metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro-2-{[(pyridin-2-ylmeth­yl)imino]­meth­yl}phenolato)iodido(methanol)zinc(II)

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: huanghongwei_ycu@126.com

(Received 24 January 2011; accepted 3 February 2011; online 9 February 2011)

The title Schiff base zinc(II) complex, [Zn(C13H10ClN2O)I(CH3OH)], was synthesized by the reaction of 5-chloro­salicyl­aldehyde, 2-amino­methyl­pyridine and zinc iodide in methanol. The ZnII atom is five-coordinated by one phenolate O atom, one imine and one pyridine N atom of the Schiff base ligand, one methanol O atom and one I atom, forming a distorted square-pyramidal geometry, with the I atom at the apical site. The dihedral angle between the benzene and pyridine rings is 22.9 (2)°. In the crystal, centrosymmetrically related mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming dimers.

Related literature

For the structures of Schiff bases and their complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m1672-m1673.]); Datta et al. (2009[Datta, A., Chuang, N.-T., Huang, J.-H. & Lee, H. M. (2009). Acta Cryst. E65, m964.]); Zhao et al. (2010[Zhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.]); Temel et al. (2010[Temel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.]); Naveenkumar et al. (2010[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1918-o1919.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H10ClN2O)I(CH4O)]

  • Mr = 469.99

  • Monoclinic, P 21 /c

  • a = 7.0769 (9) Å

  • b = 12.7212 (16) Å

  • c = 18.225 (2) Å

  • β = 98.994 (1)°

  • V = 1620.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.534, Tmax = 0.564

  • 9273 measured reflections

  • 3522 independent reflections

  • 2947 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.04

  • 3522 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.86 (3) 1.79 (3) 2.643 (3) 176 (3)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their complexes have attracted much attention for their interesting structures (Ali et al., 2008; Eltayeb et al., 2007; Datta et al., 2009; Zhao et al., 2010; Temel et al., 2010; Naveenkumar et al., 2010). In this paper, the title new Schiff base zinc(II) complex, Fig. 1, is reported.

The Zn atom in the complex is five-coordinated by one phenolate O atom, one imine and one pyridine N atoms of the Schiff base ligand, one methanol O atom, and one iodide atom to form a distorted square pyramidal geometry. The dihedral angle between the benzene and the pyridine rings is 22.9 (2)°. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked through intermolecular O—H···N hydrogen bonds (Table 1) to form dimers.

Related literature top

For the structures of Schiff bases and their complexes, see: Ali et al. (2008); Eltayeb et al. (2007); Datta et al. (2009); Zhao et al. (2010); Temel et al. (2010); Naveenkumar et al. (2010).

Experimental top

Equimolar quantities (0.1 mmol each) of 5-chlorosalicylaldehyde, 2-aminomethylpyridine, and zinc iodide were mixed and stirred in methanol for 30 min at reflux. After keeping the filtrate in air for a few days, colourless block crystals suitable for X-ray analysis were formed.

