metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Cyano­benz­yl)-3,5-di­methyl­pyridinium bis­­(benzene-1,2-di­thiol­ato)nickelate(III)

aSchool of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@aqtc.edu.cn

(Received 28 January 2011; accepted 9 February 2011; online 16 February 2011)

The asymmetric unit of the title compound, (C15H15N2)[Ni(C6H4S2)2], contains half each of two independent centrosymmetric anions and a single cation in a general position. The NiIII ions are coordinated by four S atoms in a square-planar geometry. The anions exhibit two packing modes, viz. stacked along the a axis in a face-to-face fashion with an alternate arrangement of anions and cations, and stacked in a side-by-side fashion, forming ribbons parallel to (011).

Related literature

For general background to mol­ecular-based magnetic materials, see: Jones (1997[Jones, W. (1997). Organic Molecular Solid: Properties and Applications. Boca Raton, New York: CRC Press.]); Akutagawa et al. (2009[Akutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S. -I., Takahashi, H., Kumai, R., Tokura, Y., & Nakamura, T. (2009). Nat. Mater. 8, 342-346.]). For the role played by the size and shape of the counter-cations in determining the ground-state properties of the resulting materials, see: Ren et al. (2003[Ren, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & Wu, P. H. (2003). Dalton Trans. pp. 1345-1351.]). For related structures, see: Sellmann et al. (1991[Sellmann, D., Funfgelder, S., Knoch, F. & Moll, M. (1991). Z. Naturforsch. Teil B, 46, 1601-1605.]); Xie et al. (2002[Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.], 2003[Xie, J. L., Ren, X. M., He, C., Song, Y., Duan, C. Y., Gao, S. & Meng, Q. J. (2003). Polyhedron, 22, 299-305.]); Ren et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem. 41, 5686-5692.]).

[Scheme 1]

Experimental

Crystal data
  • (C15H15N2)[Ni(C6H4S2)2]

  • Mr = 562.42

  • Triclinic, [P \overline 1]

  • a = 7.1517 (7) Å

  • b = 12.8190 (13) Å

  • c = 15.3294 (16) Å

  • α = 69.774 (1)°

  • β = 77.740 (1)°

  • γ = 87.721 (1)°

  • V = 1287.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.749

  • 6530 measured reflections

  • 4530 independent reflections

  • 3728 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.02

  • 4530 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular solids with particular functionality are continuously paid much attention by chemists and physicists in the field of materials science (Jones, 1997). The preparation of new molecular based spin-bearing systems, among others, has been pursued from the viewpoint of materials/physical organic chemistry to develop novel molecular-based magnetic materials (Akutagawa et al., 2009). In our previous research using benzylpyridinium derivatives ([RBzPy]+) as the counter-cation of [M(mnt)2]- (where M = Ni, Pd and Pt and mnt2- = maleodinitriledithiolate), a series of ion-pair compounds with segregated columnar stacks of cations and anions has been prepared (Ren et al., 2002; Ren et al., 2003; Xie et al., 2002). The quasi one-dimensional magnetic nature of these compounds was attributed to intermolecular orbital interactions within the anionic columns. As an extension of our work on this series of complexes, we report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains half each of two independent centrosymmetric [Ni(C6H4S2)2]- anions and one (C15H15N2)+ cation. In the anions, the nickel(III) ions are coordinated by four S atoms in a square-planar geometry; the Ni—S bonds and S—Ni—S angles are in agreement with the corresponding values found in analogous complexes (Sellmann et al., 1991; Xie et al., 2003). The centrosymmetric [Ni(C6H4S2)2]- anions are almost planar. The dihedral angle between the two benzene rings of the cation is 86.49 (6)°. In the crystal structure, the packing of the two anions is different (Fig. 2). The Ni1-containing anions stack in a side-by-side fashion, forming one-dimensional ribbons parallel to (011); the shortest distance between the adjacent nickel(III) ions is 7.152 (6) Å. The Ni2-containing anions stack in a face-to-face fashion along the a axis with an alternating arrangement of [Ni(C6H4S2)2]- anions and [C15H15N2]+ cations such that the pyridine ring of the cation lies above the benzene ring of the anion. The shortest distance between adjacent nickel(III) ions is also 7.152 (6) Å. A Ni···Ni distance of 8.155 (9)Å is found between adjacent Ni1-containing and Ni2-containing anions.

Related literature top

For general background to molecular-based magnetic materials, see: Jones (1997); Akutagawa et al. (2009). For the role played by the size and shape of the counter-cations in determining the ground-state properties of the resulting materials, see: Ren et al. (2003). For related structures, see: Sellmann et al. (1991); Xie et al. (2002, 2003); Ren et al. (2002).

Experimental top

Benzene-1,2-dithiol (142 mg, 1.0 mmol) was added to a solution of sodium metal (46 mg, 2.0 mmol) in absolute ethanol (25 ml), under a nitrogen atmosphere at room temperature. A solution of NiCl2.6H2O (120 mg, 0.5 mmol) in ethanol (25 ml) was added, resulting in the mixture turning a muddy red-brown colour. Following this, [CNBzPy(CH3)2]Br (304 mg, 1.0 mmol) was added and the mixture allowed to stand with stirring for 1 h, and then stirred for an additional 24 h in air. The colour of the mixture gradually turned green, indicating oxidation from a dianionic species to the more stable monoanionic form. The precipitate was washed with absolute ethanol and diethyl ether and then dried. The crude product was recrystallized twice from dichloromethane to give the title compound (yield 198 mg, 54%).

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C–H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) 1-x, 1-y, 1-z; (B) 1-x, 2-y, -z.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the a axis.
1-(4-Cyanobenzyl)-3,5-dimethylpyridinium bis(benzene-1,2-dithiolato)nickelate(III) top
Crystal data top
(C15H15N2)[Ni(C6H4S2)2]Z = 2
Mr = 562.42F(000) = 582
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1517 (7) ÅCell parameters from 3577 reflections
b = 12.8190 (13) Åθ = 2.6–27.0°
c = 15.3294 (16) ŵ = 1.10 mm1
α = 69.774 (1)°T = 296 K
β = 77.740 (1)°Block, dark green
γ = 87.721 (1)°0.36 × 0.30 × 0.28 mm
V = 1287.8 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4530 independent reflections
Radiation source: sealed tube3728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.694, Tmax = 0.749k = 1215
6530 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
4530 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C15H15N2)[Ni(C6H4S2)2]γ = 87.721 (1)°
Mr = 562.42V = 1287.8 (2) Å3
Triclinic, P1Z = 2
a = 7.1517 (7) ÅMo Kα radiation
b = 12.8190 (13) ŵ = 1.10 mm1
c = 15.3294 (16) ÅT = 296 K
α = 69.774 (1)°0.36 × 0.30 × 0.28 mm
β = 77.740 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3728 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.749Rint = 0.042
6530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4530 reflectionsΔρmin = 0.39 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.05051 (14)
Ni20.50001.00000.00000.06279 (16)
S10.38833 (9)0.43210 (6)0.41084 (5)0.06354 (19)
S20.78410 (8)0.44650 (5)0.45826 (4)0.05774 (17)
S30.52163 (10)0.85288 (5)0.11833 (6)0.0751 (2)
S40.44027 (9)1.09946 (6)0.09034 (6)0.0758 (2)
C10.5817 (3)0.3696 (2)0.36074 (16)0.0563 (6)
C20.5622 (4)0.3134 (2)0.29922 (18)0.0710 (7)
H20.44290.30680.28620.085*
C30.7171 (4)0.2681 (3)0.2582 (2)0.0800 (8)
H30.70240.23060.21770.096*
C40.8974 (4)0.2777 (2)0.2765 (2)0.0779 (8)
H41.00260.24720.24800.093*
C50.9189 (4)0.3322 (2)0.33656 (18)0.0674 (7)
H51.03940.33920.34820.081*
C60.7616 (3)0.37727 (19)0.38061 (15)0.0544 (5)
C70.4721 (4)0.8937 (2)0.2174 (2)0.0750 (8)
C80.4671 (4)0.8185 (3)0.3089 (3)0.0933 (10)
H80.48840.74380.31780.112*
C90.4315 (5)0.8526 (4)0.3851 (3)0.1155 (14)
H90.42980.80140.44560.139*
C100.3978 (5)0.9626 (5)0.3733 (3)0.1139 (14)
H100.37530.98510.42610.137*
C110.3969 (4)1.0402 (3)0.2847 (3)0.0971 (10)
H110.37121.11400.27790.116*
C120.4356 (3)1.0061 (2)0.2045 (2)0.0734 (7)
C130.7251 (6)0.5985 (3)0.0472 (2)0.0964 (10)
C140.8167 (5)0.6096 (2)0.0246 (2)0.0708 (7)
C151.0079 (5)0.6423 (2)0.0003 (2)0.0809 (8)
H151.07730.65440.06120.097*
C161.0958 (4)0.6572 (2)0.06717 (19)0.0723 (7)
H161.22450.67960.05050.087*
C170.9938 (4)0.63901 (18)0.15919 (17)0.0571 (6)
C180.8028 (4)0.60457 (19)0.18304 (18)0.0614 (6)
H180.73380.59160.24470.074*
C190.7138 (4)0.5892 (2)0.1172 (2)0.0713 (7)
H190.58580.56540.13430.086*
C201.0872 (4)0.65782 (19)0.23205 (18)0.0632 (6)
H20A1.05770.59440.29060.076*
H20B1.22500.66350.20930.076*
C210.9853 (4)0.7593 (2)0.34242 (17)0.0622 (6)
H210.99520.69360.39180.075*
C220.9338 (4)0.8545 (2)0.36168 (17)0.0648 (7)
C230.9208 (3)0.9501 (2)0.28705 (17)0.0597 (6)
H230.88531.01500.29950.072*
C240.9592 (3)0.95288 (18)0.19364 (15)0.0512 (5)
C251.0102 (3)0.85467 (18)0.17933 (15)0.0509 (5)
H251.03740.85320.11770.061*
C260.8910 (5)0.8506 (3)0.46412 (19)0.0950 (10)
H26A0.85740.92310.46610.142*
H26B1.00230.82770.49070.142*
H26C0.78640.79850.50040.142*
C270.9439 (3)1.0558 (2)0.11151 (17)0.0617 (6)
H27A1.06691.07610.06920.093*
H27B0.90121.11530.13460.093*
H27C0.85361.04220.07810.093*
N10.6563 (6)0.5905 (3)0.1048 (2)0.1353 (14)
N21.0217 (3)0.76078 (14)0.25195 (12)0.0528 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0451 (2)0.0580 (3)0.0509 (2)0.00616 (18)0.01511 (17)0.01801 (19)
Ni20.0386 (2)0.0489 (3)0.0962 (4)0.00137 (17)0.0198 (2)0.0160 (2)
S10.0478 (3)0.0842 (4)0.0722 (4)0.0036 (3)0.0202 (3)0.0387 (3)
S20.0473 (3)0.0721 (4)0.0593 (3)0.0029 (3)0.0192 (3)0.0244 (3)
S30.0622 (4)0.0528 (4)0.1011 (5)0.0018 (3)0.0223 (4)0.0121 (3)
S40.0527 (4)0.0594 (4)0.1193 (6)0.0036 (3)0.0267 (4)0.0308 (4)
C10.0559 (14)0.0622 (14)0.0501 (12)0.0090 (11)0.0119 (10)0.0171 (11)
C20.0641 (16)0.0864 (18)0.0730 (16)0.0116 (14)0.0170 (13)0.0376 (15)
C30.083 (2)0.090 (2)0.0773 (18)0.0109 (16)0.0060 (15)0.0465 (16)
C40.0702 (18)0.088 (2)0.0779 (18)0.0033 (15)0.0050 (14)0.0381 (16)
C50.0548 (15)0.0792 (18)0.0669 (15)0.0004 (12)0.0127 (12)0.0235 (14)
C60.0538 (13)0.0553 (13)0.0505 (12)0.0052 (10)0.0133 (10)0.0118 (10)
C70.0439 (14)0.0775 (19)0.095 (2)0.0151 (12)0.0167 (13)0.0157 (16)
C80.0681 (19)0.099 (2)0.095 (2)0.0250 (17)0.0201 (17)0.006 (2)
C90.082 (2)0.150 (4)0.098 (3)0.045 (3)0.019 (2)0.018 (3)
C100.077 (2)0.165 (4)0.102 (3)0.036 (3)0.007 (2)0.052 (3)
C110.0607 (18)0.113 (3)0.129 (3)0.0204 (17)0.0139 (19)0.057 (3)
C120.0415 (13)0.0823 (19)0.096 (2)0.0117 (12)0.0158 (13)0.0276 (16)
C130.131 (3)0.077 (2)0.090 (2)0.0043 (19)0.047 (2)0.0267 (18)
C140.095 (2)0.0486 (14)0.0756 (17)0.0042 (13)0.0351 (16)0.0201 (13)
C150.113 (3)0.0626 (17)0.0636 (16)0.0043 (16)0.0130 (16)0.0199 (13)
C160.0724 (18)0.0616 (16)0.0770 (18)0.0079 (13)0.0066 (14)0.0209 (14)
C170.0669 (15)0.0398 (12)0.0625 (14)0.0040 (10)0.0202 (12)0.0113 (10)
C180.0655 (15)0.0529 (14)0.0629 (14)0.0007 (11)0.0178 (12)0.0137 (11)
C190.0727 (17)0.0596 (15)0.0846 (19)0.0003 (13)0.0283 (15)0.0213 (14)
C200.0626 (15)0.0515 (14)0.0749 (16)0.0057 (11)0.0262 (13)0.0145 (12)
C210.0633 (15)0.0659 (16)0.0537 (14)0.0124 (12)0.0227 (11)0.0084 (12)
C220.0615 (15)0.0786 (18)0.0563 (14)0.0147 (13)0.0149 (12)0.0226 (14)
C230.0522 (14)0.0626 (15)0.0682 (15)0.0056 (11)0.0131 (11)0.0265 (13)
C240.0393 (11)0.0540 (13)0.0609 (13)0.0056 (9)0.0159 (10)0.0168 (11)
C250.0479 (12)0.0544 (13)0.0508 (12)0.0033 (10)0.0187 (10)0.0132 (10)
C260.114 (3)0.114 (3)0.0588 (16)0.019 (2)0.0142 (16)0.0323 (17)
C270.0556 (14)0.0527 (13)0.0729 (15)0.0009 (10)0.0198 (12)0.0130 (12)
N10.186 (4)0.134 (3)0.112 (2)0.004 (3)0.083 (3)0.044 (2)
N20.0505 (11)0.0507 (11)0.0562 (11)0.0044 (8)0.0207 (9)0.0109 (9)
Geometric parameters (Å, º) top
Ni1—S12.1459 (6)C13—C141.443 (4)
Ni1—S1i2.1459 (6)C14—C151.380 (4)
Ni1—S22.1560 (6)C14—C191.392 (4)
Ni1—S2i2.1560 (6)C15—C161.379 (4)
Ni2—S3ii2.1451 (7)C15—H150.9300
Ni2—S32.1451 (7)C16—C171.388 (4)
Ni2—S4ii2.1569 (8)C16—H160.9300
Ni2—S42.1569 (8)C17—C181.385 (3)
S1—C11.741 (3)C17—C201.506 (3)
S2—C61.747 (2)C18—C191.372 (3)
S3—C71.735 (3)C18—H180.9300
S4—C121.739 (3)C19—H190.9300
C1—C61.399 (3)C20—N21.491 (3)
C1—C21.400 (3)C20—H20A0.9700
C2—C31.366 (4)C20—H20B0.9700
C2—H20.9300C21—N21.349 (3)
C3—C41.395 (4)C21—C221.370 (4)
C3—H30.9300C21—H210.9300
C4—C51.368 (4)C22—C231.373 (4)
C4—H40.9300C22—C261.518 (4)
C5—C61.397 (4)C23—C241.388 (3)
C5—H50.9300C23—H230.9300
C7—C81.395 (4)C24—C251.374 (3)
C7—C121.407 (4)C24—C271.496 (3)
C8—C91.356 (5)C25—N21.341 (3)
C8—H80.9300C25—H250.9300
C9—C101.377 (6)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—C111.379 (5)C26—H26C0.9600
C10—H100.9300C27—H27A0.9600
C11—C121.414 (4)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C13—N11.133 (4)
S1—Ni1—S1i180.00 (3)C15—C14—C13119.2 (3)
S1—Ni1—S292.04 (2)C19—C14—C13120.8 (3)
S1i—Ni1—S287.97 (2)C16—C15—C14119.9 (3)
S1—Ni1—S2i87.97 (2)C16—C15—H15120.0
S1i—Ni1—S2i92.03 (2)C14—C15—H15120.0
S2—Ni1—S2i180.0C15—C16—C17120.5 (3)
S3ii—Ni2—S3180.00 (4)C15—C16—H16119.8
S3ii—Ni2—S4ii91.75 (3)C17—C16—H16119.8
S3—Ni2—S4ii88.25 (3)C18—C17—C16119.0 (2)
S3ii—Ni2—S488.25 (3)C18—C17—C20120.1 (2)
S3—Ni2—S491.75 (3)C16—C17—C20120.9 (2)
S4ii—Ni2—S4180.00 (2)C19—C18—C17121.1 (2)
C1—S1—Ni1104.89 (8)C19—C18—H18119.5
C6—S2—Ni1104.81 (8)C17—C18—H18119.5
C7—S3—Ni2105.49 (11)C18—C19—C14119.5 (3)
C12—S4—Ni2104.82 (11)C18—C19—H19120.3
C6—C1—C2119.0 (2)C14—C19—H19120.3
C6—C1—S1119.51 (18)N2—C20—C17112.08 (18)
C2—C1—S1121.47 (19)N2—C20—H20A109.2
C3—C2—C1120.5 (3)C17—C20—H20A109.2
C3—C2—H2119.7N2—C20—H20B109.2
C1—C2—H2119.7C17—C20—H20B109.2
C2—C3—C4120.5 (3)H20A—C20—H20B107.9
C2—C3—H3119.8N2—C21—C22120.2 (2)
C4—C3—H3119.8N2—C21—H21119.9
C5—C4—C3119.7 (3)C22—C21—H21119.9
C5—C4—H4120.1C21—C22—C23118.4 (2)
C3—C4—H4120.1C21—C22—C26119.2 (3)
C4—C5—C6120.7 (2)C23—C22—C26122.3 (3)
C4—C5—H5119.7C22—C23—C24122.0 (2)
C6—C5—H5119.7C22—C23—H23119.0
C5—C6—C1119.5 (2)C24—C23—H23119.0
C5—C6—S2121.75 (19)C25—C24—C23116.6 (2)
C1—C6—S2118.69 (19)C25—C24—C27120.6 (2)
C8—C7—C12119.3 (3)C23—C24—C27122.8 (2)
C8—C7—S3122.0 (3)N2—C25—C24121.7 (2)
C12—C7—S3118.7 (2)N2—C25—H25119.1
C9—C8—C7121.0 (4)C24—C25—H25119.1
C9—C8—H8119.5C22—C26—H26A109.5
C7—C8—H8119.5C22—C26—H26B109.5
C8—C9—C10120.2 (4)H26A—C26—H26B109.5
C8—C9—H9119.9C22—C26—H26C109.5
C10—C9—H9119.9H26A—C26—H26C109.5
C9—C10—C11121.3 (4)H26B—C26—H26C109.5
C9—C10—H10119.4C24—C27—H27A109.5
C11—C10—H10119.4C24—C27—H27B109.5
C10—C11—C12119.1 (4)H27A—C27—H27B109.5
C10—C11—H11120.4C24—C27—H27C109.5
C12—C11—H11120.4H27A—C27—H27C109.5
C7—C12—C11119.0 (3)H27B—C27—H27C109.5
C7—C12—S4119.2 (2)C25—N2—C21121.1 (2)
C11—C12—S4121.8 (3)C25—N2—C20119.51 (19)
N1—C13—C14178.7 (4)C21—N2—C20119.3 (2)
C15—C14—C19120.0 (2)
S2—Ni1—S1—C12.24 (8)C8—C7—C12—S4179.55 (19)
S2i—Ni1—S1—C1177.76 (8)S3—C7—C12—S40.3 (3)
S1—Ni1—S2—C61.49 (8)C10—C11—C12—C70.6 (4)
S1i—Ni1—S2—C6178.51 (8)C10—C11—C12—S4179.1 (2)
S4ii—Ni2—S3—C7177.93 (9)Ni2—S4—C12—C71.4 (2)
S4—Ni2—S3—C72.07 (9)Ni2—S4—C12—C11179.0 (2)
S3ii—Ni2—S4—C12178.07 (8)C19—C14—C15—C161.4 (4)
S3—Ni2—S4—C121.93 (8)C13—C14—C15—C16177.7 (3)
Ni1—S1—C1—C62.8 (2)C14—C15—C16—C170.3 (4)
Ni1—S1—C1—C2178.49 (18)C15—C16—C17—C180.7 (4)
C6—C1—C2—C30.9 (4)C15—C16—C17—C20178.4 (2)
S1—C1—C2—C3177.8 (2)C16—C17—C18—C190.5 (4)
C1—C2—C3—C40.4 (4)C20—C17—C18—C19178.6 (2)
C2—C3—C4—C50.5 (5)C17—C18—C19—C140.6 (4)
C3—C4—C5—C60.7 (4)C15—C14—C19—C181.5 (4)
C4—C5—C6—C12.0 (4)C13—C14—C19—C18177.5 (3)
C4—C5—C6—S2179.6 (2)C18—C17—C20—N272.8 (3)
C2—C1—C6—C52.1 (3)C16—C17—C20—N2106.3 (3)
S1—C1—C6—C5176.67 (18)N2—C21—C22—C230.1 (3)
C2—C1—C6—S2179.45 (18)N2—C21—C22—C26179.2 (2)
S1—C1—C6—S21.8 (3)C21—C22—C23—C240.3 (3)
Ni1—S2—C6—C5178.62 (18)C26—C22—C23—C24179.7 (2)
Ni1—S2—C6—C10.16 (19)C22—C23—C24—C250.3 (3)
Ni2—S3—C7—C8178.04 (19)C22—C23—C24—C27179.3 (2)
Ni2—S3—C7—C121.8 (2)C23—C24—C25—N20.2 (3)
C12—C7—C8—C91.4 (4)C27—C24—C25—N2178.85 (19)
S3—C7—C8—C9178.8 (2)C24—C25—N2—C210.7 (3)
C7—C8—C9—C100.6 (5)C24—C25—N2—C20177.0 (2)
C8—C9—C10—C110.8 (6)C22—C21—N2—C250.6 (3)
C9—C10—C11—C121.4 (5)C22—C21—N2—C20176.9 (2)
C8—C7—C12—C110.8 (4)C17—C20—N2—C2544.8 (3)
S3—C7—C12—C11179.4 (2)C17—C20—N2—C21138.9 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C15H15N2)[Ni(C6H4S2)2]
Mr562.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1517 (7), 12.8190 (13), 15.3294 (16)
α, β, γ (°)69.774 (1), 77.740 (1), 87.721 (1)
V3)1287.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.36 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.694, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
6530, 4530, 3728
Rint0.042
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections4530
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Anhui Province (No. 11040606M45).

References

First citationAkutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S. -I., Takahashi, H., Kumai, R., Tokura, Y., & Nakamura, T. (2009). Nat. Mater. 8, 342–346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, W. (1997). Organic Molecular Solid: Properties and Applications. Boca Raton, New York: CRC Press.  Google Scholar
First citationRen, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & Wu, P. H. (2003). Dalton Trans. pp. 1345–1351.  Web of Science CSD CrossRef Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem. 41, 5686–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSellmann, D., Funfgelder, S., Knoch, F. & Moll, M. (1991). Z. Naturforsch. Teil B, 46, 1601–1605.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. L., Ren, X. M., He, C., Song, Y., Duan, C. Y., Gao, S. & Meng, Q. J. (2003). Polyhedron, 22, 299–305.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds