W. & Shang, X. M. (2000). Chin. J. Med. Chem. 10, 168–171.  CAS Google Scholar
First citationRideout, D., Calogeropoulou, T., Jaworski, J. S., Dagnino, R. & McCarthy, M. R. (1989). Anti-Cancer Drug Des. 4, 265–280.  CAS PubMed Web of Science Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Zaib-un-Nisa (2008). Acta Cryst. E64, o2213.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWittig, G. & Haag, W. (1955). Chem. Ber. 88, 1654–1666.  CrossRef CAS Web of Science Google Scholar
First citationWittig, G. & Schöllkopf, U. (1954). Chem. Ber. 87, 1318–1330.  CrossRef Web of Science Google Scholar
First citationWu, D.-Y., Li, F.-S., Xia, J.-Y., Mao, N.-W. & Yao, H.-L. (2007). Acta Cryst. E63, o4532.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds