organic compounds
Methyl 2-(1H-indole-3-carboxamido)acetate
aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com
The title compound, C12H12N2O3, was synthesized by condensation of methyl aminoacetate with 3-trichloroacetylindole. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules into chains parallel to the b axis. The chains are further connected into a three-dimensional network by N—H⋯O hydrogen bonds involving the indole N atom. In the molecule, the indole skeleton is nearly planar [maximum deviation = 0.012 (1) Å] and the mean plane of the amido group is twisted from the mean plane of indole ring by 17.2 (1)°.
Related literature
For the bioactivity of indole derivatives, see: Di Fabio et al. (2007); Sharma & Tepe (2004). For related structures, see: Huang et al. (2009, 2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811006660/rz2556sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006660/rz2556Isup2.hkl
The hydrochloric acid salt of methyl aminoacetate (0.63 g, 5 mmol) and 3-trichloroacetylindole (1.32 g, 5 mmol) were added to acetonitrile (10 ml), followed by the dropwise addition of triethylamine (1.2 ml). The mixture was stirred at room temperature for 12 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature, light yellow orthorhombic crystals suitable for X-ray analysis (m.p. 448 K, 89.2% yield) grew over a period of one week on slow evaporation of the solvent.
All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically [C—H = 0.99Å for CH2, 0.98Å for CH3, 0.95Å for CH(aromatic) and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom. Friedel pairs were not merged in the refinement
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H12N2O3 | Dx = 1.322 Mg m−3 |
Mr = 232.24 | Melting point: 448 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1985 reflections |
a = 8.0024 (2) Å | θ = 4.8–62.6° |
b = 9.1279 (2) Å | µ = 0.80 mm−1 |
c = 15.9767 (3) Å | T = 150 K |
V = 1167.02 (4) Å3 | Prism, light yellow |
Z = 4 | 0.49 × 0.17 × 0.12 mm |
F(000) = 488 |
Oxford Gemini S Ultra area-detector diffractometer | 1642 independent reflections |
Radiation source: fine-focus sealed tube | 1613 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 62.7°, θmin = 5.6° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −5→9 |
Tmin = 0.694, Tmax = 0.910 | k = −10→8 |
2269 measured reflections | l = −18→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0803P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.011 |
1642 reflections | Δρmax = 0.13 e Å−3 |
155 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 568 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.2 (3) |
C12H12N2O3 | V = 1167.02 (4) Å3 |
Mr = 232.24 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 8.0024 (2) Å | µ = 0.80 mm−1 |
b = 9.1279 (2) Å | T = 150 K |
c = 15.9767 (3) Å | 0.49 × 0.17 × 0.12 mm |
Oxford Gemini S Ultra area-detector diffractometer | 1642 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1613 reflections with I > 2σ(I) |
Tmin = 0.694, Tmax = 0.910 | Rint = 0.016 |
2269 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | Δρmax = 0.13 e Å−3 |
S = 1.05 | Δρmin = −0.14 e Å−3 |
1642 reflections | Absolute structure: Flack (1983), 568 Friedel pairs |
155 parameters | Absolute structure parameter: −0.2 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8259 (2) | 0.08538 (18) | 0.12627 (10) | 0.0418 (4) | |
H1 | 0.9222 | 0.0261 | 0.1184 | 0.050* | |
N1 | 0.68538 (19) | 0.07824 (16) | 0.07961 (9) | 0.0491 (4) | |
H1A | 0.6691 | 0.0180 | 0.0374 | 0.059* | |
C8 | 0.5711 (2) | 0.17992 (19) | 0.10821 (10) | 0.0451 (4) | |
C3 | 0.6450 (2) | 0.25391 (16) | 0.17586 (9) | 0.0400 (4) | |
C4 | 0.5524 (2) | 0.36258 (18) | 0.21720 (11) | 0.0498 (4) | |
H4 | 0.5985 | 0.4145 | 0.2633 | 0.060* | |
C5 | 0.3925 (3) | 0.3921 (2) | 0.18931 (12) | 0.0608 (5) | |
H5 | 0.3288 | 0.4657 | 0.2167 | 0.073* | |
C6 | 0.3219 (3) | 0.3166 (3) | 0.12172 (14) | 0.0660 (6) | |
H6 | 0.2115 | 0.3397 | 0.1044 | 0.079* | |
C7 | 0.4094 (3) | 0.2099 (2) | 0.08007 (12) | 0.0593 (5) | |
H7 | 0.3621 | 0.1586 | 0.0341 | 0.071* | |
C9 | 0.9272 (2) | 0.22893 (16) | 0.25277 (10) | 0.0383 (4) | |
C10 | 1.1689 (2) | 0.1685 (2) | 0.33471 (10) | 0.0432 (4) | |
H10A | 1.2129 | 0.2687 | 0.3260 | 0.052* | |
H10B | 1.2642 | 0.0995 | 0.3315 | 0.052* | |
C11 | 1.0915 (2) | 0.15897 (18) | 0.42041 (10) | 0.0394 (4) | |
C12 | 1.1129 (3) | 0.2444 (3) | 0.55958 (11) | 0.0767 (7) | |
H12A | 1.1425 | 0.1492 | 0.5839 | 0.115* | |
H12B | 0.9915 | 0.2577 | 0.5621 | 0.115* | |
H12C | 1.1680 | 0.3226 | 0.5912 | 0.115* | |
C2 | 0.8088 (2) | 0.19136 (16) | 0.18683 (10) | 0.0380 (4) | |
N2 | 1.05189 (17) | 0.13476 (14) | 0.26902 (8) | 0.0419 (3) | |
H2 | 1.0620 | 0.0534 | 0.2399 | 0.050* | |
O1 | 0.91340 (16) | 0.34378 (12) | 0.29446 (7) | 0.0476 (3) | |
O2 | 0.97901 (16) | 0.07845 (14) | 0.43919 (8) | 0.0561 (4) | |
O3 | 1.16709 (15) | 0.24943 (15) | 0.47336 (7) | 0.0549 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0480 (9) | 0.0397 (8) | 0.0377 (8) | 0.0024 (8) | −0.0025 (8) | −0.0015 (7) |
N1 | 0.0594 (9) | 0.0479 (8) | 0.0401 (7) | 0.0050 (8) | −0.0094 (7) | −0.0091 (7) |
C8 | 0.0508 (10) | 0.0442 (9) | 0.0404 (9) | 0.0019 (8) | −0.0013 (8) | 0.0033 (8) |
C3 | 0.0511 (9) | 0.0351 (8) | 0.0339 (7) | 0.0003 (7) | 0.0034 (8) | 0.0053 (7) |
C4 | 0.0644 (11) | 0.0433 (8) | 0.0417 (9) | 0.0059 (9) | 0.0127 (9) | 0.0024 (8) |
C5 | 0.0680 (12) | 0.0583 (11) | 0.0561 (11) | 0.0205 (10) | 0.0158 (11) | 0.0109 (9) |
C6 | 0.0540 (11) | 0.0778 (14) | 0.0662 (13) | 0.0175 (11) | 0.0044 (11) | 0.0201 (12) |
C7 | 0.0564 (11) | 0.0669 (12) | 0.0546 (11) | 0.0039 (11) | −0.0117 (10) | 0.0074 (10) |
C9 | 0.0491 (9) | 0.0338 (7) | 0.0319 (7) | −0.0079 (7) | 0.0056 (7) | 0.0023 (7) |
C10 | 0.0386 (8) | 0.0511 (9) | 0.0398 (8) | −0.0043 (8) | 0.0017 (8) | −0.0026 (8) |
C11 | 0.0371 (8) | 0.0409 (8) | 0.0403 (9) | −0.0010 (8) | −0.0037 (7) | 0.0024 (7) |
C12 | 0.0694 (13) | 0.1237 (19) | 0.0370 (9) | −0.0244 (14) | 0.0026 (10) | −0.0143 (12) |
C2 | 0.0483 (9) | 0.0319 (8) | 0.0337 (8) | −0.0024 (7) | 0.0030 (7) | 0.0011 (6) |
N2 | 0.0491 (8) | 0.0394 (6) | 0.0372 (7) | −0.0002 (6) | 0.0000 (6) | −0.0061 (6) |
O1 | 0.0636 (7) | 0.0346 (5) | 0.0446 (6) | −0.0035 (6) | −0.0024 (6) | −0.0080 (5) |
O2 | 0.0574 (7) | 0.0629 (7) | 0.0481 (7) | −0.0217 (7) | 0.0045 (6) | 0.0062 (6) |
O3 | 0.0528 (7) | 0.0742 (8) | 0.0376 (6) | −0.0197 (7) | −0.0002 (6) | −0.0072 (7) |
C1—N1 | 1.351 (2) | C7—H7 | 0.9500 |
C1—C2 | 1.375 (2) | C9—O1 | 1.2470 (19) |
C1—H1 | 0.9500 | C9—N2 | 1.342 (2) |
N1—C8 | 1.381 (2) | C9—C2 | 1.458 (2) |
N1—H1A | 0.8800 | C10—N2 | 1.440 (2) |
C8—C7 | 1.397 (3) | C10—C11 | 1.505 (2) |
C8—C3 | 1.405 (2) | C10—H10A | 0.9900 |
C3—C4 | 1.403 (2) | C10—H10B | 0.9900 |
C3—C2 | 1.440 (2) | C11—O2 | 1.2002 (19) |
C4—C5 | 1.381 (3) | C11—O3 | 1.328 (2) |
C4—H4 | 0.9500 | C12—O3 | 1.445 (2) |
C5—C6 | 1.400 (3) | C12—H12A | 0.9800 |
C5—H5 | 0.9500 | C12—H12B | 0.9800 |
C6—C7 | 1.372 (3) | C12—H12C | 0.9800 |
C6—H6 | 0.9500 | N2—H2 | 0.8800 |
N1—C1—C2 | 109.84 (15) | O1—C9—C2 | 121.73 (15) |
N1—C1—H1 | 125.1 | N2—C9—C2 | 118.18 (13) |
C2—C1—H1 | 125.1 | N2—C10—C11 | 112.53 (13) |
C1—N1—C8 | 109.64 (14) | N2—C10—H10A | 109.1 |
C1—N1—H1A | 125.2 | C11—C10—H10A | 109.1 |
C8—N1—H1A | 125.2 | N2—C10—H10B | 109.1 |
N1—C8—C7 | 129.68 (17) | C11—C10—H10B | 109.1 |
N1—C8—C3 | 107.41 (15) | H10A—C10—H10B | 107.8 |
C7—C8—C3 | 122.90 (17) | O2—C11—O3 | 124.28 (16) |
C4—C3—C8 | 118.67 (16) | O2—C11—C10 | 124.84 (15) |
C4—C3—C2 | 134.70 (16) | O3—C11—C10 | 110.86 (14) |
C8—C3—C2 | 106.61 (14) | O3—C12—H12A | 109.5 |
C5—C4—C3 | 118.38 (18) | O3—C12—H12B | 109.5 |
C5—C4—H4 | 120.8 | H12A—C12—H12B | 109.5 |
C3—C4—H4 | 120.8 | O3—C12—H12C | 109.5 |
C4—C5—C6 | 121.75 (18) | H12A—C12—H12C | 109.5 |
C4—C5—H5 | 119.1 | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 119.1 | C1—C2—C3 | 106.50 (14) |
C7—C6—C5 | 121.2 (2) | C1—C2—C9 | 127.52 (15) |
C7—C6—H6 | 119.4 | C3—C2—C9 | 125.89 (14) |
C5—C6—H6 | 119.4 | C9—N2—C10 | 119.16 (13) |
C6—C7—C8 | 117.10 (19) | C9—N2—H2 | 120.4 |
C6—C7—H7 | 121.4 | C10—N2—H2 | 120.4 |
C8—C7—H7 | 121.4 | C11—O3—C12 | 116.79 (14) |
O1—C9—N2 | 120.08 (15) | ||
C2—C1—N1—C8 | 0.05 (19) | N1—C1—C2—C3 | −0.22 (18) |
C1—N1—C8—C7 | −178.97 (19) | N1—C1—C2—C9 | 176.50 (15) |
C1—N1—C8—C3 | 0.15 (19) | C4—C3—C2—C1 | 178.82 (17) |
N1—C8—C3—C4 | −179.08 (14) | C8—C3—C2—C1 | 0.30 (17) |
C7—C8—C3—C4 | 0.1 (3) | C4—C3—C2—C9 | 2.0 (3) |
N1—C8—C3—C2 | −0.28 (18) | C8—C3—C2—C9 | −176.48 (14) |
C7—C8—C3—C2 | 178.92 (16) | O1—C9—C2—C1 | 166.46 (15) |
C8—C3—C4—C5 | −0.1 (2) | N2—C9—C2—C1 | −14.7 (2) |
C2—C3—C4—C5 | −178.51 (18) | O1—C9—C2—C3 | −17.4 (2) |
C3—C4—C5—C6 | 0.2 (3) | N2—C9—C2—C3 | 161.42 (15) |
C4—C5—C6—C7 | −0.2 (3) | O1—C9—N2—C10 | −0.2 (2) |
C5—C6—C7—C8 | 0.2 (3) | C2—C9—N2—C10 | −179.07 (14) |
N1—C8—C7—C6 | 178.87 (18) | C11—C10—N2—C9 | 69.72 (19) |
C3—C8—C7—C6 | −0.1 (3) | O2—C11—O3—C12 | 2.6 (3) |
N2—C10—C11—O2 | 30.2 (2) | C10—C11—O3—C12 | −175.89 (17) |
N2—C10—C11—O3 | −151.31 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 2.00 | 2.8566 (17) | 164 |
N1—H1A···O2ii | 0.88 | 2.15 | 2.9680 (18) | 154 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+3/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H12N2O3 |
Mr | 232.24 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 8.0024 (2), 9.1279 (2), 15.9767 (3) |
V (Å3) | 1167.02 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.49 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Oxford Gemini S Ultra area-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.694, 0.910 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2269, 1642, 1613 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.576 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.05 |
No. of reflections | 1642 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.14 |
Absolute structure | Flack (1983), 568 Friedel pairs |
Absolute structure parameter | −0.2 (3) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 2.00 | 2.8566 (17) | 164 |
N1—H1A···O2ii | 0.88 | 2.15 | 2.9680 (18) | 154 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+3/2, −y, z−1/2. |
Acknowledgements
We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.
References
Di Fabio, R., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Huang, G., Xu, X. Y., Zeng, X. C., Tang, G. H. & Li, D. D. (2009). Acta Cryst. E65, o2063. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, G., Xu, X. Y., Zeng, X. C., Zheng, L. & Li, K. P. (2010). Acta Cryst. E66, o1472. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319–4321. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many indole derivatives show important bioactivities, such as metabotropic receptor antagonists (Di Fabio et al., 2007) and protein kinase inhibiting activity (Sharma & Tepe, 2004). This is the reason they have attracted our interest. This study is related to our previous structural investigations of methyl 3-(1-butyl-1H-indole-3-carbonyl)aminopropionate (Huang et al., 2009) and methyl 3-(1H-indole-3-carbonyl)aminopropionate hemihydrate (Huang et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules of the title compound are linked through N2—H2···O1 H-bonds (Table 1) to form chains extending along the b axis, which are further connected by N1—HA···O2 H-bonds to form the three-dimensional network (Fig. 2 and Fig. 3). Bond lengths and angles are unexceptional.