Refinement top

H2 attached to O2 was located from a difference Fourier map, and refined with the O–H distance restrained to 0.85 (1) Å, and with Uiso restrained to 0.08 Å2. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% displacements ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.
(4-Chloro-2-{[(pyridin-2- ylmethyl)imino]methyl}phenolato)iodido(methanol)zinc(II) top
Crystal data top
[Zn(C13H10ClN2O)I(CH4O)]F(000) = 912
Mr = 469.99Dx = 1.926 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3746 reflections
a = 7.0769 (9) Åθ = 2.7–27.8°
b = 12.7212 (16) ŵ = 3.59 mm1
c = 18.225 (2) ÅT = 298 K
β = 98.994 (1)°Block, colorless
V = 1620.5 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3522 independent reflections
Radiation source: fine-focus sealed tube2947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.534, Tmax = 0.564k = 1615
9273 measured reflectionsl = 2317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.3654P]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max = 0.003
195 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.91 e Å3
Crystal data top
[Zn(C13H10ClN2O)I(CH4O)]V = 1620.5 (3) Å3
Mr = 469.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0769 (9) ŵ = 3.59 mm1
b = 12.7212 (16) ÅT = 298 K
c = 18.225 (2) Å0.20 × 0.20 × 0.18 mm
β = 98.994 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3522 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2947 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.564Rint = 0.021
9273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
3522 reflectionsΔρmin = 0.91 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.56550 (5)1.00055 (2)0.370141 (16)0.03411 (9)
Cl10.80941 (15)0.43991 (6)0.42899 (5)0.0673 (3)
I10.20664 (3)1.054046 (16)0.337917 (10)0.04454 (7)
O10.5675 (3)0.87992 (14)0.44157 (10)0.0428 (5)
O20.6619 (3)1.10027 (17)0.45789 (11)0.0461 (5)
N10.6673 (3)0.89862 (17)0.29675 (11)0.0343 (5)
N20.6831 (3)1.10583 (17)0.29614 (12)0.0353 (5)
C10.6966 (4)0.7424 (2)0.37342 (14)0.0331 (6)
C20.6271 (4)0.7827 (2)0.43675 (14)0.0350 (6)
C30.6226 (5)0.7138 (2)0.49658 (16)0.0502 (8)
H30.58190.73880.53940.060*
C40.6768 (5)0.6104 (2)0.49358 (17)0.0517 (8)
H40.67020.56640.53380.062*
C50.7407 (5)0.5715 (2)0.43160 (17)0.0443 (7)
C60.7511 (4)0.6356 (2)0.37262 (16)0.0394 (6)
H60.79510.60860.33100.047*
C70.7123 (4)0.8024 (2)0.30781 (15)0.0357 (6)
H70.75990.76760.26970.043*
C80.6893 (5)0.9462 (2)0.22567 (15)0.0450 (7)
H8A0.57620.93190.18960.054*
H8B0.79830.91500.20760.054*
C90.7177 (4)1.0624 (2)0.23317 (15)0.0364 (6)
C100.7742 (4)1.1230 (3)0.17688 (15)0.0451 (7)
H100.79661.09170.13290.054*
C110.7966 (4)1.2294 (3)0.18702 (17)0.0492 (8)
H110.83361.27120.14990.059*
C120.7637 (4)1.2735 (2)0.25260 (17)0.0480 (7)
H120.78031.34520.26100.058*
C130.7061 (4)1.2099 (2)0.30520 (17)0.0437 (7)
H130.68171.24000.34930.052*
C140.8502 (5)1.1310 (3)0.48795 (17)0.0548 (8)
H14A0.89721.08690.52960.082*
H14B0.84981.20290.50400.082*
H14C0.93151.12400.45070.082*
H20.585 (4)1.104 (2)0.4897 (14)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03959 (19)0.03446 (17)0.03043 (16)0.00566 (13)0.01222 (13)0.00098 (12)
Cl10.0921 (7)0.0349 (4)0.0725 (6)0.0165 (4)0.0054 (5)0.0032 (4)
I10.03836 (12)0.05586 (13)0.04069 (12)0.01147 (9)0.01019 (8)0.00744 (8)
O10.0617 (13)0.0352 (10)0.0351 (10)0.0147 (9)0.0191 (9)0.0028 (8)
O20.0553 (14)0.0511 (12)0.0363 (11)0.0032 (10)0.0210 (10)0.0105 (9)
N10.0387 (13)0.0371 (12)0.0285 (11)0.0009 (10)0.0102 (9)0.0023 (9)
N20.0354 (13)0.0385 (12)0.0333 (12)0.0014 (10)0.0096 (10)0.0029 (10)
C10.0311 (14)0.0365 (14)0.0320 (13)0.0031 (11)0.0055 (11)0.0022 (11)
C20.0359 (15)0.0360 (14)0.0327 (14)0.0056 (11)0.0045 (11)0.0002 (11)
C30.072 (2)0.0460 (17)0.0355 (15)0.0140 (16)0.0157 (15)0.0035 (13)
C40.072 (2)0.0411 (16)0.0431 (17)0.0130 (16)0.0112 (15)0.0108 (14)
C50.0494 (18)0.0337 (14)0.0481 (17)0.0080 (13)0.0023 (14)0.0022 (12)
C60.0381 (16)0.0379 (15)0.0421 (16)0.0038 (12)0.0063 (12)0.0065 (12)
C70.0356 (15)0.0401 (15)0.0330 (14)0.0003 (12)0.0104 (11)0.0102 (12)
C80.061 (2)0.0469 (17)0.0299 (14)0.0002 (14)0.0149 (14)0.0022 (12)
C90.0304 (15)0.0473 (16)0.0323 (14)0.0017 (12)0.0079 (11)0.0051 (12)
C100.0418 (17)0.061 (2)0.0338 (15)0.0001 (14)0.0104 (13)0.0063 (13)
C110.0449 (18)0.0580 (19)0.0461 (17)0.0019 (14)0.0111 (14)0.0198 (15)
C120.0471 (18)0.0418 (16)0.0557 (19)0.0003 (14)0.0101 (15)0.0103 (14)
C130.0485 (18)0.0404 (16)0.0433 (16)0.0046 (13)0.0108 (13)0.0030 (13)
C140.057 (2)0.066 (2)0.0415 (17)0.0016 (17)0.0095 (15)0.0005 (15)
Geometric parameters (Å, º) top
Zn1—O12.0111 (18)C4—C51.373 (4)
Zn1—N12.071 (2)C4—H40.9300
Zn1—O22.071 (2)C5—C61.361 (4)
Zn1—N22.158 (2)C6—H60.9300
Zn1—I12.6060 (5)C7—H70.9300
Cl1—C51.746 (3)C8—C91.496 (4)
O1—C21.314 (3)C8—H8A0.9700
O2—C141.415 (4)C8—H8B0.9700
O2—H20.86 (3)C9—C101.391 (4)
N1—C71.272 (3)C10—C111.372 (4)
N1—C81.460 (3)C10—H100.9300
N2—C91.330 (3)C11—C121.372 (4)
N2—C131.340 (3)C11—H110.9300
C1—C61.412 (4)C12—C131.365 (4)
C1—C21.419 (3)C12—H120.9300
C1—C71.438 (4)C13—H130.9300
C2—C31.403 (4)C14—H14A0.9600
C3—C41.373 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
O1—Zn1—N188.42 (8)C4—C5—Cl1119.8 (2)
O1—Zn1—O289.96 (8)C5—C6—C1121.3 (3)
N1—Zn1—O2140.91 (9)C5—C6—H6119.4
O1—Zn1—N2156.05 (8)C1—C6—H6119.4
N1—Zn1—N277.17 (8)N1—C7—C1126.4 (2)
O2—Zn1—N289.42 (8)N1—C7—H7116.8
O1—Zn1—I1104.65 (6)C1—C7—H7116.8
N1—Zn1—I1116.29 (6)N1—C8—C9111.1 (2)
O2—Zn1—I1101.87 (6)N1—C8—H8A109.4
N2—Zn1—I198.90 (6)C9—C8—H8A109.4
C2—O1—Zn1130.13 (16)N1—C8—H8B109.4
C14—O2—Zn1130.14 (18)C9—C8—H8B109.4
C14—O2—H2112 (2)H8A—C8—H8B108.0
Zn1—O2—H2113 (2)N2—C9—C10121.3 (3)
C7—N1—C8118.7 (2)N2—C9—C8116.7 (2)
C7—N1—Zn1127.11 (18)C10—C9—C8122.0 (2)
C8—N1—Zn1114.18 (16)C11—C10—C9119.2 (3)
C9—N2—C13118.8 (2)C11—C10—H10120.4
C9—N2—Zn1115.00 (17)C9—C10—H10120.4
C13—N2—Zn1125.93 (18)C12—C11—C10119.2 (3)
C6—C1—C2119.1 (2)C12—C11—H11120.4
C6—C1—C7116.5 (2)C10—C11—H11120.4
C2—C1—C7124.4 (2)C13—C12—C11118.7 (3)
O1—C2—C3119.3 (2)C13—C12—H12120.7
O1—C2—C1123.4 (2)C11—C12—H12120.7
C3—C2—C1117.3 (2)N2—C13—C12122.9 (3)
C4—C3—C2121.8 (3)N2—C13—H13118.6
C4—C3—H3119.1C12—C13—H13118.6
C2—C3—H3119.1O2—C14—H14A109.5
C5—C4—C3120.5 (3)O2—C14—H14B109.5
C5—C4—H4119.7H14A—C14—H14B109.5
C3—C4—H4119.7O2—C14—H14C109.5
C6—C5—C4120.0 (3)H14A—C14—H14C109.5
C6—C5—Cl1120.2 (2)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.86 (3)1.79 (3)2.643 (3)176 (3)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C13H10ClN2O)I(CH4O)]
Mr469.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.0769 (9), 12.7212 (16), 18.225 (2)
β (°) 98.994 (1)
V3)1620.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.534, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
9273, 3522, 2947
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.04
No. of reflections3522
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.91

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.86 (3)1.79 (3)2.643 (3)176 (3)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A., Chuang, N.-T., Huang, J.-H. & Lee, H. M. (2009). Acta Cryst. E65, m964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m1672–m1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1918–o1919.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds