metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane tetra­bromidocuprate(II) monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: yizhang1980@yahoo.com.cn

(Received 24 January 2011; accepted 12 February 2011; online 23 February 2011)

In the title monohydrated salt, (C6H14N2)[CuBr4]·H2O, the copper(II) ion is coordinated by the four bromide ions in a flattened tetra­hedral geometry. In the crystal, the cations, anions and water mol­ecules inter­act via N—H⋯O, O—H⋯Br and N—H⋯Br hydrogen bonds, forming chains parallel to the b axis. The chains are further linked by O—H⋯Br hydrogen bonds into layers parallel to the bc plane.

Related literature

For related structures, see: Wei & Willett (1996[Wei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.], 2002[Wei, M. & Willett, R. D. (2002). J. Chem. Crystallogr. 32, 439-445.]); Brammer et al. (2002[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.]); Zhang et al. (2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N2)[CuBr4]·H2O

  • Mr = 515.39

  • Monoclinic, P 21 /c

  • a = 9.5171 (19) Å

  • b = 9.5341 (19) Å

  • c = 14.952 (3) Å

  • β = 93.93 (3)°

  • V = 1353.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.40 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.055, Tmax = 0.086

  • 13570 measured reflections

  • 3111 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.116

  • S = 1.10

  • 3111 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1W 0.91 2.49 3.121 (8) 127
N2—H2C⋯O1Wi 0.91 1.98 2.788 (7) 147
O1W—H1WA⋯Br4ii 0.85 2.75 3.456 (5) 141
O1W—H1WA⋯Br2ii 0.85 2.86 3.461 (5) 129
O1W—H1WB⋯Br1iii 0.85 2.55 3.319 (5) 152
N1—H1C⋯Br1 0.91 2.61 3.360 (5) 140
N1—H1C⋯Br4 0.91 2.92 3.546 (6) 127
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferroelectric materials have attracted intensive interest not only due to their versatile technological applications in the field of electronics and optics, but also for their importance to the fundamental scientific research. Recently, monosalts of 1,4-diazabicyclo[2.2.2]octane (dabco) including dabcoHBF4, dabcoHClO4 and dabcoHReO4 have been reported to have excellent dielectric and ferroelectric properties (Wei & Willett, 1996, 2002; Brammer et al., 2002). Our group has recently reported the compound (dabcoH2)2Cl3[CuCl3(H2O)2].H2O (Zhang et al., 2010), which also shows good dielectric and ferroelectric properties. Herein we report the synthesis and crystal structure of the title compound, (dabcoH2)CuBr4.H2O.

The asymmetric unit of the title compound contains one (dabcoH2)2+ cation, one [CuBr4]2- anion and one water molecules (Fig 1). The copper(II) ion has a flattened tetrahedral coordination geometry provided by the four Br- ions, with Cu—Br distances ranging from 2.3598 (12) to 2.4070 (12) Å. Generally, the Cu—Br bond lengths and Br—Cu—Br bond angles in a [CuBr4]2- anion are not equal to one another but vary with the environment around the Br atoms. As atoms Br1, Br2 and Br4 are involved in hydrogen bonds, the Cu1—Br3 bond length is significantly shorter than the other Cu—Br bonds. The distortion from the ideal tetrahedral geometry is also indicated by the values of the Br—Cu—Br angles, which range from 96.75 (4) to 133.92 (5)°. The H1C and H2C protons of the 1,4-diazoniabicyclo(2.2.2)octane cation and the H1WA hydrogen atom of the water molecule are engaged in bifurcated N—H···Br, N—H···O and O—H···Br hydrogen bonds (Table 1), forming chains parallel to the b axis. The chains are further connected by O—H···Br hydrogen bonds into layers parallel to the (011) plane (Fig. 2).

Related literature top

For related structures, see: Wei & Willett (1996, 2002); Brammer et al. (2002); Zhang et al. (2010).

Experimental top

To a concentrated HBr water solution (50 ml) 1,4-diazabicyclo[2.2.2]octane (10 mmol, 1.12 g) and of CuBr2.2H2O (10 mmol, 2.60 g) were added with stirring. Brown single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvent over a period of a week at room temperature. The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε= C/(T–T0)), suggesting that the title compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 362 K (m. p. 99 °C).

Refinement top

All H atoms were fixed geometrically and treated as riding, with C–H = 0.97 Å, N—H = 0.91 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.2 Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) are omitted.
1,4-Diazoniabicyclo[2.2.2]octane tetrabromidocuprate(II) monohydrate top
Crystal data top
(C6H14N2)[CuBr4]·H2OF(000) = 972
Mr = 515.39Dx = 2.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2622 reflections
a = 9.5171 (19) Åθ = 3.0–27.5°
b = 9.5341 (19) ŵ = 13.40 mm1
c = 14.952 (3) ÅT = 298 K
β = 93.93 (3)°Polyhedron, brown
V = 1353.5 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3111 independent reflections
Radiation source: fine-focus sealed tube2285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.055, Tmax = 0.086l = 1919
13570 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0225P)2 + 2.0506P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3111 reflectionsΔρmax = 1.22 e Å3
128 parametersΔρmin = 1.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0204 (7)
Crystal data top
(C6H14N2)[CuBr4]·H2OV = 1353.5 (5) Å3
Mr = 515.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5171 (19) ŵ = 13.40 mm1
b = 9.5341 (19) ÅT = 298 K
c = 14.952 (3) Å0.20 × 0.20 × 0.20 mm
β = 93.93 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2285 reflections with I > 2σ(I)
Tmin = 0.055, Tmax = 0.086Rint = 0.124
13570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 1.22 e Å3
3111 reflectionsΔρmin = 1.29 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13288 (8)1.07551 (7)0.32168 (5)0.0252 (2)
Br20.47455 (8)1.29945 (9)0.17676 (5)0.0294 (3)
Br30.24026 (10)1.44329 (8)0.35401 (5)0.0343 (3)
Br40.12020 (9)1.24314 (8)0.10831 (5)0.0291 (2)
C10.2071 (9)0.7578 (7)0.1967 (5)0.0250 (18)
H1A0.11360.72760.21860.030*
H1B0.25880.78370.24790.030*
C20.2812 (10)0.6413 (8)0.1464 (5)0.039 (2)
H2A0.21820.56190.14230.046*
H2B0.36200.61130.17760.046*
C30.1196 (8)0.8404 (8)0.0560 (5)0.0221 (17)
H3A0.02650.80580.07510.027*
H3B0.10940.92040.01700.027*
C40.2029 (9)0.7281 (8)0.0075 (6)0.032 (2)
H4A0.23220.76020.05240.039*
H4B0.14440.64560.00230.039*
C50.3414 (8)0.9335 (7)0.1063 (5)0.0265 (19)
H5A0.33571.01200.06540.032*
H5B0.38960.96440.15790.032*
C60.4211 (9)0.8136 (8)0.0601 (6)0.040 (2)
H6A0.50190.78930.09320.048*
H6B0.45510.84180.00010.048*
Cu10.24156 (9)1.27018 (9)0.24116 (6)0.0190 (3)
N10.1962 (6)0.8822 (6)0.1354 (4)0.0164 (13)
H1C0.14780.95200.16540.020*
N20.3277 (6)0.6913 (6)0.0552 (4)0.0204 (14)
H2C0.37530.62110.02510.024*
O1W0.6324 (6)0.5717 (5)0.0241 (3)0.0316 (14)
H1WA0.66700.59560.02760.047*
H1WB0.68320.60440.06380.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0381 (5)0.0188 (4)0.0181 (5)0.0005 (3)0.0012 (4)0.0011 (3)
Br20.0251 (4)0.0452 (5)0.0177 (5)0.0018 (4)0.0000 (3)0.0023 (4)
Br30.0557 (6)0.0281 (5)0.0180 (5)0.0065 (4)0.0067 (4)0.0144 (4)
Br40.0378 (5)0.0327 (5)0.0182 (5)0.0007 (4)0.0138 (4)0.0031 (3)
C10.037 (5)0.028 (4)0.010 (4)0.003 (4)0.002 (3)0.008 (3)
C20.077 (7)0.025 (5)0.015 (5)0.015 (5)0.009 (5)0.004 (4)
C30.027 (4)0.029 (4)0.010 (4)0.003 (3)0.003 (3)0.004 (3)
C40.046 (5)0.029 (5)0.024 (5)0.009 (4)0.012 (4)0.010 (4)
C50.035 (4)0.017 (4)0.026 (5)0.007 (3)0.007 (4)0.006 (3)
C60.029 (5)0.035 (5)0.054 (6)0.001 (4)0.011 (4)0.029 (5)
Cu10.0288 (5)0.0193 (5)0.0087 (5)0.0016 (4)0.0003 (4)0.0041 (4)
N10.020 (3)0.019 (3)0.011 (3)0.005 (3)0.002 (2)0.007 (3)
N20.037 (4)0.011 (3)0.013 (3)0.006 (3)0.002 (3)0.008 (3)
O1W0.045 (3)0.027 (3)0.023 (3)0.000 (3)0.008 (3)0.010 (2)
Geometric parameters (Å, º) top
Br1—Cu12.4070 (12)C4—N21.469 (10)
Br2—Cu12.3726 (13)C4—H4A0.9700
Br3—Cu12.3598 (12)C4—H4B0.9700
Br4—Cu12.3792 (13)C5—N11.502 (9)
C1—C21.492 (10)C5—C61.512 (10)
C1—N11.507 (9)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—N21.471 (9)
C2—N21.483 (9)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700N1—H1C0.9100
C3—N11.489 (9)N2—H2C0.9100
C3—C41.490 (10)O1W—H1WA0.8501
C3—H3A0.9700O1W—H1WB0.8500
C3—H3B0.9700
C2—C1—N1109.2 (6)C6—C5—H5B110.1
C2—C1—H1A109.8H5A—C5—H5B108.4
N1—C1—H1A109.8N2—C6—C5109.6 (6)
C2—C1—H1B109.8N2—C6—H6A109.7
N1—C1—H1B109.8C5—C6—H6A109.7
H1A—C1—H1B108.3N2—C6—H6B109.7
N2—C2—C1109.0 (6)C5—C6—H6B109.7
N2—C2—H2A109.9H6A—C6—H6B108.2
C1—C2—H2A109.9Br3—Cu1—Br299.61 (5)
N2—C2—H2B109.9Br3—Cu1—Br4133.92 (5)
C1—C2—H2B109.9Br2—Cu1—Br499.64 (5)
H2A—C2—H2B108.3Br3—Cu1—Br1101.57 (4)
N1—C3—C4107.9 (6)Br2—Cu1—Br1130.64 (5)
N1—C3—H3A110.1Br4—Cu1—Br196.75 (4)
C4—C3—H3A110.1C3—N1—C5110.3 (5)
N1—C3—H3B110.1C3—N1—C1109.4 (5)
C4—C3—H3B110.1C5—N1—C1109.4 (6)
H3A—C3—H3B108.4C3—N1—H1C109.2
N2—C4—C3110.9 (6)C5—N1—H1C109.2
N2—C4—H4A109.5C1—N1—H1C109.2
C3—C4—H4A109.5C4—N2—C6110.2 (6)
N2—C4—H4B109.5C4—N2—C2108.8 (6)
C3—C4—H4B109.5C6—N2—C2110.7 (6)
H4A—C4—H4B108.1C4—N2—H2C109.0
N1—C5—C6108.0 (6)C6—N2—H2C109.0
N1—C5—H5A110.1C2—N2—H2C109.0
C6—C5—H5A110.1H1WA—O1W—H1WB109.5
N1—C5—H5B110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1W0.912.493.121 (8)127
N2—H2C···O1Wi0.911.982.788 (7)147
O1W—H1WA···Br4ii0.852.753.456 (5)141
O1W—H1WA···Br2ii0.852.863.461 (5)129
O1W—H1WB···Br1iii0.852.553.319 (5)152
N1—H1C···Br10.912.613.360 (5)140
N1—H1C···Br40.912.923.546 (6)127
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C6H14N2)[CuBr4]·H2O
Mr515.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5171 (19), 9.5341 (19), 14.952 (3)
β (°) 93.93 (3)
V3)1353.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)13.40
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.055, 0.086
No. of measured, independent and
observed [I > 2σ(I)] reflections
13570, 3111, 2285
Rint0.124
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.116, 1.10
No. of reflections3111
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 1.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1W0.912.493.121 (8)127
N2—H2C···O1Wi0.911.982.788 (7)147
O1W—H1WA···Br4ii0.852.753.456 (5)141
O1W—H1WA···Br2ii0.852.863.461 (5)129
O1W—H1WB···Br1iii0.852.553.319 (5)152
N1—H1C···Br10.912.613.360 (5)140
N1—H1C···Br40.912.923.546 (6)127
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064) and the Major Postdoctoral Research Funds (3212000602) of Southeast University.

References

First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381–6385.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWei, M. & Willett, R. D. (2002). J. Chem. Crystallogr. 32, 439–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds